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ABSTRACT: FePt5P, a substitutional variant of the anti-CeCoIn5 structure type in
the space group P4/mmm, was synthesized by a high-temperature solid-state method
and structurally characterized by X-ray diffraction. FePt5P contains layers of FePt12
clusters formed by magnetically active Fe and heavy Pt with strong spin-orbit coupling
(SOC); the layers are separated by P atoms. The various Fe−Pt distances in FePt12
clusters generate complex magnetic orders in FePt5P. According to temperature-
dependent magnetic and specific heat measurements, FePt5P shows a stripe-type
antiferromagnetic order at TN ≈ 90 K, which is also confirmed by resistivity
measurements. Moreover, a spin reorientation occurs at ∼74 and ∼68 K in and out of
the ab plane based on the specific heat measurements. The temperature-dependent
neutron powder diffraction patterns demonstrate the antiferromagnetic order in
FePt5P, and the spins orientate up to 58.4° with respect to the c axis at 10 K. First-
principles calculations of FePt5P show the band splitting at the Fermi level by strong
SOC and the s−d hybridization between P and Fe/Pt electrons enhances the
structural stability and affects the magnetic ordering.
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■ INTRODUCTION

Design and synthesis of magnetic materials with targeted
tunable phenomena have been grand challenges in the materials
community for decades. Applying structure−magnetism rela-
tionships for materials discovery is a widely used chemical rule.
Intermetallic compounds with flexible stoichiometry and
tunable valence electron counts are ideal platforms to study
the structure-magnetism relationship and to predict the
magnetic properties, for example, in the itinerant magnets
Ti3Co5B2-type

1−4 and AlCo2B2-type
5,6 structures.7,8

Recently, we discovered a new family of compounds with the
MgPt5As-type structure, such as the rare-earth-free ferromag-
netic (FM) MnPt5As, antiferromagnetic (AFM) MnPt5P, and
YbPt5P.

9−11 These new compounds exhibit various magnetic
behaviors ranging from ferromagnetism and antiferromagnetism
due to complex atomic interactions between magnetically active
elements (Mn and Yb) separated by non-magnetic stacking
layers.
One approach by solid-state chemists to tune magnetic

ordering in new phases is to adjust the valence electron counts.
However, the magnetic states in materials can also be
manipulated and detected by introducing elements with strong
spin-orbit coupling (SOC) on non-magnetic sites. For example,
non-magnetic noblemetals with large SOC including Rh, Pt, and
W have been shown to tune the spin orientation.12 Moreover,
SOC effects in magnetic materials are crucial for other spin-

transfer effects, such as spin penetration length,13,14 giant
magnetoresistance (GMR),15 and enhanced spin pumping,
which are critical to the spintronic devices in information
technology.16 When the SOC effect from Ir/Pt/Au is coupled
with 3d electrons from Mn, the appearance of GMR and
anisotropic magnetoresistance (AMR) is appreciable, as in
MnX.17−21 In addition, the thickness of the antiferromagnetic
layers is a key factor to tune the magnitude of existing spin-
transfer effects.22−25

Herein, a new bulk AFM material FePt5P that couples a
layered structure with strong SOC was discovered and
synthesized. FePt5P crystallizes with a layered structure,
analogous to the well-known layered heavy-fermion super-
conductor, CeCoIn5.

26,27 With the high concentration of Pt per
formula unit, it is expected that strong SOC effects are
introduced by the Pt atoms. The FePt12 polyhedral layers are
separated by P layers in FePt5P. Such polyhedral clusters are also
found in AFM FePt3 consisting of similar FePt12 polyhedra.

28,29

Neutron powder diffraction measurements show a clear AFM
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ordering transition at TN ≈ 90 K. Spin reorientations were
observed at lower temperatures,∼68 and ∼74 K along the c axis
and in the ab plane, respectively. Large magnetoresistance at 9 T
(Δρ/ρ0∼35%) at 1.7 K is found by field-dependent resistivity
measurements, which is frequently observed in AFM spintronic
candidates.22 First-principles calculations indicate that the SOC
and AFM ordering significantly affect the electronic structures
near the Fermi energy in FePt5P.

