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Superparamagnetic tunnel junctions (SMTJs) are promising sources for the randomness required
by some compact and energy-efficient computing schemes. Coupling SMTJs gives rise to collective
behavior that could be useful for cognitive computing. We use a simple linear electrical circuit to
mutually couple two SMTJs through their stochastic electrical transitions. When one SMTJ makes
a thermally induced transition, the voltage across both SMTJs changes, modifying the transition
rates of both. This coupling leads to significant correlation between the states of the two devices.
Using fits to a generalized Néel-Brown model for the individual thermally bistable magnetic devices,
we can accurately reproduce the behavior of the coupled devices with a Markov model.

I. INTRODUCTION

Magnetic tunnel junctions have become increasingly
applied in nonvolatile memory applications, and are
promising building-blocks for novel circuit implementa-
tions for cognitive computing [1]. These nanoscale de-
vices [2] are composed of two ferromagnetic layers sepa-
rated by a thin insulating layer. The relative orientation
of the magnetization of the two magnetic layers forms
two stable configurations with either parallel or antipar-
allel magnetizations. Magnetoresistive effects [3] lead to
two distinct electrical resistances for the two stable con-
figurations, which can be used to encode memory values
of 0 or 1. Applying voltages across these nanojunctions
results in spin-polarized tunneling currents that apply
spin-transfer torques [4–6] on the magnetizations. For
sufficiently large voltages, the energy barrier between the
two configurations is overcome, leading to magnetization
switching events and allowing memories to be written.

In order to obtain the years of retention required by
nonvolatile applications, the energy barrier between the
two memory states needs to be large, greater than 40
kT , where k is Boltzmann’s constant and T = 300 K
is room temperature. Reducing the energy barrier de-
creases the retention time exponentially. For energy bar-
riers smaller than ≈ 12 kT , the thermal fluctuations at
room temperature induce random switching of the mag-
netization between the two stable configurations on the
10 µs to 1 ms time scale. A magnetic junction with its
magnetic configuration fluctuating due to a small energy
barrier is referred to as a superparamagnetic tunnel junc-
tion (SMTJ).
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While the switching behavior of SMTJs is inherently
random, the average relative dwell time spent in each
stable configuration before a stochastic switching event
occurs can be tuned deterministically [7]. This tunability
can be achieved by applying a magnetic field to alter
the energy barriers, or by applying a voltage across the
junction to induce a spin-transfer torque that favors one
of the two configurations. Tunability can also be achieved
by passing a current through an adjacent heavy metal [8]
to create a spin-orbit torque [9].

SMTJ devices share many of the practical advantages
of their nonvolatile MRAM counterparts. In particu-
lar, they are compatible with complementary metal oxide
semiconductor (CMOS) technology and can be fabricated
in large numbers at competitive densities [10]. These
properties make SMTJs promising candidates for build-
ing compact, low-energy random number generators [11,
12], and make them attractive for efficient, unconven-
tional computing schemes like probabilistic [13, 14] or
brain-inspired [15–18] computing.

Parallel to these efforts, spintronic nano-oscillators
based on non-stochastic magnetic tunnel junctions are
also being investigated as candidates for neuromorphic
computing [19–21]. Since SMTJs can be seen as stochas-
tic bistable “oscillators,” many computing schemes de-
veloped for these nano-oscillators may in fact be adapt-
able to SMTJs. Neuromorphic applications like reservoir
computing, for instance, have been developed based on
stochastic neurons [22]. One potential advantage that
SMTJs may have over spintronic nano-oscillators is lower
energy consumption [16]. Another is that the time scale
of the oscillations can be easily tuned over several orders
of magnitude to match the time scale needed in real-time
applications.

An essential property of traditional spintronic nano-
oscillators is their ability to modify their frequency and
phase naturally and synchronize by receiving the emit-
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ted stimuli of other nano-oscillators or external periodic
drives. Mimicking computational schemes based on this
property with superparamagnetic tunnel junctions re-
quires demonstrating that the latter have similar abil-
ities. Locatelli et al. [23] have shown experimentally
that a single superparamagnetic tunnel junction can ex-
hibit stochastic synchronization to a periodic external
signal. This effect can be enhanced by an optimal elec-
trical noise level [24, 25] corresponding to a stochastic
resonance [26, 27]. The next step is to demonstrate
and characterize the coupling between two superparam-
agnetic tunnel junctions.

In this work, we use a straightforward electrical circuit
to establish an electrical interaction between two SMTJs
without complex circuitry, nonlinear elements, or addi-
tional computation. We show that this mutual coupling
correlates their switching events.

Section II presents the electrical scheme we use to cou-
ple the two SMTJs and describes the coupling mecha-
nism. Section III gives the characterization of the un-
coupled SMTJs. This preliminary step is necessary for
extracting the individual device parameters. Section IV
reports measurements of the behavior of coupled SMTJs.
We compute the correlation functions between the two
SMTJs and demonstrate that their states are correlated.
We show that we can predict their behavior with sim-
ple models described in the appendices. We discuss the
role device and circuit properties play in the coupling in
Sec. V, and show how the models developed can be used
to predict the behavior of larger networks of SMTJs. Ap-
pendix A introduces the Néel-Brown model [28] we use
to analyze the mean dwell-times and parameterize the
behavior of uncoupled devices. Appendix B describes
the Markov model that uses the parameters taken from
the Néel-Brown model fits and computes the correlated
behavior of the coupled devices.

II. COUPLING BETWEEN
SUPERPARAMAGNETIC TUNNEL JUNCTIONS

The majority of coupling schemes reported for two or
more SMTJs require protocols that invoke additional pe-
ripheral circuits [29–31] or finely-calibrated external drive
stimuli [32]. These complexities make such schemes prob-
lematic for large, generalized networks. We employ a
simpler approach to coupling SMTJs based on combi-
nations of linear circuit elements. Our intention is that
this will offer a more robust, less complicated, and more
compact foundation for future explorations of large scale
SMTJ networks. While expanding the two-SMTJ cou-
pling scheme discussed here to large networks of SMTJs
will most likely require more complicated circuitry, we be-
lieve that understanding of the minimal coupling needed
will help with designing the simplest circuitry possible.

