
PRX QUANTUM 2, 040350 (2021)

Cavity Entanglement and State Swapping to Accelerate the Search for Axion
Dark Matter

K. Wurtz ,1,2,* B.M. Brubaker ,2,3 Y. Jiang ,2,3 E.P. Ruddy ,2,3 D.A. Palken ,2,3 and
K.W. Lehnert2,3

1
Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5, Canada

2
JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309,

USA
3
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

 (Received 9 July 2021; accepted 22 October 2021; published 10 December 2021; corrected 5 January 2022)

In cavity-based axion dark matter detectors, quantum noise remains a primary barrier to achieving the
scan rate necessary for a comprehensive search of axion parameter space. Here, we introduce a method
of scan rate enhancement in which an axion-sensitive cavity is coupled to an auxiliary resonant circuit
through simultaneous two-mode squeezing (entangling) and state-swapping interactions. We show analyt-
ically that when combined, these interactions can amplify an axion signal before it becomes polluted by
vacuum noise introduced by measurement. This internal amplification yields a wider bandwidth of axion
sensitivity, increasing the rate at which the detector can search through frequency space. With interaction
rates predicted by circuit simulations of this system, we show that this technique can increase the scan rate
up to 15-fold relative to the scan rate of a detector limited by vacuum noise.
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I. INTRODUCTION

Several recent experiments in fundamental physics,
including searches for axion dark matter and gravitational
waves, have reduced noise below the level of vacuum
fluctuations [1–3]. Not only do these searches require
quantum-limited sensitivity, they must achieve it over a
broadband frequency range. In the regime where quan-
tum noise dominates, quantum measurement techniques
hold unique potential to increase the bandwidth of these
detectors.

Axion searches aim to detect a weak narrowband signal,
the frequency of which is a priori unknown. This signal is
generated by the hypothesized coupling of the axion field
to electromagnetism [4], through which dark matter axions
in a magnetic field convert to photons with frequency cor-
responding to the rest mass of the axion, ωax = maxc2/�.
Cavity-based axion detectors, known as haloscopes [1,5–
9], are designed to generate and detect this signature using
an electromagnetic cavity placed within a strong magnetic
field. If ωax is close to the resonance frequency of the
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cavity, the signal will cause a slight excess in the variance
of the electric field of the cavity [10].

Because the mass of the axion is unknown, the cav-
ity is constructed to have a tunable resonance frequency.
The resonance can then be adjusted in a stepwise manner,
averaging noise for sufficient time to resolve an axion-
induced excess at each tuning step. However, a compre-
hensive search of axion parameter space is still severely
hindered by the achievable spectral scan rate of exist-
ing haloscopes. Even with noise reduced to the level of
vacuum fluctuations, scanning the 1–10 GHz frequency
band at the benchmark Dine-Fischler-Srednicki-Zhitnitsky
(DFSZ) coupling with modern haloscopes [11,12] is esti-
mated to take over 20 000 years of continuous detector live
time [13].

The scan rate is determined by two factors: the visibility,
defined as the ratio of the power spectral density expected
from an axion signal to the total noise power spectral den-
sity, and the visibility bandwidth, which is the characteris-
tic bandwidth over which the detector remains sensitive.
The visibility determines the required averaging time at
each tuning step, while the visibility bandwidth determines
the appropriate frequency step size. The linewidth �ax of
the axion signal, determined by the velocity dispersion of
the dark matter halo [14], is much smaller than the visi-
bility bandwidth of a typical haloscope, so many distinct
axion frequencies can be probed at each tuning step.

Quantum-enhanced measurement techniques can widen
the visibility bandwidth by increasing noise that originates
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FIG. 1. Noise in a single quadrature for haloscopes with and without quantum noise manipulation. (a) In a haloscope detector, a
weak axion signal (green) generated in the cavity emerges from the cavity, along with noise originating in the cavity (blue), and is
then further polluted by measurement noise originating outside and reflecting off the cavity (red). (b) The axion signal, cavity noise,
and measurement noise all contribute to the power spectral density (PSD) near cavity resonance ω0, shown here in the absence of
quantum noise manipulation. The narrow green peak indicates one possible manifestation of the axion signal, while the green dashed
line indicates the power spectral density that would be delivered to the detector by an axion at a given detuning from ω0, which is
proportional to the cavity noise PSD at that detuning. The double-headed arrow indicates the visibility bandwidth. (c) The measurement
noise is prepared in a squeezed state. The axion and cavity noise contributions to the PSD are unchanged, but because the measurement
noise dominates off resonance, squeezing widens the visibility bandwidth. (d) The axion signal and cavity noise are amplified together
before being polluted by measurement noise, widening the visibility bandwidth. In each case, the cavity is assumed to be critically
coupled (see Sec. III) for simplicity of representation.

in the cavity (along with any signal present) relative to
noise associated with measurement. Figure 1(a) depicts the
frequency dependence of cavity and measurement noise in
the absence of quantum manipulation. The cavity noise,
comprising thermal and vacuum fluctuations arising from
the internal loss of the cavity by the fluctuation-dissipation
theorem, is maximized on cavity resonance. The power
expected from an axion signal would also be maximized if
ωax were to coincide with cavity resonance and moreover,
it exhibits the same roll-off as the cavity noise with increas-
ing detuning of ωax from resonance. Thus, if cavity noise
were the only source of noise, the same visibility would
be maintained on or off resonance. However, a second
source of noise is introduced by the act of measurement
itself. This noise, comprising thermal and vacuum fluctua-
tions arising from loss external to the cavity, dominates off
resonance and leads to a finite visibility bandwidth [15].

One way to widen the visibility bandwidth is to sup-
press the amplitude of one phase of the measurement noise
while amplifying the orthogonal phase [10] and then mea-
sure only the suppressed (“squeezed”) component. These
orthogonal phases (the cosinelike and sinelike components
of the field) are called the X̂ and Ŷ quadratures. Preparing
the measurement noise in a squeezed state, illustrated in
Fig. 1(b), decreases the noise off resonance in the squeezed
quadrature. This technique has been implemented experi-
mentally [1], and results in a near-doubling of the scan rate.
However, it involves transporting the fragile single-mode
squeezed state through lossy directional elements, which
degrade the squeezing and limit the presently achievable
scan rate enhancement.

In this paper, we introduce a method to widen the visibil-
ity bandwidth by amplifying the cavity noise and axion sig-
nal together in a single quadrature relative to measurement
noise, as illustrated in Fig. 1(c). This method involves
using simultaneous two-mode squeezing (entangling) and

state-swapping interactions to realize a quantum nondemo-
lition interaction between the cavity mode and an auxiliary
resonant mode of a spatially separated readout circuit.
Under this interaction, one quadrature of the cavity mode
is mapped to the orthogonal quadrature of the auxiliary
mode and the measurement back action is deposited in the
unmonitored quadrature of the cavity mode. We show that
this method can yield more than a 15-fold scan enhance-
ment relative to the quantum-limited haloscope scan rate.

