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Abstract: 

Graph neural networks (GNN) have been shown to provide substantial performance improvements 

for representing and modeling atomistic materials compared with descriptor-based machine-

learning models. While most existing GNN models for atomistic predictions are based on atomic 

distance information, they do not explicitly incorporate bond angles, which are critical for 

distinguishing many atomic structures. Furthermore, many material properties are known to be 

sensitive to slight changes in bond angles. We present an Atomistic Line Graph Neural Network 

(ALIGNN), a GNN architecture that performs message passing on both the interatomic bond graph 

and its line graph corresponding to bond angles. We demonstrate that angle information can be 

explicitly and efficiently included, leading to improved performance on multiple atomistic 

prediction tasks. We use ALIGNN models for predicting 52 solid-state and molecular properties 

available in the JARVIS-DFT, Materials project, and QM9 databases.  ALIGNN can outperform 

some previously reported GNN models on atomistic prediction tasks by up to 85% in accuracy 

with better or comparable model training speed. 
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Introduction 

Graphs are a powerful non-Euclidean data structure method for establishing relationships between 

features (nodes) and their relationships (edges) 1,2. Graph neural networks (GNN)3,4 have immense 

potential for modeling complex phenomena. Common applications of GNNs include community 

detection and link prediction in social networks5,6, functional time series on brain structures7, gene 

DNA on regulatory networks8, information flow through telecommunications networks9, and 

property prediction for molecular and solid materials10. From a quantum chemistry point of view, 

GNNs provide a unique opportunity to predict properties of solids, molecules, and proteins in a 

much faster way rather than by solving the computationally expensive Schrodinger equation11-14. 

There has been rapid progress in the development of GNN architectures for predicting material 

properties such as SchNet10, Crystal Graph Convolutional Neural Networks (CGCNN)15, 

MatErials Graph Network (MEGNet)16, improved Crystal Graph Convolutional Neural Networks 

(iCGCNN)17, OrbNet18 and similar variants19-31.  This family of models represents a molecule or 

crystalline material as a graph with one node for each constituent atom and edges corresponding 

to interatomic bonds. A common theme is the use of elemental properties as node features and 

interatomic distances and/or bond valences as edge features. Through multiple layers of graph 

convolution updating node features based on their local chemical environment, these models can 

implicitly represent many-body interactions. However, many important material properties 

(especially electronic properties such as band gaps) are highly sensitive to structural features such 

as bond angles and local geometric distortions. It is possible that these models are not able to 

efficiently learn the importance of such many-body interactions. Explicit inclusion of angle-based 

information has already been shown to improve models with hand-crafted features such as classical 
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force-field inspired descriptors (CFID)32. Recently, there has been growing interest in the explicit 

incorporation of bond angles and other many-body features17,20. 

In this work, we use line graph neural networks inspired by those proposed in Ref6 to develop an 

alternative way to include angular information to provide high accuracy models. Briefly, the line 

graph L(g) is a graph derived from another graph g that describes the connectivity of the edges in 

g.  While the nodes of an atomistic graph correspond to atoms and its edges correspond to bonds, 

the nodes of an atomistic line graph correspond to interatomic bonds and its edges correspond to 

bond angles. Our model alternates between graph convolution on these two graphs, propagating 

bond angle information through interatomic bond representations to the atom-wise representations 

and vice versa. We use both the bond distances and angles in the line graph to incorporate finer 

details of atomic structure which leads to higher model performance. Our Atomistic Line Graph 

Neural Network (ALIGNN) models are implemented using the deep graph library (DGL) 33 which 

allows efficient construction and neural message passing for different types of graphs. ALIGNN 

is a part of the Joint Automated Repository for Various Integrated Simulations (JARVIS) 

infrastructure34. We train ALIGNN models for several crystalline material properties from 

JARVIS-density functional theory (DFT) 34-44 and Materials project45 (MP) datasets as well as 

molecular properties from QM946 database. 

Results and discussion 

ALIGNN performs Edge-gated graph convolution4 message passing updates on both the atomistic 

bond graph (atoms are nodes, bonds are edges) and its line graph (bonds are nodes, bond pairs with 

one common atom are edges). The Edge-gated graph convolution variant has the distinct advantage 

of updating both node and edge features. Because each edge in the bond graph directly corresponds 

to a node in the line graph, ALIGNN can aggregate features from bond pairs to efficiently update 
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atom and bond representations by alternating between message passing updates on the bond graph 

and its line graph. 

A. Atomistic graph representation 

For crystals, we use a periodic 12-nearest-neighbor graph construction. We expand this nearest-

neighbor graph to include edges to all atoms in the neighbor shell of the 12th-nearest neighbor. 

Each node in the atomistic graph is assigned 9 input node features based on its atomic species: 

electronegativity, group number, covalent radius, valence electrons, first ionization energy, 

electron affinity, block and atomic volume. This feature set is inspired by the CGCNN15 model. 

The initial edge features are interatomic bond distances. We use a radial basis function (RBF) 

expansion with support between 0 and 8 Å for crystals and up to 5 Å for molecules. This undirected 

graph then can be represented as G = (υ, є) where υ are nodes and є are edges i.e., a collection of 

(υi, υj) linking vertices from υi to υj. G has an associated node feature set H={h1,…,hN) , where hi is 

the feature vector associated with node υi.  

B. Atomistic line graph representation 

The atomistic line graph is derived from the atomistic graph. Each node in the line graph 

corresponds to an edge in the original atomistic graph; both entities represent interatomic bonds, 

and in our work they share latent representations. Edges in the line graph correspond to triplets of 

atoms or pairs of interatomic bonds. The initial line graph edge features are an RBF expansion of 

the bond angle cosines: Ө = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑟𝑖𝑗.𝑟𝑗𝑘

|𝑟𝑖𝑗||𝑟𝑗𝑘|
), where rij and rjk are atomic displacement vectors 

between atoms i, j, and k. A schematic of an atomistic graph and corresponding atomistic line 

graph is shown in Fig. 1. To avoid ambiguity between the node and edge features of the atomistic 

graph and its line graph, we write atom, bond, and triplet representations as h, e, and t. 
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Figure 1: Schematic showing undirected crystal graph representation and corresponding line 

graph construction for a SiO4 polyhedron. For simplicity, only Si-O bonds are illustrated. The 

ALIGNN convolution layer alternates between message passing on the bond graph (left) and 

its line graph (or bond adjacency graph, right). 

C. Edge gated graph convolution 

ALIGNN uses Edge-gated graph convolution4 convolution for updating both node and edge 

features. This convolution is similar to the CGCNN update, except that edge features are only 

incorporated into normalized edge gates. Furthermore, edge gated graph convolution uses the pre-

aggregated edge messages to update the edge representations.  