■ EXPERIMENTAL SECTION
Sample Preparation. FePt5P can be synthesized via a high-

temperature solid-state method. The mixture of Fe powder (−200
mesh, 99 + %, Alfa Aesar), Pt powder (−22 mesh, 99.99%, BTC), and
red P powder (−100 mesh, 99%, BTC) was thoroughly mixed with a
molar ratio of 1:5:1.a The mixture was pressed into a solid pellet. The
pellet was placed into an alumina crucible and then sealed into an
evacuated silica tube (< 10−5 torr). The sealed tube was slowly heated
up to 1050 °C at a rate of 30 °C per hour to prevent phosphorus from
exploding. After annealing at 1050 °C for 2 days, the sample was slowly
cooled down to room temperature in 10 days. Polycrystalline FePt5P is
obtained by this process. Small single crystals (∼0.8 × 0.8 × 0.2 mm3)
are found to be detachable from the sample bulk. The material is stable
in the ambient air and humidity.
Phase Identification. To determine the phase purity, the room-

temperature powder X-ray diffraction (PXRD) pattern was collected on
a Rigaku MiniFlex 600 powder X-ray diffractometer with Cu Kα
radiation (λ = 1.5406 Å, Ge monochromator). The experiment was
performed with the 2θ angle between 5 and 90° with a step of 0.005° at
a rate of 0.1°/min. Rietveld fitting on the FullProf Suite was employed
to obtain the weight percentage of obtained phases.30 The temperature-
dependent PXRD patterns were measured every 10 K from 300 to 10 K
with a HUBER X-ray diffractometer equipped with a helium cryogenic.
The LeBail refinement was performed on each pattern to obtain the
phase information and accurate lattice parameters.31,32

Structure Determination. The crystal structure of FePt5P was
determined using a Bruker Apex II single crystal X-ray diffractometer
coupled with Mo radiation (λKα = 0.71073 Å) at room temperature. To
ensure the homogeneity, multiple pieces of crystals (∼15 × 50 × 50
μm3) from different batches weremeasured. The crystals weremounted
on a Kapton loop and protected by glycerol. Four different crystal and
detector orientations were generated to take the measurement with an
exposure time of 10 s per frame. The scanning 2θ width was set to 0.5°.
Direct methods and full-matrix least-squares on F2 models within the
SHELXTL package were applied to solve the structure.33 Data
acquisition was performed via Bruker SMART software with the
corrections on the Lorentz and polarization effect done by the SAINT
program. Numerical absorption corrections were accomplished with
XPREP.33,34

Neutron Powder Diffraction (NPD). Neutron powder diffraction
patterns were collected on the time-of-flight (TOF) powder
diffractometer (POWGEN) at the Spallation Neutron Source (SNS)
at Oak Ridge National Laboratory (ORNL). The measurement was
carried out at various temperatures of T = 10, 71, 80, 100, and 150 K
using a neutron wavelength band of 0.97−2.033 Å with a central
wavelength of 1.5 Å. A powder sample of ∼3 g was loaded into a 6 mm
diameter vanadium sample can with a copper gasket. The sample
contains the FePt3 impurity according to powder X-ray diffraction. The
FullProf refinement suite and Sarah programs were used to solve the
nuclear and magnetic structure.30,32,35

Scanning Electron Microscopy (SEM). The chemical composi-
tions were confirmed using a high-vacuum scanning electron
microscope (SEM) (JSM-6610 LV). Samples were placed on carbon
tape prior to loading into the SEM chamber and were examined at 20
kV.
Physical Property Measurements. Magnetic properties, resis-

tivity, and heat capacity measurements were performed on a Quantum
Design Dynacool physical property measurement system (PPMS) with
the temperature ranging from 1.8 to 300 K with and without applied
fields of up to 9 T. The magnetic susceptibility is defined as χ = M/H.