In the next section, we present a system capable of
implementing this interaction and show how the desired
behavior arises from two-mode squeezing and state-
swapping interactions in a two-mode model of this system.
In Sec. III, we apply an input-output theory analysis to this
two-mode model to derive the scan rate enhancement as
a function of the two-mode squeezing and state-swapping
interaction rates. In Sec. IV, we extend our analysis to
account for effects outside the scope of the two-mode
model. Finally, in Sec. V, we calculate the scan rate
enhancement achievable with this system.

II. A HALOSCOPE USING STATE SWAPPING AND
TWO-MODE SQUEEZING

In order to overcome measurement noise, it would be
ideal to amplify the axion signal and cavity noise together
within the cavity. However, parametric amplifiers capable
of noiseless amplification contain superconducting ele-
ments (Josephson junctions) that are incompatible with
the strong magnetic field surrounding the cavity. Thus
we consider a system in which the cavity is coupled
through a transmission line to an auxiliary readout res-
onator that resides outside the magnetic field. We call
this system CEASEFIRE—the “Cavity Entanglement And
Swapping Experiment For Improved Readout Efficiency.”
A microwave network model of CEASEFIRE is shown in
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FIG. 2. CEASEFIRE, a haloscope that uses state swapping and two-mode squeezing. (a) A microwave network model of CEASE-
FIRE. An axion-sensitive cavity with resonance frequency ωA, axion field coupling rate κa, and loss rate κ� is coupled through a
transmission line to an auxiliary readout resonator with frequency ωB, which is coupled to a measurement chain at rate κm. The axion
signal, modeled as a weakly coupled generator [10], and the cavity loss, modeled as a resistor, are coupled to the cavity by fictitious
ports. The readout resonator can be modeled as a parallel LC circuit coupled to the transmission line by a time-dependent mutual
inductance M (t); it is assumed to be superconducting, such that its internal loss rate is negligible. A circulator shields the system from
measurement-chain back action but routes vacuum noise from a real resistor (bold) toward the measurement port. (b) A simplified
two-mode model of CEASEFIRE. Modulation of the mutual inductance simultaneously at the difference frequency ω� = ωB − ωA
and the sum frequency ω� = ωA + ωB creates state-swapping and two-mode squeezing interactions at rates g and h, respectively. (c)
The uncoupled vacuum states of the readout resonator and cavity are represented by circles in quadrature phase space. Modulation
of M (t) only at the difference frequency causes the cavity and readout modes to continuously swap states. Modulation only at the
sum frequency entangles the states of the two modes, causing them to become amplified linear combinations of the uncoupled states.
Simultaneous modulation at both frequencies and matching of the interaction rates yields noiseless single-quadrature amplification.
The measured quadrature of the readout mode contains measurement noise (reflected with unit magnitude) and amplified cavity noise,
whereas the orthogonal quadrature contains only measurement noise.

Fig. 2(a). The readout resonator is modeled as a parallel
LC circuit coupled to the transmission line by a time-
dependent mutual inductance M (t) that is modulated by
microwave-frequency drives. The time-dependent mutual
inductance is an equivalent circuit model that captures
the behavior of nonlinear devices such as the Josephson
ring modulator (JRM) [16] and the tunable inductor bridge
(TIB) [17].

Figure 2(b) shows a two-mode model of the system
when M (t) is modulated at two distinct frequencies. Mod-
ulation at the difference of the mode frequencies ω� =
ωB − ωA creates a beam-splitter interaction, in which the
cavity mode (ωA) and readout mode (ωB) continuously
swap states at rate g. This is illustrated in quadrature phase
space in the second column of Fig. 2(c), with cavity noise
in blue and measurement noise in red. Modulation at the
sum of the two frequencies ω� = ωA + ωB prepares the
cavity and readout modes in a two-mode squeezed state,
wherein the quadrature variances and correlations between

quadratures (a form of entanglement) grow exponentially
at rate h. The final state of each mode in a two-mode
squeezed state is an amplified linear combination of the
initial states of the uncoupled modes, as illustrated in phase
space in the third column of Fig. 2(c). The interaction rates
g and h are proportional to the amplitude of the modulation
of M (t) at frequencies ω� and ω� , respectively.

Simultaneous application of the state-swapping and
two-mode squeezing interactions with matched interaction
rates yields noiseless phase-sensitive amplification of the
axion cavity mode. To illustrate this behavior, we first
write the Hamiltonian of the two-mode system, including
parametric coupling interactions, as

Ĥ = Ĥ 0 + Ĥ int, (1)

where the uncoupled modes have the Hamiltonian
Ĥ 0 = ωA

(
Â†Â + 1

2

)
+ ωB

(
B̂†B̂ + 1

2

)
(with � = 1). The
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interaction Hamiltonian is

Ĥ int = g̃ÂB̂† + h̃Â†B̂† + h.c., (2)

where g̃ = g exp(−iω�t), h̃ = h exp[−i(ω� t − φ)], and φ

is the phase difference between the microwave drives that
generate the difference- and sum-frequency modulation.

By transforming to the quadrature basis and setting h =
g, we obtain the quantum nondemolition interaction

Ĥ int = 2gX̂ A,φ/2X̂ B,φ/2, (3)

where X̂ A,θ = 1√
2
[e−iθ Â + eiθ Â†] is the operator for a gen-

eral cavity-mode quadrature rotated by θ from X̂ and
X̂ B,θ is defined analogously. Setting φ = 0 without loss
of generality, the Heisenberg equation of motion for the
Ŷ quadrature of the readout mode is given by

dŶB/dt = −2gX̂ A. (4)

This expression indicates that the X̂ quadrature of the cav-
ity mode is mapped onto the Ŷ quadrature of the readout
mode, with noiseless gain that scales with g [18,19]. On
the other hand, we find that dX̂ B/dt = 0, indicating that
the orthogonal quadrature of the readout mode does not
couple to the cavity mode at all. Thus, the combined inter-
actions yield the behavior illustrated in the fourth column
of Fig. 2(c)—noiseless single-quadrature amplification.

III. TWO-MODE CEASEFIRE MODEL

To derive the visibility and scan rate enhancement of
CEASEFIRE, we treat the two-mode model shown in
Fig. 2(b) in the input-output theory of quantum optics, in
which loss and noise are modeled as arising from ports that
couple propagating fields to the modes [20,21]. We use this
framework to find the susceptibilities relating the output
field at the measurement port to input fields at each port.
To derive an expression for the scan rate enhancement, we
then compare the signal visibility of CEASEFIRE to that of
a haloscope without amplifier added noise, and total noise
subject to the quantum limit. We refer to this latter system
as a standard haloscope throughout the text.