Figure 1 shows the electrical circuit we use to induce
interactions between two SMTJs. We connect the two
SMTJs in parallel and bias them through a series resis-
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FIG. 1. Schematic of the electrical circuit used to couple two
superparamagnetic tunnel junctions and the four metastable
configurations they take. Each panel shows the constant volt-
age source V0, the series resistor R0, the two SMTJs in parallel
with each other, and a voltmeter representing the oscilloscope
measurement of the shared voltage across the SMTJs. The
yellow arrows connecting the four panels represent thermally
driven transitions between the different configurations of the
SMTJs. Panel (a) shows both SMTJs in the parallel (P)
state, with the free layer (bottom) magnetization parallel to
the fixed layer (top) magnetization. When the magnetiza-
tion in the free layer of either SMTJ flips, panels (b) and (c),
the resistance of the now antiparallel SMTJ (indicated by a
purple free layer) increases so the voltage across both SMTJs
increases. The voltages in these two cases differ due to dif-
ferences in the magnetoresistance of the two devices. If both
free layers flip, the system goes to the configuration in panel
(d), with both SMTJs in the antiparallel (AP) state and the
largest magnitude voltage across both SMTJs.

tor R0 with a constant voltage source V0. This circuit re-
sults in four distinct voltages applied across the SMTJs,
corresponding to the four different magnetization config-
urations in the system: (P, P), (AP, P), (P, AP), and
(AP, AP), where P denotes the parallel, low resistance
state of the SMTJ and AP denotes the antiparallel, high
resistance state. These states are illustrated respectively
in panels (a), (b), (c), and (d) of Fig. 1. The four volt-
ages are different because in each case the effective resis-
tance of the two parallel SMTJs is different, resulting in
a greater or lesser portion of V0 being dropped across the
series resistorR0. Though the configurations (P, AP) and
(AP, P) would have the same voltage if the two SMTJs
were identical, in practice the P and AP resistances of
our two SMTJs differ somewhat, allowing the voltage
drops to be distinguished between the two mixed states.
Because the voltage is a property of the joint state of
the devices, a switch in either device’s configuration in-
duces a change in voltage across the other device. This
joint voltage dependence effectively couples the behavior
of each SMTJ to the other.
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The SMTJs can be placed in the circuit with their free
layer attached to either the positive or negative terminal
of the dc voltage source. In the positive case, electrons
flow from the fixed layer to the free layer and a higher
voltage tends to stabilize the parallel magnetization con-
figuration. Conversely, with the polarity reversed, the
antiparallel configuration is stabilized by higher volt-
ages. We choose the positive case so that when an SMTJ
switches from parallel to antiparallel, the increase in volt-
age magnitude destabilizes the antiparallel state and vice
versa. This choice induces a positive correlation between
the states of the SMTJs as we show in Sec. IV.

To understand the coupling, consider SMTJ1 in the
parallel configuration and consider how the relative sta-
bility of that state depends on the configuration of
SMTJ2. If SMTJ2 is in the parallel configuration, the
voltage across both SMTJs is lower than it would be were
SMTJ2 in the antiparallel configuration. Because of the
lower voltage, SMTJ1 is relatively more stable in the par-
allel configuration, increasing the lifetime of the (P, P)
configuration relative to that of the (P, AP). Similarly, if
SMTJ1 is in the antiparallel configuration, the changes
in the voltage for the different configurations of SMTJ2
increase the lifetime of the (AP, AP) configuration rela-
tive to that of the (AP, P) because higher voltages favor
the AP state. Repeating the analysis from the point of
view of SMTJ2 gives the same result – for the choice of
polarity made here, the changes in the voltage as the re-
sistances change with configuration increase the lifetimes
of the (P, P) and (AP, AP) configurations relative to the
dissimilar configurations. The changes in these lifetimes
is the origin of the coupling.

To read out the states of the two coupled SMTJs in the
electrical circuit, we monitor the common voltage across
the two SMTJ branches shown in Fig. 1 on an oscillo-
scope. From the measured voltage, we can determine
the configuration of both SMTJs, the time they spend in
those configurations, and which SMTJ makes a transition
to another configuration.

The statistics of the transitions between the configura-
tions can be described by a Markov model, described in
Appendix B, using the rates computed in Appendix A.
We treat each pair of configurations of the SMTJs as a
state and compute the two transition rates out of each
state. We find that this model provides a good explana-
tion of the measurements subject to the accuracy of the
Néel-Brown model fit for the rates.

III. SUPERPARAMAGNETIC TUNNEL
JUNCTIONS

We study magnetic tunnel junctions with the fol-
lowing composition: Si substrate / SiO2 / Ta(3) /
Cu(10) / Ta(3) / Cu(3) / IrMn(10) / CoFe(3) / Ru(0.8)
/ CoFeB(3) / CoFe(0.2) / MgO(1.08) / CoFe(0.2) /
CoFeB(1.8) / Ta(4) / Ru(10) / Ta(4). Numbers in
parentheses represent thicknesses in nanometers. Here

IrMn(10) / CoFe(3) / Ru(0.8) / CoFeB(3) is a uniformly
in-plane magnetized synthetic ferrimagnet that plays the
role of polarizer. CoFe(0.2) / CoFeB(1.8) is the free-
layer. The devices are elliptical with nominal dimensions
of 60 nm × 72 nm. Their tunneling magnetoresistance
(TMR) value is close to 55 % at room temperature and
they have a resistance-area product of 4.75 Ω µm2 [33].