Here, M is the magnetization in units of emu, and H is the applied
magnetic field. A standard relaxation calorimetry method was used to
measure heat capacity, and the data were collected in a zero magnetic
field between 1.8 and 220 K using N-type grease. All the measurements
were performed on manually picked single crystal samples of FePt5P.

Electronic Structure Calculations. The band structure and
density of states (DOS) of FePt5P were calculated using the WIEN2k
program, which has the full-potential linearized augmented plane wave
method (FP-LAPW) with local orbitals implemented.36 The electron
exchange-correlation potential was used to treat the electron
correlation within the generalized gradient approximation, which is
parameterized in ref 37.37 The conjugate gradient algorithm was
applied, and the energy cutoff was set at 500 eV. Reciprocal space
integrations were completed over an 8 × 8 × 4 Monkhorst−Pack k-
point mesh for non-magnetic calculation and 3 × 12 × 4 for magnetic
calculation.38 With these settings, the calculated total energy converged
to less than 0.1 meV per atom. The spin-orbit coupling (SOC) effects
were only applied for Pt atoms. The structural lattice parameters
obtained from single crystal X-ray diffraction (SC-XRD) are used for
both calculations for non-magnetic calculation, while for magnetic
calculation, the magnetic structure obtained from NPD was utilized.

■ RESULTS AND DISCUSSION

Crystal Structure and Phase Determination of FePt5P.
The crystal structure of FePt5P determined by single crystal
XRD is shown in Figure 1a. The crystallographic data, including
atomic coordinates, site occupancies, and equivalent isotropic
thermal displacement parameters, are listed in Tables 1 and 2. As
can be seen in Figure 1a, FePt5P adopts a layered tetragonal

Figure 1. (a) Crystal structure of FePt5P and FePt3. Blue, gray, and red
balls represent Fe, Pt, and P atoms, respectively. (b) SEM picture of
polycrystalline FePt5P with a layered feature. (c) Powder XRD pattern
with Rietveld fitting of polycrystalline FePt5P. The red line with ball
indicates the observed pattern, the black line represents the calculated
pattern of FePt5P, and the blue line stands for the residual intensities.
The Bragg peak positions of different phases are indicated by the
vertical ticks.
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structure with the space group P4/mmm. In FePt5P, the face-
sharing FePt12 polyhedral cluster layers are separated by P layers.
By comparing it with the crystal structure of binary FePt3 also
shown in Figure 1a, it is seen that similar FePt12 polyhedra exist
in FePt3.

29,39 The Fe−Pt bond distances in FePt5P within the ab
plane and out of the ab plane are 2.757 (1) Å and 2.776 (1) Å
respectively, both which are slightly longer than Fe−Pt bond
lengths in FePt3 (2.738 (1) Å). The significant difference
between FePt5P and FePt3 is the Fe−Fe distance, which doubles
in FePt5P along the c axis and contributes to the magnetic
anisotropy in FePt5P. The SEM image of the FePt5P chunk is
shown in Figure 1b where the layered structural feature is easily
observed.
The phase purity of polycrystalline FePt5P was examined by

PXRD at 300K. The Rietveld refined powder pattern is shown in
Figure 1c. FePt3 was included in the refinement as the impurity.
According to the results, the weight percentages of FePt3 is 4.72

(1) wt %. The refinement results Rp, Rwp, and χ2 are 5.01, 6.53,
and 1.05, respectively, which indicate a reasonable PXRD
refinement.