As shown in Fig. 2(a), the modes interact with the exter-
nal environment via three ports parametrized by coupling
rates. We model the axion field as a signal generator cou-
pled to the cavity through a fictitious port with coupling
rate κa [10] and the internal loss of the cavity as another
fictitious port with coupling κ� equal to the rate at which
power is dissipated internally. The coupling to the axion
field is sufficiently weak that we assume κa � κ� in the
analysis that follows. The readout resonator couples to a
transmission line through a measurement port at rate κm
and is assumed to be superconducting such that its internal

loss rate is negligible. The Heisenberg-Langevin equations
of motion for Â and B̂, which include the terms associated
with these coupling rates [20], are given by

dÂ
dt

= −
(

iωA + κ�

2

)
Â(t) + √

κ�ξ̂ in,�(t) + √
κaξ̂ in,a(t)

− ig̃∗B̂(t) − ih̃B̂†(t), (5)

dB̂
dt

= −
(

iωB + κm

2

)
B̂(t) + √

κmξ̂ in,m(t)

− ig̃Â(t) − ih̃Â†(t), (6)

where ξ̂ in,�, ξ̂ in,a, and ξ̂ in,m are the input fields incident on
the loss, axion, and measurement ports, respectively.

The output fields at the ports are related to the input
fields by

ξ̂out,j = ξ̂in,j − √
κj 
̂, (7)

where 
̂ = Â if j = {a, �} and 
̂ = B̂ if j = m. These
equations of motion and input-output relations can be
solved in the frequency domain to find the susceptibility
matrix ζ , the elements ζjk of which relate incoming fields
at port k to outgoing fields at port j . Transforming from
the field-operator basis to the quadrature basis, we can
then derive expressions for the quadrature susceptibilities
χjk. The construction of the ζ matrix and the derivation of
the quadrature susceptibilities are outlined in Appendix A.
Here, we present final expressions for three quadrature sus-
ceptibilities that are sufficient to describe the physics of
CEASEFIRE.

The output at the measurement port, in the amplified
quadrature, due to a signal incident on the axion port, in
the orthogonal quadrature, is given by

χma(ω) = (g + h)
√

κmκa

g2 − h2 + (iω + κm/2)[iω + (κ�/2)]
, (8)

where ω is the detuning of the cavity input field from
ωA (or, equivalently, the detuning of the frequency-shifted
readout resonator output field from ωB). The presence of
g and h in the numerator reveals that the axion signal
experiences gain. With g = h, the denominator becomes
independent of g and h; thus, the susceptibility bandwidth
is independent of gain [19] and the gain can be increased
by turning up g and h together. It is precisely the gain-
independence of the susceptibility bandwidth that causes
the visibility bandwidth to increase with increasing gain.

The amplified-quadrature response at the measurement
port due to noise in the orthogonal quadrature incident on
the loss port is proportional to Eq. (8), scaled by the ratio
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of the port couplings:

χm�(ω) =
√

κ�

κa
χma(ω). (9)

The proportionality of these frequency-dependent suscep-
tibilities shows that, as illustrated in Fig. 1(d), amplifica-
tion does not improve the ratio of axion signal to cavity
noise at any frequency. However, the gain experienced
by the signal and cavity noise together is of primary
importance, as it determines the visibility bandwidth.

We quantify the gain of the axion signal and cavity noise
by comparing the CEASEFIRE signal susceptibility to that
of a standard haloscope [10],

χ0(ω) =
√

κcκa

iω + (κc + κ�)/2
, (10)

where κc is the coupling rate of the measurement port.
We define the gain as the ratio |χma(ω)/χ0(ω)|2, where
the standard haloscope is taken to be critically coupled
(κc = κ�) with the same κ� and κa as CEASEFIRE. On
resonance and for h = g, the gain becomes

∣∣∣∣
χma(0)

χ0(0)

∣∣∣∣
2

h=g
= 64g2

κmκ�

= 16C, (11)

where we have introduced the cooperativity C =
4g2/(κmκ�), a dimensionless measure of interaction
strength. With realistic values for these parameters
(Sec. V), we expect C ≈ 2500 to be achievable on reso-
nance, resulting in a gain of approximately 4 × 104. Away
from resonance, the gain rolls off as ω−2 for κ� � ω � κm
and ω−4 for ω � κm.

The output at the measurement port due to a signal inci-
dent on the same port, i.e., the reflection susceptibility of
the measurement port, is given by

χmm(ω) = 1 − κm[iω + (κ�/2)]
g2 − h2 + [iω + (κm/2)][iω + (κ�/2)]

.

(12)

Unlike the transmission susceptibilities, the reflection sus-
ceptibility is not phase sensitive, so this relation holds
for any quadrature. For g = h, the reflection susceptibility
becomes 1 − κm/[iω + (κm/2)], which has unit magnitude
for all frequencies.

Next, we calculate the output spectral density at the
measurement port in the presence of thermal noise and
an axion signal. Thermal noise manifests as a white-noise
spectral density nT + 1/2 incident on the loss and measure-
ment ports, where nT = exp[(�ω/kBT) − 1]−1 is the mean
thermal photon occupancy of a mode with frequency ω in
equilibrium with an environment at temperature T. Within
a narrow frequency range � �ax around the axion signal

frequency, the signal can be completely characterized by
a spectral density na � 1, coupled at a rate κa sufficiently
small that κana � κ�(nT + 1/2). The relationship between
the input-output theory model parameters na and κa and
the parameters of the axion field is derived in Appendix B
of [10]. Specifically, we consider the amplified-quadrature
output spectral density at the measurement port density,
denoted by S. The contribution to S due to an axion signal
is given by

Sa(ω) = na|χma(ω)|2 = κmκana(g + h)2

|β(ω)|2 , (13)

where β(ω) = g2 − h2 + (iω + κm/2)(iω + κ�/2). The
contribution due to cavity noise and measurement noise is
given by

SN (ω) =
(

nT + 1
2

)[
1 + 2κ�κmh(g + h)

|β(ω)|2
]

. (14)

The CEASEFIRE visibility αCF, which determines how
long power must be averaged to resolve an axion-induced
excess, is given by

αCF(ω) = Sa(ω)

SN (ω) + (1/2)
, (15)

where the half quantum of noise added to the spectral den-
sity in the denominator accounts for the added noise of
the subsequent quantum-limited phase-insensitive ampli-
fier [22,23]. We compare the amplified-quadrature axion
visibility of CEASEFIRE to that of a standard haloscope:

α0(ω) = na|χ0(ω)|2
nT + (1/2)

= naκaκc

[nT + (1/2)]
[
(κc + κ�)2/4 + ω2

] , (16)

where the limit nT → 0 (or kBT � �ω) corresponds to the
quantum-limited visibility.

The spectral scan rate scales as
∫

α2(ω)dω. To define
scan rate enhancement, we compare the CEASEFIRE scan
rate to that of the twice-overcoupled standard haloscope
(κc = 2κ�), as a twofold overcoupling yields the maximum
scan rate for a standard haloscope [14]. In any haloscope
experiment, overcoupling the cavity reduces visibility but
increases bandwidth and at some point an optimum that
maximizes this integral is achieved. In the case of CEASE-
FIRE, amplification causes this trade-off to be optimized
at a much higher overcoupling—strongly overcoupling
widens the bandwidth and operating at high cooperativ-
ity recovers peak visibility on resonance and over this
wider bandwidth. In Fig. 3 we show the increase in visibil-
ity bandwidth of CEASEFIRE as compared to a standard
haloscope.
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FIG. 3. The visibility improvement in the two-mode CEASE-
FIRE model. A plot of the squared visibility as a function of
frequency shows that the two-mode CEASEFIRE model with
g = h = 110κ� and an optimal overcoupling of κm = 19κ� (blue)
greatly widens the bandwidth as compared to both a standard
haloscope with κc = κ� (green) and a standard haloscope with
κc = 2κ� (purple). Here, κ� is assumed to be the same in each
case.