The measurement setup for uncoupled SMTJs consists
of an individual SMTJ in series with a resistor with con-
stant dc voltage applied to the circuit. This allows the
voltage to vary across the SMTJ as its resistance changes.
The series resistor is chosen to maximize the voltage
swing between states, as best as possible given the two
different devices. Note that this is not necessarily the
optimal choice to maximize correlation once we couple
the devices; we investigate this question in Sec. V. A
constant in-plane magnetic field H is applied to the de-
vice along its easy axis. For both SMTJs measured here,
with an applied dc voltage V0 ≈ 0, applied magnetic
fields near µ0H ≈ 8 mT make both devices thermally
unstable in both the antiparallel (AP) and parallel (P)
configurations. This behavior is apparent through the
non-hysteretic resistance curves of the devices shown in
Fig. 2(a), in which the magnetic field was ramped slowly
enough to measure the time-averaged resistance at each
field value.

In order to evaluate the mean dwell times, 104 to
105 transitions were recorded and analyzed for each field
value and each voltage. Fig. 2(b) shows a typical time
trace around a state transition from parallel to antipar-
allel. The effective RC time constant of the oscilloscope
manifests as the exponential decay in Fig. 2(b). Dwell
times shorter than this RC decay can affect the appar-
ent mean dwell times of the devices [34]. Fig. 2(c) shows
a typical time trace at a larger time scale. Dwell times
greater than ≈ 1 µs, such as those visible in Fig. 2(c),
are unaffected by the RC dynamics.

We analyze the time traces to determine the proper-
ties of the SMTJs. Simply binning the data in the time
traces gives the probabilities to be in each state, as in
Fig. 2(d). These probabilities do not depend on deter-
mining the length of time spent in each state. Deter-
mining the mean dwell time for each state requires that
we determine every intertransition interval i, and extract
the corresponding dwell times ∆t±i for the anitparallel
(+) or parallel (−) states. The cumulative probability
density function of these extracted dwell times can be
fit by an exponential distribution. The single fitting pa-
rameter of the exponential distribution is the mean dwell
time τ± = 〈∆t±i 〉i, where 〈· · · 〉i indicates averaging over
all intervals.

By varying the applied in-plane magnetic field H and
the applied dc voltage V0, we observe variation in the
dwell times. For each pair (V0, H), the parallel τ− and
antiparallel τ+ dwell times are extracted from the corre-
sponding voltage-time trace. The evolution of the dwell
times as a function of the applied in-plane magnetic field
is reported in Appendix A. The magnitude of H deter-
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FIG. 2. (a) Experimental evolution of the dc resistance
of the studied SMTJs versus the applied in-plane magnetic
field, swept from 6 mT to 10 mT and back. Those char-
acteristics were obtained for a constant applied dc voltage
V0 = −0.1 V and a series resistor of R0 = 473 Ω. (b)
Experimental time trace of the voltage of a single SMTJ
µ0H = 6.9 mT, V0 = −0.45 V, in parallel with a static resistor
of Req = 1085 Ω. This panel covers a single transition from
the antiparallel to the parallel state illustrating the effects of
RC time constants on the transitions. Fit to an exponential
gives a time constant τRC for the measurement of (71±14) ns.
(c) Longer time trace showing approximately 50 transitions
over 1 ms. The different noise levels around the two volt-
age states reflect that the measurement is being taken in an
asymmetric configuration; the lower voltage state is relatively
stabilized by the applied voltage, and consequently undergoes
weaker thermal fluctuations. (d) Histogram of measured volt-
ages over 2 s containing roughly 105 transitions. Note loga-
rithmic x-axis; y-axis is shared with (c).

mines whether the parallel τ− or antiparallel τ+ mean
dwell time dominates. In Appendix A, we fit the experi-
mental values of the mean dwell times to the Néel-Brown
model [28]. We find that the usual Néel-Brown model is
unable to capture the behavior of our devices when both
field and voltage dependence are considered. We extend
the model slightly by allowing the characteristic magnetic
fields in the model to have a state dependence, prescrib-
ing different values depending on whether the device is
in the P or AP state. This extension gives our fit good
agreement with the data, but we caution that the fit—
while physically motivated—may be highly degenerate
and does not necessarily prescribe physically meaningful

FIG. 3. (a) Time trace of the voltage of two coupled SMTJs,
for µ0H = 6.9 mT, V0 = −0.45 V and R0 = 473 Ω. (b) His-
togram of measured voltages over 20 s. Note the logarithmic
scale on the horizontal axis.

values to the model parameters. We discuss this further
at the end of Appendix A.

Finally, note that the TMR observed in Fig. 2(a) ap-
pears to be inconsistent with the results in Fig. 2(c). One
reason for this is the voltage dependence of the magne-
toresistance; the higher voltage applied to the devices
in Fig. 2(c) results in a lower TMR. It is also possi-
ble that properties of the devices or their wire bonds
changed slightly between characterization [Fig. 2(a)] and
experiment [Fig. 2(c)]. In any case, we find that the two
voltage states such as those in Fig. 2(c) are stationary
(for each chosen source voltage) across the voltage-time
trace experiments and show no evidence of a third state.
In fitting the Néel-Brown model, we fit directly to these
voltage states, bypassing any functional dependence on
TMR.

IV. INTERACTION OF TWO
SUPERPARAMAGNETIC TUNNEL JUNCTIONS

THROUGH ELECTRICAL DC COUPLING

In the previous section, we described the switching
statistics of single SMTJs in series with a static resis-
tor. In the present section, we place another SMTJ in
parallel with the first, as in Fig. 1. Our goal is to extract
the switching data from this experimental setup and use
it to determine whether there is statistically meaningful
coupling between the devices.

Figure 3(a) shows a typical time-voltage trace of the
circuit from Fig. 1 under relevant experimental parame-
ters. We again use a histogram method to extract the
multiple states; there are now four such states corre-
sponding to the four panels of Fig. 1. Figure 3(b) shows
the histogram of a voltage-time trace, revealing four dis-
tinct peaks. The integrated area under each peak gives
the relative probability of the system being found in the
corresponding state.