Magnetic Properties of Single Crystal FePt5P.Magnetic
properties of FePt5P were measured on the small single crystals
with a small portion of FePt3 impurity. The single crystals are
sequentially aligned with two different orientations: the external
magnetic field is first perpendicular (B⊥c) and then parallel to
the c axis (B//c) in two separate measurements. The results of
temperature dependence of magnetic susceptibility are
presented in Figure 2 with an applied magnetic field of 1000
Oe. The magnetic susceptibility shows an upturn starting from
200 K, which originates from the impurity FePt3, and as the
temperature decreases, the magnetic susceptibility increases and
reaches a plateau below ∼90 K. Similar magnetic behaviors are
seen by both zero-field cooling (ZFC) and field cooling (FC) in
Figure S1. When the applied magnetic field was parallel to the c
axis, the magnitude of magnetic susceptibility is nearly identical
but with a slightly smaller value in the high temperature region
(>200 K), which implies a small magnetic anisotropy. With
increasing the applied magnetic fields (Figure S1), the
transitions occurring between 65 and 90 K appear, which is
consistent with our neutron scattering measurements described
below. The hysteresis loop of FePt5P is shown in Figure 3. The
results from both applied magnetic field directions imply soft
magnetic behavior. Weak magnetic anisotropy is observed.
Interestingly, when the applied magnetic field is parallel to the c
axis, the magnetization of the sample shows a small, saturated

Table 1. Single Crystal Structure Refinement for FePt5P at
296 (2) K

refined formula FePt5P
F.W. (g/mol) 1062.27
space group; Z P4/mmm; 1
a (Å) 3.901 (1)
c (Å) 6.857 (3)
V (Å3) 104.4 (1)
θ range (°) 2.971−30.321
no. reflections; Rint 484; 0.0262
no. independent reflectionsno. parameters 127

12
R1: ωR2 (I > 2δ(I)) 0.0262; 0.0609
goodness of fit 1.125
diffraction peak and hole (e−/ Å3) 4.557; −1.849

aValues in parentheses indicate one standard deviation.

Table 2. Atomic Coordinates and Equivalent Isotropic
Displacement Parameters for FePt5P at 296 (2) Ka

atom Wyckoff Occ. x y z Ueq

Pt1 4i 1 0 1/2 0.2884 (1) 0.0104 (3)
Pt2 1a 1 0 0 0 0.0103 (4)
Fe3 1c 1 1/2 1/2 0 0.011 (1)
P4 1b 1 0 0 1/2 0.012 (2)

aUeq is defined as one-third of the trace of the orthogonalized Uij
tensor (Å2). Values in parentheses indicate one standard deviation.

Figure 2. Temperature-dependence of magnetic susceptibility of
FePt5P crystals with the magnetic field applied (blue: parallel to the c
axis; orange: perpendicular to the c axis) from 1.8 to 350 K.

Figure 3. Hysteresis loops of FePt5P at various temperatures with an
external magnetic field from −9 to 9 T: (a) Perpendicular to the c axis
and (b) parallel to the c axis. The inset of figures shows the enlarged
figure at a low field range between −1 and 1 T.
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moment of ∼0.010 μB/Fe in Figure 3b after subtracting the
FePt3’s magnetic contribution. However, the hysteresis loop of
FePt5P with the appliedmagnetic field parallel to the c axis shows
a linear increase till ∼0.06 μB/Fe at 9 T and 300 K, which still
does not reach saturation. Moreover, when the sample was
cooled down, both orientations displayed larger absolute values
of the slope down to 90 K where the magnetizations at 9 T
reached their maxima. After the temperature was decreasing to
below 90 K, i.e., 80 K, the absolute value of the slope dropped
along with the decrease of the magnetization value. This
indicated that another magnetic ordering of FePt5P occurred
near 90 K.

Magnetic Structure of FePt5P. Time-of-flight (TOF)
neutron powder diffraction (NPD) data was collected at
POWGEN (Oak Ridge National Laboratory) to determine
the magnetic structures of FePt5P at various temperatures.
Figure 4a shows the refined neutron diffraction patterns
measured at 150, 80, and 10 K. Two impurity phases are
identified in the sample including FePt3 and Pt, which is
consistent with PXRD results. The crystal structures of FePt5P,
FePt3 and Pt reproduce well the peaks observed at 180 and 300
K, as shown in Figure S2. The analysis of NPD data further
confirms the tetragonal P4/mmm structure of FePt5P, in
agreement with the PXRD results. Above 150 K, the magnetic
reflections can be indexed with a propagation vector k = (1/2, 1/
2, 0), belonging to the FePt3 phase.