The scan rate enhancement predicted by this two-mode
input-output theory model is thus given by the ratio

E =
∫

dω[αCF(ω)]2
∫

dω[α0(ω)]2
κc=2κ�

, (17)

which is independent of the axion signal parameters κa and
na. Notably, the scan rate enhancement is also independent
of nT: the CEASEFIRE technique is equally beneficial for
detectors at low frequencies or elevated temperatures.

IV. PHYSICAL IMPLEMENTATION

Our analysis thus far has considered the physics of
CEASEFIRE in an idealized two-mode system. In this
section, we discuss effects that would arise in an imple-
mentation of this concept. In particular, we identify two
effects we must mitigate to realize a significant scan rate
enhancement: interactions between the readout mode and
standing wave modes of the transmission line shown in
Fig. 2(a), and partial hybridization of the various modes
in this multimode system. Here, we present a qualitative
overview of these effects; details of the extended model
are relegated to Appendix C.

As discussed in Sec. II, modulation of the inductance of
the readout resonator requires Josephson junctions, which
are incompatible with the magnetic field around the cav-
ity. Typical high-field magnet configurations can null the
field approximately L = 50 cm away from its maximum.
Thus, the system requires a transmission line of this length
separating the cavity and the readout resonator and this
transmission line introduces a spectrum of standing wave
modes spaced by the free spectral range (FSR) �FSR/2π =
v/(2L), where v is the speed of light in the line.

In general, the normal modes of the system will be lin-
ear combinations of the uncoupled cavity mode, readout
mode, and transmission line modes. Hybridization of the
cavity mode with the readout mode creates an additional

loss channel for the cavity mode, reducing the scan rate.
We can eliminate most of this hybridization by using four
equal inductors L0 in a Wheatstone bridge configuration as
the inductance of the readout circuit and applying an induc-
tance modulation ±M (t) to each element in the bridge
with opposite sign for adjacent inductors (see Fig. 6 in
Appendix C). This bridge coupler is electrically equivalent
to mutual inductive coupling, where the mutual inductance
M (t) can vary about zero, such that the first nonzero con-
tribution to the static coupling between the cavity and
readout modes arises at second order in the fractional
inductance modulation M (t)/L0. The coupling inductance
is modulated at both the difference frequency and the sum
frequency of the cavity and readout modes to generate the
dynamic couplings g and h.

Interactions between most other pairs of modes can be
neglected: neither the sum nor the difference of their reso-
nant frequencies is close to the modulation frequencies, so
their effects on the equations of motion will vanish under a
rotating wave approximation. However, the dynamic cou-
pling between the readout mode and the two transmission
line modes spectrally closest to the cavity mode can impact
the scan rate enhancement significantly. Thus we extend
our input-output theory analysis to a four-mode model,
which we can then use to obtain predictions for the vis-
ibility and the scan rate enhancement given κm, κ�, and
the values of g and h obtained from a circuit model of the
system.

The effect of these unwanted transmission line mode
couplings is an effective mismatch in interaction rates that
results in amplification of reflected measurement noise.
Because CEASEFIRE widens the visibility bandwidth by
amplifying cavity noise relative to measurement noise, this
can reduce the scan rate enhancement considerably. When
the cavity is spectrally centered between two transmission
line modes, however, the effects of the transmission line
mode interactions cancel almost entirely. In Sec. V, we
present results for the visibility and scan rate enhancement
under the assumption that the cavity mode remains mid-
way between the two nearest transmission line modes as
it is tuned. In Appendix C, we discuss the dependence of
the scan rate enhancement on detuning from this optimal
operating point, as well as the scan rate enhancement that
can be achieved by tuning transmission line modes.

V. PREDICTED SCAN RATE ENHANCEMENT

Figure 4(a) shows the squared visibility obtained from
the four-mode model of CEASEFIRE, as well as the two
standard haloscope cases plotted in Fig. 3. For κ�/(2π) ≈
100 kHz, typical for copper haloscope cavities, the chosen
values of g and h correspond to 23% fractional inductance
modulation. We bound the fractional modulation here to
ensure that our model properly describes the higher-order
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FIG. 4. The visibility and scan rate enhancement of the four-
mode CEASEFIRE model. We take the cavity frequency to lie
midway between two transmission line mode frequencies, opti-
mizing the scan rate enhancement of the four-mode model. (a)
Plotting with the same parameters and corresponding colors as
in Fig. 3, the four-mode model results in a qualitatively simi-
lar increase in visibility bandwidth as compared to a standard
haloscope. The slight asymmetry in the CEASEFIRE visibil-
ity originates from unequal effects of the two transmission line
modes spectrally closest to the cavity mode. (b) In color scale,
we plot the scan rate enhancement of CEASEFIRE relative to
the maximum scan rate for a standard haloscope (achieved for
κc = 2κ�), as a function of the matched dynamical coupling
rates g = h and the overcoupling ratio κm/κ�, assuming that
κ�/(2π) ≈ 100 kHz. For any given g = h, there exists an over-
coupling ratio that yields the maximal scan rate enhancement
(line); the parameters yielding the CEASEFIRE visibility shown
in (a) are marked in (b) by the white circle.

parametric processes that would arise from implementa-
tion with a TIB or JRM circuit (see Appendix C 2).

Figure 4(b) shows the scan rate enhancement as a func-
tion of the matched dynamic coupling rates g = h and
the degree of overcoupling, assuming that κ�/(2π) ≈ 100
kHz, with the black line indicating the optimal overcou-
pling ratio. The parameters of Fig. 4(a) are marked by
a white dot and correspond to a scan rate enhancement
E ≈ 15.6. The scan rate enhancement when the rates are
mismatched is discussed in Appendix B, where we find
that we can obtain a small increase in scan rate with a slight
g > h mismatch.

VI. CONCLUSION

We have introduced a system capable of amplifying an
axion signal through simultaneous two-mode squeezing
and state-swapping interactions, and shown that this sys-
tem can significantly widen the visibility bandwidth of a
haloscope, yielding up to a 15-fold enhancement over the
quantum-limited scan rate. In addition, we have introduced
methods for mitigating problems caused by the periodic
standing wave modes of a transmission line required to
spatially separate the auxiliary readout resonator from the
high magnetic field surrounding the axion-sensitive cavity.
These methods may also be useful for efforts to incor-
porate superconducting qubit single-photon counters into
haloscope detectors [24].