Edge gated graph convolution updates node representations hl from layer l according to the 

formula:  

ℎ𝑖
𝑙+1 = 𝑓 (ℎ𝑖

𝑙{ℎ𝑗
𝑙}
𝑗∈𝑁𝑖

)         (1) 

ℎ𝑖
𝑙+1 = ℎ𝑖

𝑙 + 𝑆𝑖𝐿𝑈 (𝑁𝑜𝑟𝑚(𝑊𝑠𝑟𝑐
𝑙 ℎ𝑖

𝑙 + ∑𝑗∈𝑁𝑖
𝑒̂ 𝑖𝑗
𝑙 ⨀𝑊𝑑𝑠𝑡

𝑙 ℎ𝑗
𝑙))    (2) 

𝑒̂ 𝑖𝑗
𝑙 =

𝜎(𝑒𝑖𝑗
𝑙 )

∑𝑘∈𝑁𝑖
𝜎(𝑒𝑖𝑘

𝑙 )+є
          (3) 

𝑒̂𝑖𝑗
𝑙 = 𝑒̂𝑖𝑗

𝑙−1 + 𝑆𝑖𝐿𝑈 (𝑁𝑜𝑟𝑚(𝐴𝑙ℎ𝑖
𝑙−1 + 𝐵𝑙ℎ𝑗

𝑙−1 + 𝐶𝑙𝑒̂𝑖𝑗
𝑙−1))     (4) 
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The edge messages in this equation (4) are equivalent to the gating term in the CGCNN update15, 

which coalesces the weight matrices A, B, and C into Wgate, and the augmented edge representation 

zij = hi ⊕ hj ⊕ eij          (5) 

𝑒̂𝑖𝑗
𝑙 = 𝑒̂𝑖𝑗

𝑙−1 + 𝑆𝑖𝐿𝑈 (𝑁𝑜𝑟𝑚(𝑊𝑔𝑎𝑡𝑒
𝑙 𝑧𝑖𝑗

𝑙−1))       (6) 

D. ALIGNN update 

One ALIGNN layer composes an edge-gated graph convolution on the bond graph (g) with an 

edge-gated graph convolution on the line graph (L(g)), as illustrated in Fig. 2. To avoid ambiguity 

between the node and edge features of the atomistic graph and its line graph, we write atom, bond, 

and triplet representations as h, e, and t. The line graph convolution produces bond messages m 

that are propagated to the atomistic graph, which further updates the bond features in combination 

with atom features h.    

 

𝑚𝑙, 𝑡𝑙  =  𝐸𝑑𝑔𝑒̂𝐺𝑎𝑡𝑒̂𝑑𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(𝐿(𝑔), 𝑒̂𝑙−1, 𝑡𝑙−1)     (7) 

ℎ𝑙 , 𝑒̂𝑙  =  𝐸𝑑𝑔𝑒̂𝐺𝑎𝑡𝑒̂𝑑𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣(𝑔, ℎ𝑙−1, 𝑚𝑙)      (8)  

 
Figure 2: Schematic of the ALIGNN layer structure. The ALIGNN layer first performs edge-

gated graph convolution on the line graph to update pair and triplet features. The newly 
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updated pair features are propagated to the edges of the direct graph and further updated with 

the atom features in a second edge-gated graph convolution applied to the direct graph.  

E. Overall model architecture and training 

We use N layers of ALIGNN updates followed by M layers of edge-gated graph convolution 

(GCN) updates on the bond graph. We use Sigmoid Linear Unit (SiLU, also known as Swish) 

activations instead of rectified linear unit (ReLU) or Softplus because it is twice differentiable like 

Softplus but can result in better empirical performance like ReLU on many tasks. After N + M 

graph convolution layers, our networks perform global average pooling over nodes and finally 

predict the target properties with a single fully connected regression or classification layers. Table 

1 presents the default hyperparameters of the ALIGNN model used to train the models reported in 

Section F. These hyperparameters were selected through a combination of hypothesis-driven 

experiments and random hyperparameter search, as discussed in detail in the Methods section. 

Section G provides a detailed analysis of the sensitivity of model performance and computational 

cost. 

Table 1: ALIGNN model configuration used for both solid state and molecular machine 

learning models. 

Parameter Value 

ALIGNN layers 4 

GCN layers 4 

Edge input features 80 

Triplet input features 40 

Embedding features 64 

Hidden features 256 

Normalization Batch normalization 

Batch size 64 

Learning rate 0.001 
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F. Model performance 

Model performance can vary substantially depending on the dataset and task. To evaluate the 

performance of ALIGNN, we currently use two different solid-state property datasets ( Materials 

Project and JARVIS-DFT) as well as molecular property dataset QM9. Because the solid-state 

datasets are continuously updated, we use time-versioned snapshots of them, specifically selecting 

the MP version used by previous works to facilitate direct comparison of model performance with 

the literature. It is likely that as these dataset sizes increase in the future the performance of the 

model can be further improved. We select the MP 2018.6.1 version which consists of 69239 

materials with properties such as Perdew Burke-Ernzerhof functional (PBE)47  bandgaps and 

formation energies. Similarly, we use 2021.8.18 version of JARVIS-DFT dataset, which consists 

of 55722 materials with several properties such as van der Waals correction with optimized 

Becke88 functional (OptB88vdW)48 bandgaps, formation energies, dielectric constants, Tran-

Blaha modified Becke Johnson potential (MBJ)49 bandgaps and dielectric constants, bulk, shear 

modulus, magnetic moment, density functional perturbation theory (DFPT) based maximum 

piezoelectric coefficients, Boltztrap50 based Seebeck coefficient, power factor, maximum absolute 

value of electric field gradient and two-dimensional materials exfoliation energies. All of these 

properties are critical for functional materials design. For the MP dataset we use a train-validation-

test split of 60000-5000-4239 as used by SchNet10 and MEGNet16. For the JARVIS-DFT dataset 

and its properties, we use 80 %:10 %: 10 % splits. For QM9 dataset we use a train-validation-test 

split of 110000-10000-10829 as used by SchNet10, DimeNet++20, and MEGNet16.  

Performance of ALIGNN models on MP is shown in Table 2, which shows the regression model 

performance in terms of mean absolute error metric (MAE). The best MAEs for formation energy 

(Ef) and band gap (Eg) with ALIGNN are 0.022 eV/atom and 0.218 eV respectively. In terms of 
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Ef, ALIGNN outperforms reported values of CGCNN, MEGNet and SchNet models by 43.6 %, 

21.4 % and 37.1 % respectively. For Eg, ALIGNN outperforms CGCNN and MEGNet by 43.8 % 

and 33.9 % respectively. Good performance on well-known and well-characterized datasets 

ensures high prediction accuracy of ALIGNN models. Because each property has different units 

and in general a different variance, we also report the mean absolute deviation (MAD) for each 

property to facilitate an unbiased comparison of the model performance between different 

properties. The MAD values represent the performance of a random guessing model with average 

value prediction for each data point. We also report the CFID based predictions for comparison. 

Clearly, all the neural networks, especially ALIGNN, perform much better than the corresponding 

MAD of the dataset as well as CFID performance. Analyzing the MAD: MAE (ALIGNN) ratio, 

we observe that the ratio could be as high as 42.27 model. Generally, a model with high 

MAD:MAE ratio (such as 5 and above) is considered a good predictive model51. 

Table 2: Test set performance on the Materials Project dataset. Predictions on test set are 

shown in parity plots in Fig. S1 and Fig. S2. 