By computing the probabilities over a range of mag-
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FIG. 4. (b) Probabilities of occupancy for the different joint
configurations of two coupled SMTJs, with V0 = −0.45 V. (a)
Determinant of the probabilities in (b) as in Eq. (2). Error
bars indicate single standard deviation uncertainties.

netic fields, we identify the superparamagnetic regime be-
tween two deterministic limits, one limit with field large
enough that both SMTJs are pinned in the antiparallel
state, and the other with a low enough field that they
are both pinned in the parallel state. The probabilities
are plotted for this regime in Fig. 4. At low magnetic
field, the parallel states of both devices are stable; at high
magnetic field, on the other hand, the antiparallel states
are stabilized. The superparamagnetic regime exists be-
tween these two limits, where the mixed states (P,AP)
and (AP,P) acquire nonzero lifetimes. The qualitative
behavior of Fig. 4 could be explained by the uncoupled-
device physics we discussed in Sec. III. Quantitatively,
the probabilities show significant correlation between the
switching events in the two devices.

To understand the coupling between the SMTJs we
evaluate the correlation functions between the encoded
times series data of SMTJs defined by taking the value
−1 when the SMTJ is in the parallel state and 1 when it
is in the antiparallel state. We then compute the normal-
ized Pearson correlation function, which for two arbitrary
functions of time, x(t) and y(t), is given by

Cx,y(t) =
〈[x(t′)− 〈x〉][y(t′ + t)− 〈y〉]〉√
〈[x(t′)− 〈x〉]2〉〈[y(t′)− 〈y〉]2〉

, (1)
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FIG. 5. Auto- and cross-correlation for the states of two cou-
pled SMTJs. Solid lines are derived from experimental data
at µ0H = 7.6 mT, V0 = −0.3 V. Dashed lines are derived from
the Néel-Brown model fit with the parameters of Table I (Ap-
pendix A) at the same field and voltage, and a Markov model
for the coupling (Appendix B). In the log scale inset, the
gray line is the geometric mean of the model-predicted cou-
pled autocorrelations, which serves as an asymptotic upper
bound for the cross-correlation.

where 〈· · · 〉 indicates average over t′. When computing
an autocorrelation function, x(t) and y(t) are the same
encoded times series shifted in time and when comput-
ing a cross-correlation function they are from different
SMTJs. Fig. 5 shows, with the solid curves, the autocor-
relation and cross-correlation functions computed using
time-series state data extracted from the experiment for
a particular magnetic field and voltage. The presence
of a nonzero cross-correlation function indicates corre-
lation between the random variables corresponding to
each SMTJ’s state. The Markov model described in Ap-
pendix B shows that these correlation functions are sums
of three exponential functions of time. The model’s pre-
diction of correlation based on the uncoupled fits is given
by the dashed curves in Fig. 5.

To test for coupling, we are particularly interested in
the t = 0 value of the cross-correlation function, which
depends only on probabilities like those in Fig. 4. Those
probabilities can be easily extracted from a histogram
analysis and do not require extensive identification of in-
dividual transitions. Therefore, our method to compute
the τ = 0 cross-correlation is particularly easy and suit-
able to quantify coupling between SMTJs by experimen-
talists. The t = 0 form of Eq. (1) reduces to Eq. (B18),
the numerator of which is equal to four times the deter-
minant of

P =

(
PP,P PP,AP

PAP,P PAP,AP

)
. (2)

When the two SMTJs are statistically independent, each
of these four joint probabilities factor so that detP = 0.
A nonvanishing determinant indicates mutual depen-
dence of the SMTJ states in a way that can be deduced
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FIG. 6. The correlation coefficient (equivalently the t = 0
cross-correlation) between the states of the coupled SMTJs
at a series of source voltages V0. Filled circles show the ex-
perimental data; curves are the model predictions based on
the Markov model described in Appendix B using the Néel-
Brown fits to isolated SMTJs described in Appendix A. The
single standard deviation uncertainties for the experimental
points are smaller than the symbols. They are a result of the
finite number of intervals measured in each state.

from the data in Fig. 4(b) and shown in Fig. 4(a). For
example, at µ0H = 6.84 mT, the (AP,P) state is signif-
icantly less probable than the other three state so that
the skew diagonal term in detP is less than the diago-
nal term and a positive correlation results. In general, for
this voltage polarity, the coupling reduces the mean dwell
time for each of the mixed configurations relative to what
it would be if there were no coupling. If we were to do
a similar measurement with the voltage source reversed,
the coupling would increase the mean dwell time for each
of the mixed configurations, leading to a negative value
for the correlation function.

Figure 6 shows the t = 0 cross-correlation as a function
of field for various voltages. Comparing the V = −0.45 V
data in Fig. 6 with the data in Fig. 4, we infer that max-
imal coupling happens in the middle of the superpara-
magnetic regime, namely near where the mixed states
(AP, P) and (P, AP) have their highest probabilities. The
coupled system is most sensitive when both SMTJs have
balanced occupancies because the mixed configurations
become the most probable. Figure 2(a) also shows that
the two SMTJs used in this experiment have these bal-
ance points shifted with respect to each other. This shift
reduces the coupling between the devices.

Simulations show that the more similar the properties
of the two SMTJs are, the stronger the coupling between
them. Specifically, if the derivatives of the results in
Fig. 2 are viewed as susceptibilities, the coupling to each
devices is maximum at the peak in the susceptibility, so
that the mutual coupling is largest when the peaks in
the susceptibility align with each other. Further, similar
susceptibility-like curves can be measured as a function
of current for fixed fields. The coupling will be strongest

when these curves align as well. Thus, it is important to
keep device properties that affect these susceptibilities as
similar as possible to maximize this coupling, but con-
straints on other properties, like the exchange stiffness in
the limit of single domain switching, are less important.