A successful experimental implementation of this con-
cept would be a significant milestone in the application
of quantum technology to the axion search. The method
outlined here would also yield an equivalent scan rate
enhancement in axion searches at lower frequencies in
which the axion-sensitive resonator has substantial ther-
mal occupation [25] (this is also true of single-mode
squeezing [10]). In contrast, the quantum enhancement
achievable with single-photon counting depends strongly
on thermal occupancy [26]. Because a comprehensive
search of axion parameter space will likely require several
technologies to act jointly to further increase sensitivity
and bandwidth, we note that CEASEFIRE may also be
compatible with simultaneously squeezing measurement
noise and other methods of scan rate enhancement.
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APPENDIX A: TWO-MODE INPUT-OUTPUT
THEORY MODEL

In this appendix, we use the equations of motion
[Eqs. (5) and (6)] together with the input-output relations
[Eq. (7)] to derive the full 6 × 6 susceptibility matrix
ζ in the field-operator basis. We then transform to the
quadrature basis, derive the condition for the angle of the
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amplified quadrature, and use this to derive the amplified-
quadrature transmission susceptibilities [Eqs. (8) and (9)].
Finally, we derive the amplified-quadrature output spectral
densities at the measurement port, Eqs. (13) and (14).

In the rotating frame of the readout mode [Â(t) →
Â(t)e−iωBt, B̂(t) → B̂(t)e−iωBt], the cavity equations of
motion are given by

dÂ
dt

=
(

iω� − κ�

2

)
Â(t) + √

κ�ξ̂ in,�(t)

+ √
κaξ̂ in,a(t) − igB̂(t)eiω�t − iheiφB̂†(t)eiω�t,

(A1)

dB̂
dt

= −κm

2
B̂(t) + √

κmξ̂ in,m(t) − igÂ(t)e−iω�t

− iheiφÂ†(t)eiω�t. (A2)

Solving these equations in the frequency domain yields

Â(ω) = [i(ω − ω�)+ κ�/2]−1[
√

κ�ξ̂ in,�(ω)+ √
κaξ̂ in,a(ω)

− igB̂(ω − ω�) − iheiφB̂†(−ω + ω�)], (A3)

B̂(ω) = [iω + κm/2]−1[
√

κmξ̂ in,m(ω) − igÂ(ω + ω�)

− iheiφÂ†(−ω + ω�)]. (A4)

These frequency-domain equations can be uncoupled by substituting B̂(ω − ω�) and B̂†(−ω + ω�) into Eq. (A3) and
Â(ω + ω�) and Â†(−ω + ω�) into Eq. (A4), yielding Â(ω) and B̂(ω) purely in terms of input fields:

Â(ω) = β(ω − ω�)−1
{[

i(ω − ω�) + κm

2

][√
κ�ξ̂ in,�(ω) + √

κaξ̂ in,a(ω)
]

− ig
√

κmξ̂ in,m(ω − ω�) − iheiφ√
κmξ̂ †

in,m(−ω + ω�)
}

, (A5)

B̂(ω) = β(ω)−1
{ (

iω + κ�

2

)√
κmξ̂ in,m(ω) − ig[

√
κaξ̂ in,a(ω + ω�) + √

κ�ξ̂ in,�(ω + ω�)]

− iheiφ[
√

κaξ̂
†

in,a(−ω + ω�) + √
κ�ξ̂

†
in,�(−ω + ω�)]

}
. (A6)

The above equations and the general input-output rela-
tions given by Eq. (7) are then solved to obtain port
susceptibilities. We define an input field vector

�u = [ξ̂ in,a(ω + ω�), ξ̂ in,�(ω + ω�), ξ̂ in,m(ω), ξ̂ †
in,m(−ω),

ξ̂ †
in,�(−ω + ω�), ξ̂ †

in,a(−ω + ω�)]T (A7)

and an output field vector

�v = [ξ̂out,a(ω + ω�), ξ̂out,�(ω + ω�), ξ̂out,m(ω), ξ̂ †
out,m(−ω),

ξ̂
†
out,�(−ω + ω�), ξ̂ †

out,a(−ω + ω�)]T (A8)

such that we can write these relations compactly in the
form �v = ζ �u, where ζ is the susceptibility matrix. We can
write the susceptibility matrix in the form

ζ (ω) =
[ S(ω) P(ω)

P†(−ω) S‡(−ω)

]
,

where S is the symmetric matrix

S =
⎡
⎣

ζaa ζ�a ζma
ζ�a ζ�� ζm�

ζma ζm� ζmm

⎤
⎦ ,

P is the persymmetric matrix

P =
⎡
⎣

ζma† 0 0
ζm�† 0 0

0 ζm�† ζma†

⎤
⎦ ,

P† denotes the conjugate transpose of P , and S‡ denotes
the conjugate of S transposed across the antidiagonal.

The individual susceptibility matrix elements are given
by

ζjj (ω) = 1 − κj [iω + (κm/2)]
β(ω)

, ζmj (ω) = ig√
κj κm

β(ω)
,

ζmm(ω) = 1 − κm[iω + (κ�/2)]
β(ω)

, ζmj †(ω)= iheiφ√
κj κm

β(ω)
,

ζ�a(ω) = −√
κaκ�[iω + (κm/2)]

β(ω)
, (A9)

for j = {a, �}.
The central 2 × 2 submatrix of ζ , which describes

reflection off the measurement port, is simply ζmmI2, so
it remains unchanged under a unitary transformation to
the quadrature basis. The quadrature reflection susceptibil-
ity is thus phase independent and is given by χmm = ζmm,
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reproducing Eq. (12) in the main text. The two amplified-
quadrature transmission susceptibilities cited in the main
text, Eqs. (8) and (9), can be derived by first constructing
the field in an arbitrary quadrature at the measurement-port
output and then identifying the phase condition for which
the magnitude of the susceptibility is maximized.

The susceptibility matrix gives us the following expres-
sions for the measurement-port output fields due to an
axion signal (omitting fields incident on other ports):

ξout,m(ω) =
√

κaκm

β(ω)
[igξ̂ in,a(ω + ω�)

+ iheiφξ̂ †
in,a(−ω + ω�)], (A10)

ξ
†
out,m(−ω) =

√
κaκm

β(ω)
[−ihe−iφξ̂ in,a(ω + ω�)

− igξ̂ †
in,a(−ω + ω�)]. (A11)

To express these output fields in the quadrature basis, we
substitute the above expressions into the general relation
between the field operators and an arbitrary quadrature
operator rotated by θ from the Ŷ quadrature:

Ŷout,m,θ (ω) = 1√
2i

[
e−iθ ξ̂out,m(ω) − eiθ ξ̂

†
out,m(−ω)

]

=
√

κaκm/2
β(ω)

{
e−iφ/2 ξ̂ in,a(ω + ω�)

× [
gei(φ/2−θ) + he−i(φ/2−θ)

]

+ eiφ/2ξ̂ †
in,a(−ω + ω�)

× [
ge−i(φ/2−θ) + hei(φ/2−θ)

]}
. (A12)

Note that in the second equality above, for θ = φ/2, the
terms inside the square brackets become independent of
φ. These [g + h] terms can then be factored out and the
remaining expression inside the curly braces becomes that
of a particular input quadrature, namely X̂ in,a,φ/2. Thus,
θ = φ/2 defines the amplified quadrature, in agreement
with Eq. (3) [27]. The factor relating the amplified output
quadrature Ŷout,m,φ/2 ≡ Ŷout,m to the corresponding input
quadrature X̂ in,a,φ/2 ≡ X̂in,a is then

χma(ω) = (g + h)
√

κaκm

β(ω)
, (A13)

given by Eq. (8) in the main text. The loss port susceptibil-
ity χm�(ω) [Eq. (9)] is derived analogously.