Prop Unit MAD CFID CGCNN MEGNet SchNet ALIGNN MAD:

MAE 

Ef eV/at. 0.93 0.104 0.039 0.028 0.035 0.022 42.27 

Eg eV 1.35 0.434 0.388 0.33 - 0.218 6.19 

 

Similarly, we train ALIGNN models on the JARVIS-DFT34-44 dataset which consists of data for 

55722 materials. In addition to properties such as formation energies, and bandgaps it also consists 

several unique quantities such as solar-cell efficiency (spectroscopic limited maximum efficiency, 

SLME), topological spin-orbit spillage, dielectric constant  with (єx (DFPT)) and without ionic 

contributions (єx (OPT, MBJ)), exfoliation energies for two-dimensional (2D), electric field 

gradients (EFG), Voigt bulk (Kv) and shear modulus (Gv), energy above convex hull (ehull), 
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maximum piezoelectric stress (eij) and strain (dij) tensors, n-type and p-type Seebeck coefficient 

and power factors (PF), crystallographic averages of electron (me) and hole (mh) effective masses. 

As we converge plane wave-cutoff (ENCUT) and k-points used in Brillouin zone integration 

(Kpoint-length), we attempt to make machine learning predictions on these unique quantities as 

well. Such a large variety of properties allow a thorough testing of our ALIGNN models. More 

details for individual properties, its precision with respect to experimental measurements, 

applicability and limitations can be found in respective works. However, it is important to mention 

that many important issues such as tackling systematic underestimation of bandgaps by DFT 

methods, the inclusion of van der Waals bonding, and the inclusion of spin-orbit coupling 

interactions, all critically important for materials-design perspective have been key areas of 

improvements for the JARVIS-DFT dataset. For instance, meta-GGA (generalized gradient 

approximation) based Tran-Blaha modified Becke Johnson potential (TBmBJ) band gaps are more 

reliable and comparable to experimental data than Perdew Burke-Ernzerhof functional (PBE) or 

van der Waals correction with optimized Becke88 functional (OptB88vdW) bandgaps, but their 

calculations are computationally expensive and hence they are underrepresented in the dataset. In 

addition to the ALIGNN performance, we also include hand-crafted Classical force-field inspired 

descriptors (CFID) descriptor and CGCNN MAE performances for these properties using identical 

data-splits.  

In Table. 3 we show the performance on regression models for different properties in the JARVIS-

DFT database. We observe that ALIGNN models outperform CFID descriptors by up to 4 times, 

suggesting GNNs can be a very powerful method for multiple material property predictions. Also, 

ALIGNN outperforms CGCNN by more than 2 times (such as for OptB88vdW total energy). 

Cross-dataset comparison of corresponding property entries in Table 2 and Table 3 shows that 
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generally models generally obtain better performance on the MP dataset, which we attribute 

primarily to the larger size of MP. For example, the MAE for the formation energy target on MP 

dataset is 50% lower than for JARVIS-DFT. However, for some targets, the differences in the DFT 

method and settings, as well as potential differences in the material-space distribution, might 

significantly contribute to the difficulty of a prediction task. For example, the MAE on high 

throughput band gaps is lower (by 35.7 %) for the JARVIS-DFT dataset, which is interesting in 

light of MP’s dataset size advantage over JARVIS-DFT. One potential source of this discrepancy 

is the differing computational methodologies used, such as different functionals (PBE vs 

OptB88vdW), use of the DFT+U method, and settings for various DFT hyperparameters like 

smearing and k-point settings, all of which can influence the values of computed bandgaps as 

discussed in Ref. 37. Another potential contributing factor could be differing levels of dataset bias 

in the MP and JARVIS-DFT datasets stemming from differing distributions in material space. 

Clarifying this situation is beyond the scope of the present work, though it is of great importance 

for the atomistic modeling community to resolve.  

Nevertheless, application of ALIGNN models on different datasets shows improvements for 

materials-property predictions.  Both CFID, CGCNN and ALIGNN models’ MAEs are lower than 

the corresponding MADs. The MAD:MAE ratios can vary for energy related quantities from a 

high value of 48.11 (total energy), and 26.06 (formation energy model) to low values such as for 

DFPT based piezoelectric strain coefficients (1.19) and dielectric constant with ionic contributions 

(1.63). The results indicate that there is still much room for improvement for the GNN models 

especially for electronic properties. 
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Table 3: Regression model performances on JARVIS-DFT dataset for 29 properties using 

CFID, CGCNN and ALIGNN models on 55722 materials. Predictions on test set are shown in 

Fig. S3 to Fig. S31. 

Property Units MAD CFID CGCNN ALIGNN MAD: 

MAE 

Formation 

energy 

eV(atom)-1 0.86 0.14 0.063 0.033 26.06 

Bandgap 

(OPT) 

eV 0.99 0.30 0.20 0.14 7.07 

Total 

energy 

eV(atom)-1 1.78 0.24 0.078 0.037 48.11 

Ehull eV 1.14 0.22 0.17 0.076 15.00 

Bandgap 

(MBJ) 

eV 1.79 0.53 0.41 0.31 5.77 

Kv GPa 52.80 14.12 14.47 10.40 5.08 

Gv GPa 27.16 11.98 11.75 9.48 2.86 

Mag. mom µB 1.27 0.45 0.37 0.26 4.88 

SLME (%) No unit 10.93 6.22 5.66 4.52 2.42 

Spillage No unit 0.52 0.39 0.40 0.35 1.49 

Kpoint-

length 

Å 17.88 9.68 10.60 9.51 1.88 

Plane-wave 

cutoff 

eV 260.4 139.4 151.0 133.8 1.95 

єx (OPT) No unit 57.40 24.83 27.17 20.40 2.81 

єy (OPT) No unit 57.54 25.03 26.62 19.99 2.88 

єz (OPT) No unit 56.03 24.77 25.69 19.57 2.86 

єx (MBJ) No unit 64.43 30.96 29.82 24.05 2.68 

єy (MBJ) No unit 64.55 29.89 30.11 23.65 2.73 
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єz (MBJ) No unit 60.88 29.18 30.53 23.73 2.57 

є 

(DFPT:elec

+ionic) 

No unit 45.81 43.71 38.78 28.15 1.63 

Max. 

piezoelectri

c strain 

coeff (dij) 

CN-1 24.57 36.41 34.71 20.57 1.19 

Max. piezo. 

stress coeff 

(eij) 

Cm-2 0.26 0.23 0.19 0.147 1.77 

Exfoliation 

energy 

meV(atom)-1 62.63 63.31 50.0 51.42 1.22 

Max. EFG 1021 Vm-2 43.90 24.54 24.7 19.12 2.30 

avg. me electron 

mass unit 

0.22 0.14 0.12 0.085 2.59 

avg. mh electron 

mass unit 

0.41 0.20 0.17 0.124 3.31 

n-Seebeck µVK-1 113.0 56.38 49.32 40.92 2.76 

n-PF µW(mK2)-1 697.80 521.54 552.6 442.30 1.58 

p-Seebeck µVK-1 166.33 62.74 52.68 42.42 3.92 

p-PF µW(mK2)-1 691.67 505.45 560.8 440.26 1.57 

  

 

As we notice above, the regression tasks for some of the electronic properties do not show very 

high MAD: MAE. we train classification models for some of them. Classification tasks predict 

labels such as high value/low value (based on a selected threshold) as 1 and 0 instead of predicting 

actual data in regression tasks. Such models can be useful for fast screening purposes38 for 

computationally expensive methods. We evaluate the performance of these classifiers using the 
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receiver operating characteristic curve area under the curve (ROC AUC). A random guessing 

model has a ROC AUC of 0.5, while a perfect model would be a ROC AUC of 1.0. Interestingly, 

we notice most of our classification models (as shown in Table 4) have high ROC AUCs, ranging  

up to a maximum value of 0.94 (for convex hull stability) showing their usefulness for material 

classification-based applications. All results are based on the performance of 10 % test data which 

is never used during the training or model selection procedures. 