The balance point between the two configurations
shifts in magnetic field as the voltage magnitude in-
creases. This trend is illustrated in Fig. 6. As the volt-
age magnitude increases, the stability of the AP state in-
creases, reducing the magnetic field needed to balance the
configurations. In addition to the peak shifting to lower
magnetic fields, it also increases in magnitude because
the greater source voltage V0 results in greater swings
in voltage drop across the SMTJs as their configura-
tions fluctuate. Note that sustained increase depends on
the equal-probability magnetic fields for the two SMTJs
changing in the same way as V0 increases.

In Appendix A, we fit the behavior of each SMTJ to
a Néel-Brown model to capture the mean dwell times
of the individual devices as a function of magnetic field
and voltage. For a given voltage and magnetic field, this
model provides the mean transition rates that enter into
the Markov model for the coupled states described in
Appendix B. Using this model, we compute the correla-
tion function corresponding to the measurements shown
in Fig. 6 as symbols and plot the computed values as
curves. For low voltages, the agreement is quite good,
but it degrades for higher voltages, where the voltages
across the SMTJs exceed those used for the fits that feed
into the Markov model.

V. DISCUSSION

Among the device properties that determine how
strongly the behaviors of two SMTJs correlate with each
other are the TMR and how similar the two devices are.
These determine how much a change in the state of one
of the SMTJs affects both of them by determining the
resulting voltage swings. The more similar the devices,
the more their susceptibility overlaps, making it easier
for correlations to develop. Each SMTJ is most sen-
sitive to the other SMTJ’s state at magnetic field and
mean voltage combinations for which the probability of
being in either state is close to 50 %. This is illustrated
by comparing the curves in Fig 4 with the results for
V0 = −0.45 V in Fig. 6. While the two SMTJs used here
differ somewhat in their properties, as seen in the shift
in the 50/50 points in Fig. 2, they are similar enough
so as not to significantly reduce the maximum observed
correlation.

Figure 7 show that the TMR substantially affects the
coupling. We simulate two identical SMTJs, both the
same as SMTJ-1 with the exception that they have a
series of TMR values. The model was evaluated at
V0 = −0.3 V, with RP and RAP changing as a function
of TMR so that the mean equivalent resistance of the
four Markov states is held constant at each TMR [35].
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SMTJ 1.

Between TMR values of 50 % to 200 %, the maximum
correlation increases by about a factor of three. As the
TMR varies, the voltage swings due to state changes in-
crease, increasing the coupling. Along similar lines, in-
creasing the spin-torque efficiency increases the coupling
by increasing the sensitivity to voltage swings.

Two circuit properties that determine how strong the
coupling is are the applied voltage and the series resis-
tance. Varying these properties together switches be-
tween voltage biasing and current biasing the SMTJs.
These trends are illustrated in Fig. 8, where R0 is system-
atically varied with V0 adjusted to keep the mean voltage
across the SMTJs fixed. As R0 goes to zero, which is the
voltage bias limit, the correlation goes to zero because
the voltage across the SMTJs does not change as the
configurations change. As R0 increases, the maximum
correlation approaches around 0.3. This R0 → ∞ limit
is the regime where the circuit is driven by a current
source, and gives maximal coupling between the devices,
at the expense of decreasing the bandwidth of the circuit
as the RC time constant diverges with R0. These results
indicate that there is a trade-off between the the size of
the signal and the speed of the circuit going between the
current-biased limit and the voltage biased limit.

The SMTJs we work with here require external mag-
netic fields on the order of 6 mT to 9 mT to be in the
superparamagnetic regime for the voltages used. The ne-
cessity of such fields would limit the use of this type of
SMTJ in practical applications. However, it is possible
to tune these offset fields by engineering the materials
stack of the SMTJs [36]. Recent developments in spin-
orbit-torque-switched MRAM [37] show that it is also
possible to engineer a magnetic element above the MTJ.
Designing the SMTJs with magnetic elements such that
no additional applied magnetic field would be required
to center the SMTJ’s 50/50 point around the operating
voltage would give the largest effect for the lowest energy
expenditure.

Another direction to explore for exploiting the SMTJ
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FIG. 8. Model predictions of the correlation coefficient (equiv-
alently the t = 0 cross-correlation) between the states of
coupled SMTJs over a sequence of series resistor values (as
multiples of R0 = 473 Ω) values wherein the mean voltage
drop across the four Markov states is fixed. The data demon-
strates that changing from a voltage to a current source gives
stronger correlation. The model was evaluated with two iden-
tical SMTJs based on the experimental SMTJ 1. The cyan
curve (102R0) is covered almost entirely by the teal curve
(103R0), demonstrating saturation behavior of the correla-
tion at high series resistance.
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FIG. 9. Antiparallel state probability for each of five SMTJs
electrically coupled in parallel as a function of applied mag-
netic field. The symbols give the probabilities computed with
a Monte Carlo simulation (statistical error bars are smaller
than the symbols) and the lines give the probabilities com-
puted with a numerical extraction of the eigenvectors of the
analytic Markov model.

coupling examined in this paper involves scaling up to
chains or grids of devices. The behavior of such networks
can be explored quasi-analytically using the Markov
model described in Appendix B or simulations using the
Néel-Brown fits described in Appendix A. In Fig. 9,
we compare the behavior predicted from these two ap-
proaches for a chain of five identical SMTJs electrically
coupled in parallel analogously to the coupling of two in
Fig. 1. The magnetic field is swept for several different
values of V0, which has been scaled up to keep the voltage
across the five parallel SMTJs similar to what it was for
two [38]. This fixes the simulation so that the coupling
between each pair of SMTJs decreases as 1/N , where N
is the number of SMTJs.