These susceptibilities and the noise of the input fields
determine the noise of the output fields. The input noise
in the field-operator basis is characterized by the input

spectral density matrix

Sin = 〈[�u(ω)]†�uT(ω)〉
= diag[na, nT, nT, nT + 1, nT + 1, na + 1], (A14)

where the Hermitian conjugate in the first equality does
not transpose the vector [28]. The output spectral den-
sity matrix in the field-operator basis is then given by
Sout(ω) = ζ ∗(ω)Sinζ

T(ω).
We now calculate the output spectral density at the mea-

surement port in the Ŷθ quadrature. The spectral density is
given by the variance of this quadrature operator as defined
in the first line of Eq. (A12):

Sout,m,θ (ω) =
〈
[Ŷout,m,θ (ω)]2

〉
= 1

2

[ 〈
ξ̂

†
out,m(−ω)ξ̂out,m(ω)

〉

+
〈
ξ̂out,m(ω)ξ̂

†
out,m(−ω)

〉 ]
− 1

2

[ 〈
[ξ̂out,m(ω)]2

〉

+
〈
[ξ̂ †

out,m(−ω)]2
〉 ]

(cos2 θ − sin2 θ)

+ i
[〈

[ξ̂out,m(ω)]2 − [ξ̂ †
out,m(−ω)]2

〉]
cos θ sin θ .

(A15)

The expectation values of field-operator products that
appear in Eq. (A15) can be associated with elements of
the output spectral density matrix through the relation
Sout(ω) = 〈[�v(ω)]†�vT(ω)〉.

Substituting in these elements, the contribution to this
measurement-port output spectral density from an axion
signal is obtained from

Sout,m,a,θ (ω) = Sout,m,θ (ω) − Sout,m,θ (ω)

∣∣∣
na=0

= naκaκm[g2 + h2 + 2gh cos(2θ − φ)]
|β(ω)|2 ,

(A16)

which is maximized for θ = φ/2, in agreement with the
amplified-quadrature condition derived from the suscepti-
bility matrix. The amplified-quadrature axion signal spec-
tral density at the measurement port is Sout,m,a,φ/2 ≡ Sa,
given by Eq. (13).

The output spectral density due to thermal and vacuum
noise in the Ŷθ quadrature is given by

Sout,m,N ,θ (ω) = Sout,m,θ (ω)

∣∣∣
na=0

=
(

nT + 1
2

)

×
[

1 + 2κ�κm[h2 + gh cos(2θ − φ)]
|β(ω)|2

]
,

(A17)
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which, in the amplified quadrature, is Sout,m,N ,φ/2 ≡ SN ,
given by Eq. (14).

APPENDIX B: MISMATCHING INTERACTION
RATES

Thus far, we have asserted that CEASEFIRE behaves
optimally when the swap rate g is matched with the
two-mode squeezing rate h. Here, we analyze the behav-
ior of the two-mode model (presented in Sec. III and
Appendix A) when the rates are mismatched. The behav-
ior of the extended model of Sec. IV and Appendix C is
qualitatively similar. Specifically, we determine how sensi-
tive the measurement-port reflection susceptibility and the
scan rate enhancement are to small deviations from g = h.
We find that although the reflection susceptibility is highly
sensitive to slight mismatch when operating at high coop-
erativity, the scan rate enhancement is quite insensitive to
these changes and is in fact optimized when g is slightly
larger than h.

The measurement-port reflection susceptibility χmm(ω),
introduced in Eq. (12), is a useful quantity for under-
standing the behavior of CEASEFIRE with mismatched
interaction rates. It is also of practical relevance, as it
is directly accessible to the experimentalist. For our pur-
poses, it is sufficient to consider |χmm(0)|. As discussed in
the main text, for g = h, the effects of the two interactions
on the reflection susceptibility cancel and the reflection
susceptibility reduces to that of a single-port resonator,
with unit magnitude for all frequencies.

We first consider only the state-swapping interaction,
with the two-mode squeezing interaction turned off (h =
0). In the absence of any port decay rates, the modes
would continuously swap states at rate g [second column
of Fig. 2(c)]. When ports are added to the model, the
steady-state behavior depends on the value of κm relative
to the effective cavity loss rate as seen by fields incident on
the measurement port, κeff, which depends only on κ� and
g. In particular, for κm = κeff, the system will appear criti-
cally coupled and all energy incident on the measurement
port on resonance will be delivered to the loss port. Solv-
ing for |χmm(0)| = 0, we find that κeff = 4g2/κ�. Defining
the state-swap cooperativity as

Cg = 4g2

κmκ�

, (B1)

the critical coupling condition corresponds to Cg = 1.
Next, we consider only the two-mode squeezing inter-

action, with the state-swapping interaction turned off (g =
0). In the absence of port decay rates, the cavity and
readout-mode quadrature variances and covariances grow
exponentially at rate h [third column of Fig. 2(c)]. When
ports are added to the model, the system behaves as a
two-mode amplifier that operates in reflection, with a fixed

gain-bandwidth product centered on cavity resonance. The
peak gain is determined by the two-mode squeezing coop-
erativity

Ch = 4h2

κmκ�

(B2)

and formally diverges (|χmm(0)| → ∞) for Ch = 1. In
a real system, this divergent gain would be capped by
nonlinearities not included in our model, resulting in self-
sustained oscillations with fixed amplitude for Ch ≥ 1.

Figure 5(a) shows |χmm(0)|2 as a function of the state
swapping and two-mode squeezing cooperativities (plot-
ted in terms of

√
Cg and

√
Ch so as to plot linearly in

g and h). The behavior along the horizontal and vertical
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FIG. 5. The CEASEFIRE behavior with mismatched interac-
tion rates. (a) The squared reflection susceptibility on resonance
as a function of the state-swap and two-mode squeezing cooper-
ativities. We plot in terms of the square root of these quantities
so as to show behavior linear in g and h. In the hatched region of
this parameter space, nonlinearities not included in our model
of CEASEFIRE would result in self-sustained oscillations.
The inset plot shows the increased sensitivity to mismatch at
C = 2500, approximately the cooperativity corresponding to the
operating parameters in Fig. 4(a). (b) The scan rate enhancement
of the extended CEASEFIRE model for small changes around
the values assumed in Fig. 4(a). The hatched region corresponds
to the hatched region in (a).
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axes illustrates the pure state swapping and pure two-mode
squeezing regimes. We see that with both interactions
present, for any value of g, there is always some h < g
for which the system behaves as if critically coupled and
some h > g for which it exhibits divergent gain. Moreover,
the regions of critical coupling and divergent gain con-
verge toward g = h—the system is much more sensitive
to mismatch at high cooperativity.