28,40 The minor peaks, which
cannot be included in the FePt5P or FePt3 phases, are also
examined and compared at all the temperatures. It can be
concluded that these minor peaks present are not temperature-
dependent and have no contribution to the magnetic phases of
FePt5P. Further cooling down to 80 K, additional magnetic
reflections are observed associated with the AFM order in
FePt5P, as shown in Figure 4b. These magnetic reflections can
be indexed with the propagation vector k = (1/2, 0, 0). The
magnetic peaks from typical lattice planes of FePt5P ((0 0 0), (0
0 1), (−1 0 1), (0 1 0)) were gradually suppressed when the
temperature was increased up to 100 K. The refinement using
the unit cell 2a × b × c revealed FePt5P to have a stripe-type
AFM ordering with the magnetic space group Pamma (#51.298)
including FM bc planes coupling AFM along the a axis. NPD
measurements performed at 70 K consist of similar magnetic

Figure 4. (a) Refined neutron powder diffraction patterns at 150, 80,
and 10 K. (b) Enlarged low-Q region for refined patterns at 10, 71, 80,
and 100 K. The lattice plane marked on the figure indicates where the
magnetic peaks originate. (c)Magnetic structure of FePt5P refined from
NPD. (d) Hypothetical magnetic structure without spin reorientation
for theoretical calculations.

Figure 5.Temperature dependence of resistivity measured between 1.7
and 350 K under different external magnetic fields (0, 0.5, 1, 5, and 9 T).

Figure 6. Heat capacity of the FePt5P crystal between 1.8 and 225 K
without an applied magnetic field. The insets show the enlarged picture
of entropy change regions.
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reflections as those at 80 K. Thus, the ordered moments are 2.2
(2) μB /Fe and 2.8 (1) μB /Fe at 80 and 70 K, respectively. A
second magnetic transition of FePt3 also occurred at 80 K and
was indexed using the k vector (0, 0, 1/2).29 The magnetic
structure of FePt3 has a stripe-type AFM ordering along the a
axis with an ordered moment of 1.01 (3) μB /Fe at 80 K. The
NPD data collected at 10 K reveals no new reflections; however,
a rotated AFM axis for FePt5P is observed. The resulting ordered
moment for this state was determined to have the components
ma = 3.0 (2) μB /Fe andmc = 1.8 (3) μB /Fe with a total ordered
moment of mtot = 3.5 (3) μB /Fe. Considering the ordered
moments along the a and c directions, the rotated angle of the
AFM axis was calculated to deflect toward the c axis and
determined to be ∼58.4°. The magnetic structures for FePt5P,
with and without spin reorientations, are shown in Figure 4c,d.

Resistivity and Heat Capacity of FePt5P Crystals. A
four-probe method was applied to measure the resistivity on one
of the larger pieces of crystals used in magnetic property
measurements. The temperature dependence of resistivity under
five different magnetic fields, 0, 0.5, 1, 5, and 9 T, is presented in
Figure 5a. The resistivity of FePt5P showed similar linear ρ(T)
behavior above ∼118 K in all cases, as fitted by the white line,
except the one measured under 1 T where a kink was observed
around 300 K in Figure S4. The resistivity started to increase
when the temperature dropped below ∼118 K and reached a
maximum at ∼86 K. Based on the NPD results, that the
magnetic ordering of FePt5P starts between 80 and 100 K, the
increasing ρ(T) at ∼118 K could be due to the small amount of
ordered FePt3 impurity scattering the electrons of FePt5P.
Moreover, the subsequent drop of resistivity can be interpreted