The two approaches for modeling the systems agree
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well; this is unsurprising because the Markov model
should capture the the behavior of the simulations once
they have reached steady state. For both approaches, the
coupled SMTJs transition from all being in the parallel
state to all being in the antiparallel states as the mag-
netic field is swept. As the applied voltage increases, the
transitions shift to lower fields and occur over a narrower
field range. The narrowing of the transition indicates in-
creased coupling between the SMTJs. As the coupling
increases, the SMTJs spend an ever increasing fraction
of their time aligned with each other.

Even though these simulations show that we can start
building arrays of coupled SMTJs, we believe it is still the
case that effectively using them will require more compli-
cated coupling circuitry. So far, circuitry using SMTJs
has involved schemes that fall into two broad groups.
In the first, voltages are applied continuously across the
SMTJs [14, 39]. In the second, the SMTJ state is read
and modified with voltage pulses, perhaps using a pre-
charge sense amplifier [12, 15, 16]. The former makes it
easier for the states of different SMTJs to influence each
other, but the latter can be more energy efficient [16]. For
approaches with continuous voltages to reach the level of
efficiency seen in pulsed approaches, the SMTJs must
have a correlation time on the order of a nanosecond or
less, and such devices are now under experimental devel-
opment [40, 41]. The interacting p-bits demonstrated in
Ref. [14] output a digital bitstream and use analog input
so that complicated circuitry is needed to couple the de-
vices together. Ultimately, an energy-efficient approach
will combine the advantages of both of the existing ones.

In this paper, we show that SMTJs can mutually cou-
ple through the electrical voltage stimuli caused by their
stochastic electrical transitions. This mutual interaction
is established through a simple electrical connection, does
not require complex circuitry, and is sufficient to modify
the individual switching transitions of the two SMTJs.
We believe that the coupling demonstrated with this
compact approach is a useful starting point for build-
ing large assemblies of coupled SMTJs for novel cogni-
tive computing schemes. The demonstrated ability of a
simple Markov model to predict the coupled behavior of
the SMTJs will allow predictive modelling of SMTJs in-
tegrated with CMOS in a variety of approaches.
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Appendix A: Néel-Brown modelling of SMTJs

To provide numerical input for modeling the cou-
pled dynamics of the two SMTJs, we measure each
SMTJ independently and uncoupled as in Fig. 2.
From these measurements we extract the mean tran-
sition rates as a function of field for voltages V0 ∈
{−0.1,−0.15,−0.2,−0.25} V. Fig. 10 shows the mea-
sured results for each SMTJ. These two SMTJs were se-
lected from the wafer because their crossovers between
parallel and antiparallel alignments occurred at similar
fields and bias voltages; overlap of these crossing points
maximizes the coupling.

To fit the measured transition rates, we use a Néel-
Brown model that has been modified to include the ef-
fects of spin transfer torques [7, 28, 42–44]. The transi-
tion rates out of each state are given by

Γ± = Γ0 exp

[
− β

(
1± V

Vc

)

×
(

1±
[
H −H±0
H±k

+AV +BV 2

])2
]
, (A1)

where the plus sign is taken for antiparallel to parallel
transitions and the minus sign for the opposite. The volt-
ages V are extracted from the experimental time traces.
Linear fits of SMTJ voltages V as a function of source
voltage V0 allow us to extrapolate (and interpolate) be-
yond the range of collected data. All variables are fitting
parameters and are given in Table I except for the applied
field H and the voltages V which are the independent
variables. Here β = ∆E/(kT ) is nominally understood
to be the ratio of the energy barrier ∆E of the SMTJ
to the thermal energy (T is the temperature, assumed to
be fixed at 300 K, and k is Boltzmann’s constant). The
prefactor, Γ0, is sometimes taken to be 109 Hz [43] and
sometimes computed from the parameters of the Landau-
Lifshitz-Gilbert equation [44, 45], but here is treated as a
fitting parameter, for reasons explained below. The crit-
ical switching voltage, Vc, incorporates the effect of the
damping-like torque on the effective energy barrier and
the parameters A and B include effects of the field-like
torque and nonlinear effects. The offset magnetic field is
H±0 and the anisotropy field is H±k .

We view this fitting scheme not as an attempt to ex-
tract physically correct values for various parameters, but
as a physically plausible approach to obtaining parameter
values for further modelling. The high dimensionality of
the fit and nonorthogonality of the fit parameters lead to
many degenerate solutions that give equally performant
model predictions; the numerical values we report in Ta-
ble I depend strongly on the initial values for the fitting
routine, making uncertainties extracted from the nonlin-
ear fit procedure meaningless. We find that using the
same set of parameters for both orientations of the same
SMTJ leads to poor fit performance, and that allowing
different fields H±0 and H±k for each state was the min-
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FIG. 10. Fits of the Néel-Brown model Eq. (A1) to the uncoupled SMTJ transistion rates Γ± (e.g. Fig. 2) at four different
source voltages. Error bars indicate single standard deviation uncertainties due to the imprecision in setting the applied field
value and the statistical uncertainty due to the limited number of transitions recorded for each point.

TABLE I. Néel-Brown model parameters for SMTJ 1 and
SMTJ 2 obtained from fits to the dwell times derived from
the experimental voltage time traces for each device. The
set of values shown here is one of several roughly equivalent
sets obtained from a high-dimensional fit with significantly
nonorthogonal parameters. These values should be considered
useful for modeling, but should not be considered numerically
definitive.

SMTJ 1 SMTJ 2
Γ0 0.254 MHz 0.161 MHz
β 4.34 6.55
Vc −0.55 V −2.7 V
µ0H

+
k 2.11 mT 2.31 mT

µ0H
−
k 4.15 mT 2.78 mT

µ0H
+
0 7.32 mT 7.27 mT

µ0H
−
0 9.76 mT 9.86 mT

A −0.50 V−1 −1.7 V−1

B 3.8 V−2 4.2 V−2

imal extension needed to get good agreement with the
data in Fig. 10. We conjecture that the different rever-
sal parameters between the two states may follow from
different magnetic configurations; the samples are low as-
pect ratio ellipses, and thus magnetic reversal may not
follow single-domain switching dynamics, and the non-
uniform fringing field from the pinned layer likely affects
the two reversal processes differently.