To understand the increased sensitivity to mismatch
at high cooperativity, we consider operation with inter-
action rates g = g0 + δg and h = h0 + δh, with g0 = h0
and δg, δh � g0 such that g + h ≈ 2g0. Then, Eq. (12)
evaluated at ω = 0 becomes

χmm(0) = 1 − κmκ�/2
2g0(g − h) + κmκ�/4

. (B3)

We can rewrite this as

χmm(0) = 1 − 2
2Cε + 1

, (B4)

where C is the cooperativity of the matched rates as
defined in Sec. III and ε is the fractional rate mismatch
given by ε = (g − h)/g0. For 2Cε → +1, |χmm(0)|2 →
0 and the system is critically coupled. For 2Cε → −1,
|χmm(0)|2 → ∞ and the system yields divergent gain. To
remain close to |χmm(0)| = 1 around g = h, we would
require |ε| � 1/(2C). For C ≈ 2500, where we would
expect an experiment to operate, this is a very stringent
constraint.

Figure 5(b) shows the scan rate enhancement E of the
extended CEASEFIRE model for small deviations around
g/h = 1, taking h = 110κ� and κm = 19κ�, as in Fig. 4(a).
This illustrates that a rate mismatch of approximately 1%
has little effect—the scan rate enhancement is much more
tolerant to mismatch than the reflection susceptibility. To
see this analytically, consider the visibility on resonance
[Eq. (15)], setting nT = 0 for simplicity:

αCF(0) = 2κmκana(g + h)2

(g2 − h2 + κmκ�/4)2 + 2κmκ�h(g + h)

= ᾱ
1

Cε2/4 + 1
, (B5)

where ᾱ = α0(0)|κm=κ�
= 2κana/κ�, and where in the sec-

ond line we omit two terms from the denominator under
the approximation of large C and small ε. This expression
shows that the on-resonance critically coupled visibility is
maintained when |ε| � 2/

√
C. For large C, then, the scan

rate enhancement has much less restrictive scaling than the
reflection susceptibility.

To qualitatively understand why the scan rate enhance-
ment is much less sensitive than the reflection suscep-
tibility to deviations from g = h, we can first consider

g > h. The extreme sensitivity of χmm to slight mismatch
in this regime is a consequence of destructive interfer-
ence between two additive terms, an effect not relevant
for the transmission susceptibilities χma and χm� given by
Eqs. (8) and (9). Thus, while increasing g relative to h has
a dramatic effect on how unamplified measurement noise
is routed through CEASEFIRE, the gain experienced by
the axion signal and cavity noise rolls off more slowly.
While increasing g reduces the gain, it also increases the
bandwidth and, as a result, the scan rate enhancement is
actually maximized for g slightly larger than h, as shown
in Fig. 5(b).

The formal insensitivity of the scan rate enhancement
to h > g deviations is a consequence of the fact that χmm,
χma, and χm� all exhibit the same divergent gain for ε →
−1/2C and thus this divergence cancels in the expres-
sion for the visibility. It should be emphasized that this
is merely an artifact of the formalism: in reality, the sys-
tem would cross the parametric oscillation threshold at this
point and could not be operated to deliver a meaningful
scan rate enhancement in the hatched region of Fig. 5(b).

APPENDIX C: EXTENDED CEASEFIRE MODEL

In this appendix, we describe in detail the calculations
used to obtain the scan rate enhancement presented in
Sec. V. In the first subsection, we construct a lumped-
element circuit model of the system shown in Fig. 2(a)
and derive the normal mode frequency and loss rates.
In Appendix C 2, we derive expressions for intermode
interaction rates in terms of circuit model parameters. In
Appendix C 3, we present relevant susceptibility matrix
elements for an input-output theory model that has been
extended to include the effects of the two modes spectrally
closest to the cavity mode. In Appendix C 4, we discuss the
scan rate enhancement predicted by this extended model.

1. Circuit model and normal-mode identification

A lumped-element circuit model allows us to identify
the normal modes and intermode couplings in a system
comprising the cavity, readout resonator, and transmission
line. We use the circuit model diagrammed in Fig. 6(a),
in which the cavity is represented by a parallel LC res-
onator (inductance LA and capacitance CA) coupled to the
transmission line by a coupling capacitor Cc; the trans-
mission line is modeled as an LC ladder circuit with N
identical cells. Each cell in the ladder circuit introduces
an additional mode to the system and the total number of
cells determines the cutoff in the mode spectrum of the
transmission line. We include N = 400 cells, resulting in
predictions that are within 3% of their asymptotic values.

The readout resonator comprises four time-varying
inductors in a Wheatstone-bridge configuration in paral-
lel with a capacitor CB. In a practical implementation,
the inductive elements in the bridge could be individual
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(c)

tl port

(b)

a port b port

BAC D

...

b port

(a)

TL circuit M(t)

l2(t)

CB

CB
l1(t)

l1(t)

l2(t)

l2(t) l2(t)

a port

FIG. 6. The CEASEFIRE circuit model. (a) A coupling capacitor (Cc) couples a parallel LC resonator (LA and CA), representing
the cavity, to an inductor-capacitor ladder circuit (Li and Ci; i = 1, . . . , N ) representing the transmission line. The ladder circuit is
connected to a readout resonator formed by a capacitor CB in parallel with an inductive Wheatstone bridge. The inductance of each
element in the bridge is composed of a static piece L0 and a modulation M (t); the sign of the modulation is opposite for adjacent
elements, i.e., the time-varying inductance of one pair of opposing bridge inductors has time-varying inductance l1 = L0 + M (t),
while the other has l2 = L0 − M (t). Ports a and b represent the cavity loss and readout resonator measurement port, respectively. (b)
The circuit elements modeling the transmission line are encompassed in a dashed box representing a two-port impedance network;
one of these ports, relevant to calculating couplings between the readout mode and transmission line modes, is labeled the tl port.
The Wheatstone bridge can be equivalently represented by a T-junction of inductors l2 and M (t). The fluxes at each node, given by
�j = ∫

dtVj , are used as the normal coordinates of the system. (c) The normal modes of the circuit model comprise the cavity mode,
labeled A, the readout mode, labeled B, and the discrete spectrum of evenly spaced transmission line modes. The two transmission
line modes spectrally nearest to the A mode, labeled the C and D modes, are separated from the A mode by �CA = ωC − ωA and
�DA = ωD − ωA.

Josephson junctions, the inductance of which is modu-
lated by differential current drives in the presence of a
static external flux threading the bridge [16], or super-
conducting quantum interference device (SQUID) arrays,
the inductance of which is modulated by an external flux
[17]. When the bridge is balanced (all inductors have equal
inductance L0), the potential between the north and south
nodes is decoupled from the potential between the east and
west nodes. External drives produce inductance modula-
tion ±M (t) with 〈M (t)〉 = 0 and opposite sign for adjacent
inductors:

l1(t) = L0 + M (t), (C1)

l2(t) = L0 − M (t), (C2)

where l1(t) [l2(t)] is the time-varying inductance of the
northeast-southwest [northwest-southeast] inductors. This
generates a dynamic, i.e., purely time-dependent, coupling
between the readout circuit and the cavity and transmission
line modes.