Table 4: Classification task ROC AUC performance on JARVIS-DFT dataset for ALIGNN 

models. The ROC curve plots for these models are provided in Fig. S32 to Fig.41.  

Model Threshold ALIGNN 

Metal/non-metal classifier (OPT) 0.01 eV 0.92 

Metal/non-metal classifier (MBJ) 0.01 eV 0.92 

Magnetic/non-Magnetic classifier 0.05 µB 0.91 

High/low SLME 10 % 0.83 

High/low spillage 0.1 0.80 

Stable/unstable (ehull) 0.1 eV 0.94 

High/low-n-Seebeck -100 µVK-1 0.88 

High/low-p-Seebeck 100 µVK-1 0.92 

High/low-n-powerfactor 1000 µW(mK2)-1 0.74 

High/low-p-powerfactor 1000µW(mK2)-1 0.74 

 

Next, we evaluate the ALIGNN model on QM9 molecular property dataset (130829 molecules) 

and compare it with other well-known models such as SchNet10, MatErials Graph Network 

(MEGNet)16, OrbNet18 and DimeNet++20 as shown in Table. 5. QM9 provides DFT calculated 
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molecular properties such as highest occupied molecular orbital (HOMO), lowest unoccupied 

molecular orbital (LUMO), energy gap, zero-point vibrational energy (ZPVE), dipole moment, 

isotropic polarizability, electronic spatial extent, internal energy at 0 K, internal energy at 298 K, 

enthalpy at 298 K, and Gibbs free energy at 298 K. ALIGNN outperforms competing methods on 

9 out of 11 tasks, suggesting that it can be uniformly applied to both molecular as well as solid-

state systems. On the QM9 U0 regression target, ALIGNN outperforms SchNet, MEGNet, 

DimeNet++ and OrbNet by 85%, 82.3%, 66.8% and 46.2% respectively. Most importantly, all 

ALIGNN results reported here use the same set of hyperparameters obtained by tuning to 

validation performance on the JARVIS-DFT bandgap target, suggesting that ALIGNN provides 

robust performance with respect to different datasets and material types.  

Table 5: Regression model performances on QM9 dataset for 11 properties using ALIGNN. 

Predictions on test set are shown in Fig. S42 to Fig. S52. 

Target Units SchNet MEGNet DimeNet

++ 

OrbNet-

ens5 

ALIGNN 

HOMO eV 0.041 0.043 0.0246 - 0.037 

LUMO eV 0.034 0.044 0.0195 - 0.016 

Gap eV 0.063 0.066 0.0326 - 0.030 

ZPVE eV 0.0017 0.00143 0.00121 - 0.002 

µ Debye 0.033 0.05 0.0297 - 0.018 

α Bohr3 0.235 0.081 0.0435 - 0.008 

<R2> Bohr2 0.073 0.302 0.331 - 0.002 

U0 eV 0.014 0.012 0.00632 0.0039 0.00209 

U eV 0.019 0.013 0.00628 - 0.00181 

H eV 0.014 0.012 0.00653 - 0.00237 

G eV 0.014 0.012 0.00756 - 0.00226 

 

G. Model analysis 

G.1 Layer ablation study 

We ablate individual components of the ALIGNN model to evaluate their contribution to the 

overall architecture. Keeping other parameters intact in the ALIGNN model (as specified in Table 

1), we vary the number of ALIGNN and GCN layers as shown in Table 6 and Table S1 for 
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JARVIS-DFT OptB88vdW formation energies and bandgaps respectively. We find that without 

any graph convolution layers the MAE for the formation energy and bandgap are 1248.5 % and 

453.6 % higher than the default model. Adding even a single ALIGNN or GCN layer can reduce 

the MAE by 102.9 % illustrating the importance of these layers. However, further increase in 

ALIGNN/GCN layers doesn’t scale well and performance quickly saturates at a depth of 4. 

Excluding GCN layers and increasing ALIGNN layers and vice versa show the individual 

importance of these layers. Performance of GCN-only models saturates at 4 layers with 44 

meV/atom MAE on the JARVIS-DFT formation energy task, while ALIGNN-only models 

saturate at 34 meV/atom—a relative reduction of 29.14 %. Each of these models, along with the 

other highlighted configurations in Table 6, performs four atom feature updates via graph 

convolution modules. At least two ALIGNN updates are needed to obtain peak performance. 

Additional atom feature updates provide little marginal increase in performance. This is consistent 

with the widely reported difficulty of GCN architectures scaling in depth beyond a few layers52. 

Table 6: Effect of changing ALIGNN and GCN layers on machine learning models for 

JARVIS-DFT OptB88vdW formation energy database in ALIGNN models. 

Layers GCN-0 GCN-1 GCN-2 GCN-3 GCN-4 

ALIGNN-0 0.445 0.065 0.050 0.045 0.044 

ALIGNN-1 0.064 0.041 0.037 0.036 0.037 

ALIGNN-2 0.039 0.036 0.034 0.034 0.034 

ALIGNN-3 0.036 0.034 0.033 0.034 0.034 

ALIGNN-4 0.034 0.034 0.034 0.034 0.033 

 

 

 

Figure 6 shows in detail the tradeoff between the performance benefit of including ALIGNN layers 

and their computational overhead relative to GCN layers. Per-epoch timing for each configuration 

is reported in Table S2. All GCN-only configurations (shown in blue, annotated with the number 

of GCN layers) are on the low-computation portion of the pareto frontier, but the high-accuracy 



17 
 

 

portion of the pareto frontier is dominated by ALIGNN/GCN combinations with at least two 

ALIGNN updates. The ALIGNN-2/GCN-2 configuration obtains peak performance (again, 

relative reduction of MAE by 29.14%) with a computational overhead of roughly 2x relative to 

the GCN-4 configuration. Table S1 and Figure S53 present layer ablation study results yielding 

similar conclusions on the JARVIS-DFT OptB88vdW band gap target. 

 
Figure 3: ALIGNN layer study performance tradeoff, JARVIS-DFT formation energy target. 

This layer ablation study clearly demonstrates that inclusion of bond angle information and 

propagation of bond and pair features through the node updates improves the generalization ability 

of atomistic GCN models. This is satisfying from a materials science perspective, as interatomic 

bonding theory clearly motivates the notion that inclusion of bond angles should improve accuracy 

of the model. 

 

 

Similarly, we vary the number of hidden features (i.e., the width of the graph convolution layers), 

edge input features, and embedding input features to evaluate the MAE performance for JARVIS-

DFT formation energy and bandgap model in comparison with the default model in Table 1. In 
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Table S3, we observe that the marginal performance from increasing the hidden features saturates 

at 256 for both properties. Table S4 shows that the number of edge input features is optimal at 80 

for formation energy model, while for the bandgap model performance saturates at 40. Similarly, 

embedding features are optimized at 64 for formation energy while 32 for bandgap model (Table 

S5). Additionally, we tried three different node feature attributes such 1) CFID chemical features 

(total 438), only atomic number (total 1), and default CGCNN type attributes (total 92) and 

compared them for formation energy model in Table S6. We observe that the default node 

attributes have the lowest MAE.  