We also find that Γ0 is needed as a fit parameter to re-
produce the negative curvature of the experimental data,
and regardless of initial value, Γ0 converges to the fastest
switching frequency present in the data: the values for
Γ0 in Table I correspond to the asymptotic maxima in
Figs. 10. The discrepancy between this value of Γ0 and
the gigahertz value typically used in the literature means
that our values of β, which nominally represent the en-
ergy barrier in units of kT , cannot be directly compared
to values extracted with the faster assumed prefactor.

To extract a meaningful energy barrier, we would need to
measure temperature dependence of the SMTJ statistics.
We cannot discount the possibility that some experimen-
tal artifact causes the observed saturation of the rates.
However, the rate saturates at a value about two orders
of magnitude smaller than the bandwidth of the measure-
ment (≈ 14 MHz). Models [46] of Poisson processes with
finite measurement bandwidth suggest that the effect of
such a bandwidth on the measured rates should be neg-
ligible. It may be that for near-circular samples such as
these, the reversal mode may be very different than that
for a macrospin and the prefactor consequently differing
from that expected for such a system.

Appendix B: Markov models for coupled SMTJs

In this Appendix, we review the theoretical model used
to predict the coupled system’s behavior from the un-
coupled fits. The idea is to construct a Markov model
based on the 2N possible states of the system, where
here the number of devices is N = 2. In a continuous
time Markov model, we need only consider single-device
switching events, as the probability of two devices switch-
ing in the same infinitessimal dt is (dt)2 → 0. Therefore
each transition rate in the Markov model can be under-
stood from the switching of an isolated SMTJ, which is
well-described by our Néel-Brown fits to the uncoupled
SMTJ statistics, provided we account for the Markov-
state-dependent voltage. The dependence of voltage on
the states of the other SMTJs is the effective coupling
mechanism, but the Markov process can be expressed
purely using the uncoupled device fits. For our sys-
tem, this model assumes that the state-dependent volt-
age arises instantaneously after a transition, which holds
so long as the RC times in the circuit are faster than
the fastest SMTJ dwell time. With similar restrictions,
the formalism we describe below can be applied to any
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FIG. 11. a) Schematic of the model in the individual un-
coupled case for the two different SMTJs; note the corre-
spondence to Fig. 1. (1) or (0) corresponds to the parallel
and antiparallel configuration of the SMTJ. Arrows represent
jumping events characterized by a transition rate that forms
the arrow label. b) Schematic of the model in the coupled
case. Four different configurations are possible: (00), (01),
(10), and (11). The first index corresponds to the state of
SMTJ 1 while the second one is for the state of SMTJ2.

system of coupled SMTJs so long as the coupled system
experiences jump transitions between a discrete number
of metastable states.

Fig. 11 illustrates schematically the model we consider
to characterize the mutual coupling mechanism. In this
approach, the ith uncoupled SMTJ can be described by
two states and two transition rates ϕ±,i corresponding to
the characteristic time elapsed before SMTJ i escapes its
± state. In the case of two coupled SMTJs, there are four
possible states: (P, P ), (P,AP ), (AP,AP ), and (AP,P ).
In the rest of this section, we refer to these four states as
11, 10, 00, and 01 respectively to make the notation more
compact. We consider transitions between these states as
a continuous time Markov model so that eight nonzero
transition rates {ϕj}8j=1 can be defined corresponding to
the eight arrows in Figure. 11b. Note that due to the
coupling, the rate for each SMTJ to transition out of a
particular state depends on the state of the other SMTJ,
so there are really 8 rates and not four as there would be
in the absence of coupling.

We can then define a 4 × 4 transition rate matrix M
giving the transition rates between states, where Mij =
ϕj→i. Eight of the sixteen matrix components are the
nonzero transition rates; the diagonal elements are Mii =
−
∑
j ϕi→j , and the remaining four elements correspond

to double transitions that have zero probability. The
vector P = (P00, P01, P10, P11) indicating the conditional
probabilities for the system to be found in each of the four
states given some initial distribution P0 of the system
then evolves according to the master equation Ṗ = MP ,
which has the generic solution

P (t) = exp(Mt)P0. (B1)

M is diagonalizable, but as it has no other symmetries,
its right and left eigenvectors differ in general. It is a

singular matrix, so one of the eigenvalues is zero. The
other eigenvalues are all negative. We diagonalize M
as M = V ΛV −1, with Λ the diagonal matrix carrying
the eigenvalues, λj . Then the evolution of P can be
expressed simply as P (t) = V exp(Λt)V −1P 0. The ele-
ments of V −1 and Λ are all rational functions of the rates
ϕ that can be computed analytically as solutions to the
quartic characteristic equation of M but these solutions
are not notationally compact.

The configuration P (t) can be expressed as a lin-
ear combination of the factors eλjt times the time-
independent eigenvectors. Each element of P (t) corre-
sponds to the probability density function of a hyperex-
ponential distribution mixing the eigenvalues of M ,

Pi(t) =
∑
j,k

eλjtVijV
−1
jk Pk(0). (B2)

In the experiment, we have no information about the
state of the SMTJs before measurements begin. If we
observe the system at time t = 0, we can then declare
the that Pi(0) = δi`, indicating certainty that the system
is in state `. Our knowledge about the likelihood of each
state in the times t > 0 then obeys the master equa-
tion above, and in particular P (t) will decay to P (∞),
the steady-state probability distribution of the system.
This steady state distribution is the eigenvector of M
with eigenvalue zero. The other contributions in the sum
over k in Eq. (B2) are time-dependent and decay to zero
on timescales |λi|−1 because the remaining eigenvectors
have negative eigenvalues. Only the P (∞) contributes
at long times after an observation. Since the coefficients
under the sum of Eq. (B2) are readily computed numer-
ically, we use the experimental fits from Table I together
with our Néel-Brown model [Eq. (A1)] to compute the
expected form of P (t).