Figure 7. (a) Band structures of FePt5P with/without consideration of the SOC effect and SP. (b) Density of states of FePt5P corresponding to panel a.
(c) Magnetic unit cell and Brillouin zone of magnetically ordered FePt5P.
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as the s−d electron scattering based on its T3 behavior when
fitted to ρ(T) = ρ0 + ATn where ρ0 is the residual resistivity due
to defect scattering, A is a constant, and n is an integer
determined by the interaction pattern. The magnetoresistance
of FePt5P displayed in Figure S3 implies that ∼35% magneto-
resistance can be observed at 1.7 K at an applied magnetic field
of 9 T.With increasing temperature, the largemagnetoresistance
was suppressed gradually (Figure S4).
Heat capacity measurement made on the same piece of crystal

used in the resistivity measurement was performed without an
applied magnetic field, and the result is presented in Figure 6.
Four peaks are observed within the explored temperature range
(1.8 to 225 K) at around 170, 89, 74, and 68 K. Based on
previous results, the smaller peak around 170 K (ΔC ≈ 3.5 J
mol−1 K−1) can be attributed to the magnetic ordering of FePt3
impurity, which is consistent with the suggested reason of
resistivity increasing after 118 K. The heat capacity jumps of the
other three peaks are ∼7.0 J mol−1 K−1 (∼89 K), ∼3.0 J mol−1

K−1 (∼74 K), and ∼4.2 J mol−1 K−1 (∼68 K). According to the
NPD results, the three peaks at 89, 74, and 68 K reflect the
entropy changes of the AFM transitions and spin reorientations
along different directions of FePt5P. The specific heat peak at
170 K is consistent with the magnetic reflections observed in the
NPD at 150 K, which stem from the AFM transition of
FePt3.

29,39

Electronic Structure of FePt5P. The band structures
calculated for FePt5P are shown in Figure 7a. The projection of
significant orbitals for each atomic site is also given in Figure S4.
Spin-orbit coupling (SOC) effects from Pt and spin polarization
(SP) from Fe were taken into account, and the comparison
among band structures with/without those effects was also
calculated. In the left two figures of Figure 7a, the band
structures with/without consideration of the SOC effect are
given, where the Brillouin zone (BZ) was generated from the
original unit cell. Some of the bands around the Fermi level are
split and lead to band gaps, such as the bands from ∼ −0.05 to
∼0.1 eV between Γ and X points. New saddle points are
observed near the EF when SOC is included, such as at the M
point (Figure 7a). When including both SOC and SP, with the
type of atoms and construction of the BZ shown in Figure 7c, the
density of bands near EF is less compared with the one where
only the SOC effect is considered. Fewer saddle points can also
be seen at the Fermi level (with SOC and SP), which indicates a
more stable state for FePt5P. The contribution of both SOC and
SP to stability of FePt5P is recognized intuitively in Figure 7b,
which lists the density of states (DOS) corresponding to band
structures in Figure 7a. It is clear in Figure 7b that the DOS at EF
decreases dramatically with SOC and SP included. Moreover,
the EF in the SOC + SP case is moving toward a pseudo gap at∼
−0.2 eV. The Fe-d orbitals have the largest contribution at the
Fermi energy, far larger than that of Pt and P atoms, which is also
displayed in Figure S5.

■ CONCLUSIONS
In this paper, we synthesized the first ternary compound in the
Fe−Pt−P system, FePt5P, which crystallizes in a layered
tetragonal structure in the space group P4/mmm and orders
antiferromagnetically along the c direction of the unit cell below
TN ≈ 90 K. The spins are reoriented below ∼68 K. Resistivity
measurements indicate metallic behavior and the dominance of
s−d scattering below TN. First-principles calculations of
electronic structure show s−d electronic interaction governing
the resistivity in FePt5P, which is heavily influenced by the effect

of SOC and magnetism. The new material serves as an ideal
model for the investigation of the relationship of magnetism,
structure, and spin-orbit coupling in low-dimensional correlated
electronic phases with constituent atoms of coupled magnetic
and spin-orbit couple properties, respectively.
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