G.2 Timing study 

Next, we study time taken per epoch of several models for QM9 and JARVIS-DFT formation 

energy dataset in Table S7. To help facilitate fair comparison, we train all models with the same 

computational resources using the reference implementations and configurations reported in the 

literature. We note that the timing code for the reference implementations of different methods 

may include differing amounts of overhead. For example, the ALIGNN timings reported in Table 

S7 amortize the overhead of initial atomistic graph construction across 300 epochs, and each epoch 

includes the overhead of evaluating the model on the full training and validation sets for 

performance tracking. Additionally, the computational cost of deep learning models in general is 

not independent of certain hyperparameters; in particular, larger batch sizes can better leverage 

modern accelerator hardware by exposing more parallelism. We find ALIGNN requires less 

training time per epoch time compared to other models except DimeNet++ and MEGNet. 

However, it is important to note that DimeNet++ and other models usually take around 1000 

epochs or more to reach desired accuracy, while ALIGNN can converge in about 300 epochs, 

resulting in lower overall training cost for similar or better accuracy.  
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While we report timing comparisons using our standard hyperparameter configuration used to train 

models reported in Section F, through subsequent model analysis we have identified several 

strategies that substantially reduce computational workload without incurring a large performance 

penalty. We observe in Figure S54 that model performance converges after 300 epochs; shorter 

training budgets incur a modest performance reduction and slightly increased variance with respect 

to the training split. The performance tradeoff presented in Table 6 and Figure 3 indicates that 

switching from the default configuration of 4 layers each of ALIGNN and GCN updates to 2 layers 

each could offer a speedup of ~1.5x with negligible reduction in accuracy. Finally, we performed 

a drop-in replacement study comparing batch normalization and layer normalization in Table S8, 

finding that switching to layer normalization provides an additional ~1.7x speedup with a slight 

degradation in validation loss and negligible degradation in validation MAE. Because the cost of 

retraining models for all targets reported is still high, and because some of these strategies equally 

apply to competing models, we defer a more comprehensive performance-cost study to future 

work. 

G.3 Learning curve cross-validation study 

Finally, we simultaneously investigate the effects of dataset size and different train-validation-test 

splits by performing a learning curve study in cross-validation for the JARVIS-DFT formation 

energy (Figure 4 and Table S9) and bandgap (Figure S55 and Table S9) targets. We perform the 

cross-validation splitting procedure by merging the standard JARVIS-DFT train and validation 

sets and randomly sampling without replacement Ntrain training samples and 5000 validation 

samples. The learning curve study shows no sign of diminishing marginal returns for additional 

data up to the full size of the JARVIS-DFT dataset. On the full training set size (44577) we obtain 

an average validation MAE of 0.0316 ± 0.0004 eV/at (uncertainty corresponds to the standard 
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error of the mean over five cross-validation (CV) iterates). The standard deviation over CV iterates 

is 0.0009 eV/at, indicating that model performance is relatively insensitive to the dataset split.  

 
Figure 4 learning curve for JARVIS-DFT formation energy regression target. Blue markers 

indicate validation set MAE scores for individual cross-validation iterates. Error bars indicate 

the mean cross-validation MAE +/- one standard error of the mean. 

 

In summary, we have developed an ALIGNN model which uses the line graph neural network that 

improves the performance of GNN predictions for solids and molecules. We have demonstrated 

that explicit inclusion of angle-based networks in GNNs can significantly improve model 

performance. A key contribution of this work is the inclusion and development of both the 

undirected atomistic graph and its line graph counterpart for solid-state and molecular materials. 

We develop regression and classification ALIGNN models for some of the well-known pre-

existing databases and it can be easily applied for other datasets as well. Our model significantly 

improved accuracies over prior GNN models. We believe the ALIGNN model will rapidly 

improve the machine-learning prediction for several material properties and classes.  
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Methods 

A: JARVIS-DFT dataset 

The JARVIS-DFT34-44 dataset is developed using Vienna Ab-initio simulation package (VASP)53 

software54. Most of the properties are calculated using the OptB88vdW functional48. For a subset 

of the data we use TBmBJ49 for getting better band gaps. We use density functional perturbation 

theory (DFPT)55 for predicting piezoelectric and dielectric constants with both electronic and ionic 

contributions. The linear response theory-based56 frequency based dielectric function was 

calculated using both OptB88vdW and TBmBJ and the zero-energy values are trained for the 

machine learning model. Note that the linear response based dielectric constants lack ionic 

contributions. The TBmBJ frequency dependent dielectric functions are used to calculate the 

spectroscopic limited maximum efficiency (SLME)38. The magnetic moments are calculated using 

spin-polarized calculations considering only ferromagnetic initial configurations and neglecting 

any density functional theory (DFT)+U effects. The thermoelectric coefficients such as Seebeck 

coefficients and power factors are calculated using BoltzTrap50 software using constant relaxation 

time approximation. Exfoliation energy for the van der Waals bonded two-dimensional materials 

are calculated as the energy per atom differences between the bulk and corresponding monolayer 

counterparts. The spin-orbit spillage40 is calculated using the difference in wavefunctions of a 

material with and without inclusion of spin orbit coupling effects. All the JARVIS-DFT data and 

Classical force-field inspired descriptors (CFID)32 are generated using the JARVIS-Tools package.  

The CFID baseline models are trained using the LightGBM package54,57 using the models 

developed in Ref.32.  
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B. ALIGNN model implementation and training 

The ALIGNN model is implemented in PyTorch58 and deep graph library (DGL)33; the training 

code heavily relies on PyTorch-ignite59. For regression targets we minimize the mean squared error 

(MSE) loss, and for classification targets we minimize the standard negative log likelihood loss. 

We train all models for 300 epochs using the AdamW60 optimizer with normalized weight decay 

of 10-5 and a batch size of 64. The learning rate is scheduled according to the one-cycle policy61 

with a maximum learning rate of 0.001. We use the same model configuration for each regression 

and classification target. We use the initial atom representations from the CGCNN paper, 80 initial 

bond radial basis function (RBF) features, and 40 initial bond angle RBF features. The atom, bond, 

and bond angle feature embedding layers produce 64-dimensional inputs to the graph convolution 

layers. The main body of the network consists of 4 ALIGNN and 4 graph convolution (GCN) 

layers, each with hidden dimension 256. The final atom representations are reduced by atom-wise 

average pooling and mapped to regression or classification outputs by a single linear layer. These 

hyperparameters are selected to optimize validation MAE on the JARVIS-DFT band gap task 

through a combination of manual hypothesis-driven experiments and random hyperparameter 

search facilitated and scheduled through Ray Tune62; hyperparameter ranges are given in Table 

S10. The random search results indicate that model performance is most highly sensitive to the 

learning rate, weight decay, and convolution layer width, and beyond a relatively low threshold is 

insensitive to the sizes of the initial feature embedding layers. 

We used NIST’s Nisaba cluster to train all ALIGNN models, and we reproduce results from the 

literature using the reference implementations for each competing method on the same hardware. 

Each model is trained on a single Tesla V100 SXM2 32 gigabyte Graphics processing unit (GPU), 

with 8 Intel Xeon E5-2698 v4 CPU cores for concurrently fetching and preprocessing batches of 
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data during training54. For the MP dataset we use a train-validation-test split of 60000-5000-4239. 