To analytically compute the cross-correlation C(t)
from the model, we compute the Pearson correlation be-
tween the two states, one at time t and one at time 0, us-
ing the time-dependent probability distributions for each
SMTJ extracted from P (t) by summing the probabilities
over both possibilities of the state of the other SMTJ.
The complicated rational forms for the solutions can be
evaluated at the fit parameters extracted from the un-
coupled Néel-Brown models even though the results offer
little useful intuition. As a result of Eq. (B2), the cross-
correlation and each SMTJ’s coupled autocorrelation are
all superpositions of the same three exponentials arising
from the eigenvalues of the transition rate matrix plus
the time-independent steady state solution. The steady
state solution is present in the same amount in all physi-
cal solutions because it is the only eigensolution in which
the elements of the eigenvector do not sum to zero. This
follows from the fact that at all times, the probabilities
must sum to one and the steady state solution must al-
ways be the long time solution.

We consider two SMTJs with encoded time series data
A(t) and B(t) that correspond to the state of the devices
at time t with A(t) = −1 when the corresponding SMTJ
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is in the parallel state and A(t) = 1 when it is in the
antiparallel state. The covariance of the two time series
is

CA,B(t) = 〈(A(t)− 〈A〉)(B(0)− 〈B〉)〉 (B3)

= 〈A(t)B(0)〉 − 〈A〉〈B〉, (B4)

where averages here are over Markov states. The terms
in the covariance can be computed via the eigenspectrum
of M by using the solution to the master equation as a
generator of conditional probabilities. For example, con-
sider the calculation of 〈A(t)B(0)〉. This is by definition

〈A(t)B(0)〉 =
∑
i=±1
j=±1

ijP (A(t) = j, B(0) = i) (B5)

=
∑
i=±1
j=±1

ijP (A(t) = j|B(0) = i)

× P (B(0) = i). (B6)

The joint probability Pji = P (A(t) = j, B(0) = i) is the
probability that both P (A(t) = j and B(0) = i are true
and can be written in terms of the conditional probabil-
ity pji(t) = P (A(t) = j|B(0) = i) that A(t) = j given
B(0) = i. The conditional probability is computed by
assuming B(0) = i as an initial condition for the master
equation and examining the evolved distribution at time
t. This is analogous to computing the two-point corre-
lation function 〈j|G(t, 0)|i〉 between two states in quan-
tum mechanics, except that here our propagator is given
by the solution to the master equation, rather than the
Schrödinger equation. We have for the joint probability

Pji(t) = P (A(t) = j|B(0) = i)P (B(0) = i) (B7)

=

A(t)=j∑
µ

êTµV e
ΛtV −1PB=i

∞ (B8)

where PB=i
∞ is the steady state distribution marginalized

over the assumption that SMTJ B is in the i state and
êµ is the unit vector for the µth Markov state where the
sum over µ is restricted to Markov states where SMTJ
A is in the j state. As an example, if i = 1 and j = −1,
we might have PB=1

∞ = (P00, 0, P10, 0)T /(P00 +P10), and
the two êµ of interest would be (0, 0, 1, 0) and (0, 0, 0, 1).
Using Eq. (B8) as the conditional probability in Eq. (B6),
all that remains in the latter equation is to take the sum
of the ij = ±1 weighted by the marginal probabilities
P (B0 = i).

Similar calculations based on using the master equa-
tion solution as a conditional probability can be used
to compute any expectation values of interest. We used

such expressions to generate the results shown in Fig. 5.
From the perspective of Eq. (B8), we see that the curves
in Fig. 5 are all intrinsically sums of three exponentials
(corresponding to the three nonzero eigenvalues in Λ).
The apparent single-exponential behavior of the autocor-
relations in that plot is only approximate, arising because
the coefficient of one of the exponential terms dominates
over the others. The inset to that figure shows that at
long times, the time dependence of all three functions
is dominated by the exponential with the longest decay
time but with different prefactors.

The t = 0 cross-correlation can be evaluated directly in
terms of the stationary probabilities, without referring to
any time-dependent evolution. By definition, the same-
time correlation coefficient is

C(0) =
〈AB〉 − 〈A〉〈B〉√

σ2
Aσ

2
B

(B9)

where σ2
A,B are the SMTJ-wise variances. Using our ±1

realizations of the SMTJ states, we have

〈A〉 = P00 + P01 − P10 − P11 (B10)

〈B〉 = P00 − P01 + P10 − P11 (B11)

〈AB〉 = P00 − P01 − P10 + P11 (B12)

where Pi,j is the probability of the joint state (i, j) in the
steady state limit. The numerator of Eq. (B9), which
is just the covariance, then simplifies to cov(A,B) =
4 detP, where P is the matrix of Eq. (2) from the main
text. To arrive at this form of the covariance it is con-
venient to multiply 〈AB〉 by 1 =

∑
ij Pij . As for the

denominator, each of the variances can be written

σ2
M = 〈M2〉 − 〈M〉2 (B13)

= 1− (P0 − P1)2 (B14)

where P1 and P0 are marginalized over the joint proba-
bilities for the SMTJ of interest. The variances are then

σ2
A = 1− [(P00 + P01)− (P10 + P11)]2 (B15)

= 4(P00 + P01)(P10 + P11) (B16)

σ2
B = 4(P00 + P10)(P01 + P11). (B17)

In passing from Eq. (B15) to Eq. (B16), it is useful to
employ the identity 1 = (

∑
ij Pij)

2. Taking these results
together, the total correlation coefficient reduces to

C(0) =
P00 × P11 − P01 × P10√
P

(1)
0 × P (2)

0 × P (1)
1 × P (2)

1

(B18)

where P
(k)
j are the marginal probabilities for SMTJ k

(i.e. P
(1)
0 = P00 + P01).
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