For the JARVIS-DFT dataset, we use 80 %:10 %: 10 % splits. The 10 % test data is never used 

during training procedures. For QM9 dataset we use a train-validation-test split of 110000-10000-

10829. 

 

Acknowledgements: K.C. and B. D. thank the National Institute of Standards and Technology for 

funding, computational, and data management resources. Contributions from K.C. were supported 

by the financial assistance award 70NANB19H117 from the U.S. Department of Commerce, 

National Institute of Standards and Technology. This work was also supported by the Frontera 

supercomputer, National Science Foundation OAC-1818253, at the Texas Advanced Computing 

Center (TACC) at The University of Texas at Austin.  

Code availability: The code and full model and training configurations used in this work are 

available on GitHub at https://github.com/usnistgov/alignn, along with general tooling at 

https://github.com/usnistgov/jarvis .  

Contributions: Both K.C. and B.D. equally contributed to developing the model and writing the 

manuscript. 

Competing interests: 

The authors declare no competing interests. 

Data availability: All data used in this work is available at Figshare link 

https://figshare.com/collections/ALIGNN_data/5429274. During the training these datasets are 

accessed using JARVIS-Tools’s figshare module. 

 

 

 

 

 

https://github.com/usnistgov/alignn
https://github.com/usnistgov/
https://figshare.com/collections/ALIGNN_data/5429274


24 
 

 

References: 

1 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). 

2 Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural 

network model. IEEE transactions on neural networks 20, 61-80 (2008). 

3 Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE transactions on 

neural networks and learning systems, 32 (1), 4 (2020). 

4 Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y. & Bresson, X. Benchmarking graph 

neural networks. arXiv, 2003, 00982 (2020). 

5 Guo, Z., & Wang, H. A deep graph neural network-based mechanism for social 

recommendations. IEEE Transactions on Industrial Informatics, 17(4), 2776 (2020). 

6 Chen, Z., Li, X. & Bruna, J. Supervised community detection with line graph neural 

networks. arXiv,1705, 08415 (2017). 

7 Li, X. & Duncan, J. Braingnn: Interpretable brain graph neural network for fmri analysis. 

BioRxiv, 5, 16, 100057 (2020). 

8 Baumbach, J. CoryneRegNet 4.0–A reference database for corynebacterial gene regulatory 

networks. BMC bioinformatics 8, 1-11 (2007). 

9 Wu, K., Chen, Z., & Li, W. A novel intrusion detection model for a massive network using 

convolutional neural networks. IEEE Access, 6, 50850 (2018). 

10 Schütt, K. T. et al. Schnet: A continuous-filter convolutional neural network for modeling 

quantum interactions. arXiv, 1706, 08566 (2017). 

11 Duvenaud, D. et al. Convolutional networks on graphs for learning molecular fingerprints. 

arXiv, 1509, 09292 (2015). 

12 Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph 

convolutions: moving beyond fingerprints. Journal of computer-aided molecular design 

30, 595-608 (2016). 

13 Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural Message 

Passing for Quantum Chemistry, Proceedings of Machine Learning Research, 70,1263 

(2017). 

14 Faber, F. A. et al. Prediction errors of molecular machine learning models lower than 

hybrid DFT error. Journal of chemical theory and computation 13, 5255-5264 (2017). 

15 Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and 

interpretable prediction of material properties. Physical review letters 120, 145301 (2018). 

16 Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine 

learning framework for molecules and crystals. Chemistry of Materials 31, 3564-3572 

(2019). 

17 Park, C. W. & Wolverton, C. Developing an improved Crystal Graph Convolutional Neural 

Network framework for accelerated materials discovery. Physical Review Materials 4, 

063801 (2020). 

18 Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R., & Miller III, T. F. OrbNet: Deep 

learning for quantum chemistry using symmetry-adapted atomic-orbital features. The 

Journal of Chemical Physics, 153(12), 124111 (2020). 

19 Sanyal, S. et al. MT-CGCNN: Integrating crystal graph convolutional neural network with 

multitask learning for material property prediction. arXiv, 1811, 05660 (2018). 

20 Klicpera, J., Giri, S., Margraf, J. T., & Günnemann, S. (2020). Fast and uncertainty-aware 

directional message passing for non-equilibrium molecules. arXiv, 2011, 14115 (2020).   



25 
 

 

21 Unke, O. T. & Meuwly, M. PhysNet: A neural network for predicting energies, forces, 

dipole moments, and partial charges. Journal of chemical theory and computation 15, 

3678-3693 (2019). 

22 Shui, Z. & Karypis, G. Heterogeneous Molecular Graph Neural Networks for Predicting 

Molecule Properties. arXiv, 2009, 12710 (2020). 

23 Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-

chemical insights from deep tensor neural networks. Nature communications 8, 1-8 (2017). 

24 Anderson, B., Hy, T.-S. & Kondor, R. Cormorant: Covariant molecular neural networks. 

arXiv,1906, 04015 (2019). 

25 Zhang, S., Liu, Y. & Xie, L. Molecular Mechanics-Driven Graph Neural Network with 

Multiplex Graph for Molecular Structures. arXiv, 2011, 07457 (2020). 

26 Lubbers, N., Smith, J. S. & Barros, K. Hierarchical modeling of molecular energies using 

a deep neural network. The Journal of chemical physics 148, 241715 (2018). 

27 Schutt, K. et al. SchNetPack: A deep learning toolbox for atomistic systems. Journal of 

chemical theory and computation 15, 448 (2018). 

28 Jha, D. et al. Elemnet: Deep learning the chemistry of materials from only elemental 

composition. Scientific reports 8, 1-13 (2018). 

29 Westermayr, J., Gastegger, M. & Marquetand, P. Combining SchNet and SHARC: The 

SchNarc machine learning approach for excited-state dynamics. The journal of physical 

chemistry letters 11, 3828 (2020). 

30 Wen, M., Blau, S. M., Spotte-Smith, E. W. C., Dwaraknath, S. & Persson, K. A. BonDNet: 

a graph neural network for the prediction of bond dissociation energies for charged 

molecules. Chemical Science, 12 (5), 1858 (2020). 

31 Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic 

crystals. Nature communications 8, 1 (2017). 

32 Choudhary, K., DeCost, B. & Tavazza, F. Machine learning with force-field-inspired 

descriptors for materials: Fast screening and mapping energy landscape. Physical Review 

Materials 2, 083801 (2018). 

33 Wang, M. et al. Deep graph library: A graph-centric, highly-performant package for graph 

neural networks. arXiv, 1909, 01315 (2019). 

34 Choudhary, K. et al. The joint automated repository for various integrated simulations 

(JARVIS) for data-driven materials design. npj Computational Materials 6, 1-13 (2020). 

35 Choudhary, K., Cheon, G., Reed, E. & Tavazza, F. Elastic properties of bulk and low-

dimensional materials using van der Waals density functional. Physical Review B 98, 

014107 (2018). 

36 Choudhary, K., Kalish, I., Beams, R. & Tavazza, F. High-throughput identification and 

characterization of two-dimensional materials using density functional theory. Scientific 

Reports 7, 1-16 (2017). 

37 Choudhary, K. et al. Computational screening of high-performance optoelectronic 

materials using OptB88vdW and TB-mBJ formalisms. Scientific data 5, 1-12 (2018). 

38 Choudhary, K. et al. Accelerated discovery of efficient solar cell materials using quantum 

and machine-learning methods. Chemistry of Materials 31, 5900 (2019). 

39 Choudhary, K., Garrity, K. F. & Tavazza, F. High-throughput discovery of topologically 

non-trivial materials using spin-orbit spillage. Scientific reports 9, 1-8 (2019). 



26 
 

 

40 Choudhary, K., Garrity, K. F., Ghimire, N. J., Anand, N. & Tavazza, F. High-throughput 

search for magnetic topological materials using spin-orbit spillage, machine learning, and 

experiments. Physical Review B 103, 155131 (2021). 

41 Choudhary, K., Ansari, J. N., Mazin, I. I. & Sauer, K. L. Density functional theory-based 

electric field gradient database. Scientific Data 7, 1-10 (2020). 

42 Choudhary, K., Garrity, K. F. & Tavazza, F. Data-driven discovery of 3D and 2D 

thermoelectric materials. Journal of Physics: Condensed Matter 32, 475501 (2020). 

43 Choudhary, K. et al. High-throughput density functional perturbation theory and machine 

learning predictions of infrared, piezoelectric, and dielectric responses. npj Computational 

Materials 6, 1-13 (2020). 

44 Choudhary, K. & Tavazza, F. Convergence and machine learning predictions of 

Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations. 

Computational materials science 161, 300-308 (2019). 

45 Jain, A. et al. Commentary: The Materials Project: A materials genome approach to 

accelerating materials innovation. APL materials 1, 011002 (2013). 

46 Ramakrishnan, R., Dral, P. O., Rupp, M., & Von Lilienfeld, O. A. Quantum chemistry 

structures and properties of 134 kilo molecules. Scientific data, 1(1), 1 (2014). 

47 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made 

simple. Physical Review Letters 77, 3865 (1996). 

48 Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals 

density functional. Journal of Physics: Condensed Matter 22, 022201 (2009). 

49 Tran, F. & Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal 

exchange-correlation potential. Physical review letters 102, 226401 (2009). 

50 Madsen, G. K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent 

quantities. Computer Physics Communications 175, 67-71 (2006). 

51 Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine 

learning framework for predicting properties of inorganic materials. npj Computational 

Materials 2, 1 (2016). 

52 Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. I., & Jegelka, S. Representation 

learning on graphs with jumping knowledge networks. Proceedings of Machine Learning 

Research, 80, 5453 (2018). 

53 Kresse, G. & Furthmüller, Efficiency of ab-initio total energy calculations for metals and 

semiconductors using a plane-wave basis set. Comput. Mat. Sci.  6, 15 (1996). 

54 Please note commercial software is identified to specify procedures. Such identification 

does not imply recommendation by National Institute of Standards and Technology 

(NIST). 

55 Baroni, S. & Resta, R. Ab initio calculation of the macroscopic dielectric constant in 

silicon. Physical Review B 33, 7017 (1986). 

56 Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical 

properties in the projector-augmented wave methodology. Physical Review B 73, 045112 

(2006). 

57 Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. Advances in 

neural information processing systems 30, 3146 (2017). 

58 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. 

arXiv, 1912, 01703 (2019). 

59 PyTorch-ignite documentation. https://pytorch.org/ignite/ (2020). 



27 
 

 

60 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv, 1711, 05101 

(2017). 

61 Smith, L. N. A disciplined approach to neural network hyper-parameters: Part 1--learning 

rate, batch size, momentum, and weight decay. arXiv, 1803, 09820 (2018). 

62        Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. Tune: A research 

platform for distributed model selection and training. arXiv, 1807, 05118 (2018). 

 

Supplementary information: Atomistic Line Graph Neural Network for Improved 

Materials Property Predictions 

Kamal Choudhary1,2,3,*, Brian DeCost1,* 

1 Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, 

USA. 

2 Theiss Research, La Jolla, California, 92037, USA. 

3 DeepMaterials LLC, Silver Spring, 20906, USA. 
* These authors contributed equally to this work 

 

 

 

 
Fig. S1 MP formation energy predictions on test set. Both density functional theory (DFT) and artificial intelligence 

(AI) using ALIGNN model-based results are shown. 
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Fig. S2 MP bandgap predictions on test set. 

 
Fig. S3 JARVIS-DFT formation energy predictions on test set. 
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Fig. S4 JARVIS-DFT OptB88vdW bandgap predictions on test set. 

 

 
Fig. S5 JARVIS-DFT OptB88vdW total energy predictions on test set. 



30 
 

 

 
Fig. S6 JARVIS-DFT energy above convex hull predictions on test set. 

 
Fig. S7 JARVIS-DFT TBmBJ bandgap predictions on test set. 
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Fig. S8 JARVIS-DFT bulk modulus predictions on test set. 

 
Fig. S9 JARVIS-DFT shear modulus predictions on test set. 
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Fig. S10 JARVIS-DFT magnetic moment predictions on test set. 

 
Fig. S11 JARVIS-DFT SLME predictions on test set. 
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Fig. S12 JARVIS-DFT spin-orbit spillage predictions on test set. 

 
Fig. S13 JARVIS-DFT converged K-point length predictions on test set. 
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Fig. S14 JARVIS-DFT converged plane wave cut-off predictions on test set. 

 
Fig. S15 JARVIS-DFT OptB88vdW static (electronic) dielectric constant in xx-direction predictions on test set. 
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Fig. S16 JARVIS-DFT OptB88vdW static (electronic) dielectric constant in yy-direction predictions on test set. 

 
Fig. S17 JARVIS-DFT OptB88vdW static (electronic) dielectric constant in zz-direction predictions on test set. 
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Fig. S18 JARVIS-DFT TBmBJ static (electronic) dielectric constant in xx-direction predictions on test set. 

 
Fig. S19 JARVIS-DFT TBmBJ static (electronic) dielectric constant in yy-direction predictions on test set. 
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Fig. S20 JARVIS-DFT TBmBJ static (electronic) dielectric constant in zz-direction predictions on test set. 

 
Fig. S21 JARVIS-DFT density functional perturbation theory (DFPT) based static (electronic+ionic) dielectric 

constant predictions on test set. 
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Fig. S22 JARVIS-DFT density functional perturbation theory (DFPT) based maximum piezoelectric strain coeff (dij 

, CN-1) predictions on test set. 

 
Fig. S23 JARVIS-DFT density functional perturbation theory (DFPT) based maximum piezoelectric stress coeff (eij , 

Cm-2) predictions on test set. 
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Fig. S24 JARVIS-DFT OptB88vdW based 2D exfoliation energy predictions on test set. 

 
Fig. S25 JARVIS-DFT OptB88vdW based maximum electric field gradient predictions on test set. 
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Fig. S26 JARVIS-DFT OptB88vdW based average electron effective mass predictions on test set. 

 
Fig. S27 JARVIS-DFT OptB88vdW based average hole effective mass predictions on test set. 
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Fig. S28 JARVIS-DFT OptB88vdW n-type Seebeck coefficient (µVK-1) predictions on test set. 

 
Fig. S29 JARVIS-DFT OptB88vdW n-type power factor (µW(mK2)-1) predictions on test set. 
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Fig. S30 JARVIS-DFT OptB88vdW p-type Seebeck coefficient (µVK-1) predictions on test set. 

 

 
Fig. S31 JARVIS-DFT OptB88vdW p-type power factor (µW(mK2)-1) predictions on test set. 
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Fig. S32 JARVIS-DFT OptB88vdW bandgap classification ROC curve. 

 
Fig. S33 JARVIS-DFT TBmBJ bandgap classification ROC curve. 
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Fig. S34 JARVIS-DFT magnetism classification ROC curve. 

 
Fig. S35 JARVIS-DFT SLME classification ROC curve. 
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Fig. S36 JARVIS-DFT spillage classification ROC curve. 

 
Fig. S37 JARVIS-DFT energy convex hull classification ROC curve. 
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Fig. S38 JARVIS-DFT n-Seebeck classification ROC curve. 

 
Fig. S39 JARVIS-DFT p-Seebeck classification ROC curve. 
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Fig. S40 JARVIS-DFT n-powerfactor classification ROC curve. 

 

 
Fig. S41 JARVIS-DFT p-powerfactor classification ROC curve. 
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Fig. S42 QM9 highest occupied molecular orbital (HOMO, eV) energy predictions on test set. 

 
Fig. S43 QM9 lowest unoccupied molecular orbital (LUMO, eV) energy predictions on test set. 

 



49 
 

 

 
Fig. S44 QM9 energy gap (eV) predictions on test set. 

 
Fig. S45 QM9 zero-point vibrational energy (eV) predictions on test set. 
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Fig. S46 QM9 dipole moment (Debye) predictions on test set. 

 
Fig. S47 QM9 isotropic polarizability (Bohr3) predictions on test set. 
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Fig. S48 QM9 electronic spatial extent (Bohr2) predictions on test set. 

 
Fig. S49 QM9 internal energy at 0 K (eV) predictions on test set. 
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Fig. S50 QM9 internal energy at 298 K (eV) predictions on test set. 

 
Fig. S51 QM9 enthalpy at 298 K (eV) predictions on test set. 
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Fig. S52 QM9 Gibbs free energy at 298 K (eV) predictions on test set. 
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Figure S53: ALIGNN layer study performance tradeoff, JARVIS-DFT OptB88vdW bandgap 

target. 

 
Figure S54 Training time convergence study: 3x cross-validation on JARVIS-DFT band gap 

regression. 
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Figure S55: Learning curve for OptB88vdWbandgap regression model. Blue markers indicate 

validation results of five independent cross-validation iterates; black error bars indicate the 

standard error of the mean over the same. 

 
 

 

 

Table S1: Effect of changing ALIGNN and GCN layers on machine learning models for 

JARVIS-DFT OptB88vdW bandgap database in ALIGNN models. 

Layers GCN-0 GCN-1 GCN-2 GCN-3 GCN-4 

ALIGNN-0 0.775 0.284 0.21 0.18 0.170 

ALIGNN-1 0.277 0.166 0.155 0.144 0.145 

ALIGNN-2 0.169 0.145 0.145 0.140 0.140 

ALIGNN-3 0.145 0.140 0.140 0.140 0.140 

ALIGNN-4 0.141 0.136 0.141 0.137 0.140 

 

Table S2 Layer ablation study per-epoch timings 

Layers GCN-0 GCN-1 GCN-2 GCN-3 GCN-4 

ALIGNN-0 0.2 0.4 0.4 0.5 0.6 

ALIGNN-1 0.6 0.9 1.0 1.0 1.0 

ALIGNN-2 1.0 1.2 1.14 1.3 1.2 

ALIGNN-3 1.2 1.4 1.4 1.5 1.4 

ALIGNN-4 1.5 1.6 1.7 1.7 1.8 
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Table S1: Effect of changing number of hidden features on machine learning models for 

JARVIS-DFT OptB88vdW formation energy and bandgap databases in ALIGNN models. 

#HiddenFeats Ef (eV/atom) Eg (eV) Training 

time 

(min/epoch) 

64 0.036 0.150 1.5 

128 0.034 0.143 1.6 

256 0.033 0.140 1.8 

512 0.033 0.140 3.4 

 

Table S2: Effect of changing number of edge features on machine learning models for 

JARVIS-DFT OptB88vdW formation energy and bandgap databases in ALIGNN models. 

#EdgeFeats Ef (eV/atom) Eg (eV) Training 

time 

(min/epoch) 

20 0.0364 0.137 1.8 

40 0.0364 0.140 1.8 

80 0.0331 0.140 1.8 

100 0.0364 0.140 2.0 

 

Table S3: Effect of changing number of embedding features on machine learning models for 

JARVIS-DFT OptB88vdW formation energy and bandgap databases in ALIGNN models. 

#EmbedFeats Ef (eV/atom) Eg (eV) Training 

time 

(min/epoch) 

16 0.033 0.141 1.8 

32 0.034 0.140 1.8 

64 0.033 0.140 1.8 

80 0.033 0.140 1.8 
 

Table S4: Effect of node features on JARVIS-DFT formation energy model. 

Node features CFID (438) Z (1) Default (92) 

MAE 0.0394 0.129 0.033 
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Table S5: Time per epoch of different models. Note that total number of epochs required for 

reaching final accuracy can vary substantially. 

Time/epoch (min) QM9-U0 JV-Ef 

ALIGNN 6.8 1.74 

MEGNet 3.4 1.00 

SchNet 14.2 - 

DimeNet 16.7 - 

DimeNet++ 3.0 - 

CGCNN - 1.86 
 

 

 

Table S6 Normalization study on JARVIS-DFT OptB88vdW band gap target. 

Normalization method Validation Loss Validation MAE Time/epoch (min) 

Batch Normalization 0.1553 ± 0.0041 0.1445 ± 0.0011 1.73 ± 0.01 

Layer Normalization 0.1688 ± 0.1425 ± 0.0015 1.01 ± 0.01 

 

 Table S7: Learning curve for OptB88vdW formation energy and bandgap models. 

Uncertainty values denote standard error of the mean over 5x cross-validation iterates. 

Ntrain JV-Ef MAE 

(eV/at) 

JV-Ef (std) JV-Eg MAE (eV) JV-Eg (std) 

1024 0.1856 ± 0.0017 0.0037 0.4753 ± 0.0034 0.0077 

2048 0.1406 ± 0.0026 0.0058 0.3911 ± 0.0031 0.0070 

4096 0.1035 ± 0.0011 0.0023 0.3311 ± 0.0014 0.0031 

8192 0.0721 ± 0.0008 0.0018 0.2635 ± 0.0027 0.0060 

16384 0.0501 ± 0.0008 0.0018 0.2044 ± 0.0037 0.0082 

32768 0.0370 ± 0.0008 0.0010 0.1549 ± 0.0024 0.0048 

44578 0.0316 ± 0.0008 0.0009 0.1303 ± 0.0019 0.0038 

 

 

Table S8 Random hyperparameter search configuration. 100 Trials run for 100 epochs using 

the OneCycle learning rate policy and early stopping trial scheduler. 

Parameter Search space 

Learning rate LogUniform(1e-4, 1e-1) 

Normalized Weight Decay LogUniform(1e-7, 1e-3) 

Batch Size 16, 32, 64, 128, 256 

ALIGNN layers UniformInteger(0, 4) 

GCN layers UniformInteger(0, 4) 

Edge input features LogUniformInteger(8, 128) 

Triplet input features LogUniformInteger(8, 128) 

Input feature embedding size LogUniformInteger(8, 128) 

ALIGNN/GCN width 16, 32, 64, 128, 256, 512 
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