To analyze the normal modes of this system, we reduce
the Wheatstone bridge to an equivalent T-junction cir-
cuit [also equivalent to the mutual inductance represen-
tation used in Fig. 2(a)] and group the circuit elements
of the transmission line into a two-port impedance net-
work [Fig. 6(b)]. One port of this network, labeled the tl
port, is used in the calculation of the interaction rates. We
also introduce two other ports to the model: the readout-
circuit measurement port, labeled b, and a fictitious port
modeling loss in the axion cavity, labeled a. We then cal-
culate the admittance Yj (ω), defined as the ratio of the
short-circuit current that flows through port j to the volt-
age imposed at the same port, when all other ports are
left open. The normal mode frequency ωi are determined
by the condition Im[Yj (ωi)] = 0; this prescription identi-
fies the same normal modes regardless of which port j is
measured [29].

To identify the normal modes that most resemble the
uncoupled cavity and readout-circuit modes, we define the
effective impedance of the ith normal mode seen looking
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into port j to be

Zeff
i,j = 2

ωi Im Y′
j (ωi)

. (C3)

The modes with the maximum Zeff
i,a and the maximum

Zeff
i,b (hereafter, the cavity and readout modes, i = A and

i = B, respectively) are the modes the energy of which
is most concentrated in the cavity and readout circuits,
respectively.

Whatever fraction of the cavity-mode energy is not spa-
tially confined to the cavity does not contribute to axion-
photon conversion and thus dilution of the cavity-mode
energy degrades the scan rate. To quantify this effect, we
define the cavity-mode self-participation pA as the fraction
of cavity-mode energy that is localized in the LC circuit
representing the cavity, given by

pA = Zeff
A,a

Zch
A

, (C4)

where Zch
A = √

LA/CA is the characteristic impedance of
the cavity circuit. The self-participation may be increased
by decreasing the coupling capacitance Cc, though this will
also reduce the dynamic coupling of the cavity mode to
the readout and transmission line modes. In a physical
implementation, the external coupling of the axion cav-
ity is controlled by the insertion depth of an antenna that
probes the electric field of the cavity and can be adjusted
during a scan [14].

To incorporate loss into the circuit model, we introduce
resistors RA and RB across the a and b ports, respectively.
The quality factor of the cavity mode is then given by

QA = ωA

2
ImY′

AA(ωA)

ReYAA(ωA)
, (C5)

with the readout-mode quality factor QB defined analo-
gously, and the loss rates are given by

κA = ωA

QA
, κB = ωB

QB
. (C6)

When the readout circuit is totally decoupled from the
transmission line [M (t) = 0], we denote the loss rates of
the readout and cavity modes as κA0 and κB0, respec-
tively. The uncoupled readout-mode loss is given simply
by κB0 = 1/(RBCB); κA0 is likewise determined by RA but
no such simple expression exists because setting M (t) = 0
does not decouple the cavity circuit from the transmis-
sion line. We choose RA such that κA0/(2π) = 100 kHz.
This choice models a system in which the uncoupled cav-
ity and transmission line modes have equal 100 kHz loss
rates and thus coupling the cavity to the transmission
line does not change the cavity-mode loss. In a practical

implementation, such low losses for the standing wave
modes could be achieved by separating the cavity from the
readout circuit through a waveguide instead of a transmis-
sion line. An additional advantage of a waveguide-based
implementation is a larger FSR. A waveguide of length
L = 50 cm has a FSR �FSR/2π = 300 MHz and we
assume this value throughout our analysis.

As we show in the following section, turning on the
inductance modulation generates the desired dynamic cou-
plings but also induces static coupling between the readout
mode and the cavity and transmission line modes; this
static coupling will be suppressed but not completely elim-
inated by the Wheatstone-bridge geometry. The partial
hybridization between the cavity and readout modes causes
κA and κB to deviate from κA0 and κB0, respectively. For a
given modulation amplitude, we can relate the loss rates
defined above to κ� and κm used in the main text. We set
κ� = κA, so that loss that the cavity mode inherits from the
readout mode is taken into account in calculating the scan
rate enhancement, and we set κm = κB0, so that RB models
the external coupling of the readout mode rather than its
total loss rate. The loss inherited by the readout mode is
very small compared to κm and thus has a negligible effect
on the behavior of CEASEFIRE; we do not include it in
our input-output theory models.

2. Derivation of interaction rates

Having identified the normal modes of the system, we
now derive the dynamic coupling rates between normal
modes. For any given inductance modulation M (t), these
dynamic coupling rates can be expressed entirely in terms
of circuit parameters and then used in the input-output
theory framework of Sec. III to determinate the scan rate
enhancement of CEASEFIRE.

We begin with the classical Hamiltonian HT of the
T-junction circuit in Fig. 6(b), taking as our normal coor-
dinates the fluxes �j = ∫

Vj dt at the nodes of the circuit.
This Hamiltonian is

HT = (�1 − �2)
2

2l2(t)
+ �2

2

2M (t)
+ (�2 − �3)

2

2l2(t)

= L0
(
�2

1 + �2
3

)− 2M (t)�1�3

2l1(t)l2(t)
, (C7)

where �1, �2, and �3 are the fluxes at the left, center,
and right nodes of the T-junction, respectively, and in the
second line we use Kirchhoff’s current law to eliminate �2.
Note that for 〈M (t)〉 = 0, there is still a �1�3 cross term in
〈HT〉, where the angle brackets denote a time average, due
to the presence of time dependence in the denominator; this
is the origin of the residual hybridization of the cavity and
readout modes noted above.

Following the procedure outlined in the preceding
section to obtain the normal-mode frequencies, effective
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impedances, and loss rates with M (t) �= 0 fully accounts
for the effects of the static interaction Hamiltonian 〈HT〉.
Thus we can identify the dynamic interaction Hamiltonian
as

Ĥ intĤT − 〈ĤT〉, (C8)

where we have promoted the fluxes to quantum operators.
The normal coordinates �̂j can generally be expressed

as linear combinations of the normal-mode field opera-
tors âi and â†

i , with coefficients given by the effective
impedances defined in Eq. (C3). In particular, the fluxes �̂1

and �̂3 are defined at the nodes where we define the tl and
b ports in Appendix C 1; their normal-mode expansions
thus take the form

�̂j =
∑

i

√
Zeff

i,j

2
(âi + â†

i ), (C9)

where Zeff
i,1 = Zeff

i,tl and Zeff
i,3 = Zeff

i,b. Elsewhere in the text, the

normal-mode field operators are denoted Â = âA, Â† = â†
A,

B̂ = âB, and so on.
We now assume that the fractional inductance modula-

tion ε(t) = M (t)/L0 is small and given by

ε(t) = �� cos(ω�t) + �� cos(ω�t + φ), (C10)

where �� and �� are set by the amplitudes of the
difference- and sum-frequency drives. Expanding the inter-
action Hamiltonian to first order in ε(t) yields

Ĥ int ≈ − 1
L0

ε(t)�̂1�̂3. (C11)

The normal-mode expansions of �̂1 and �̂3 yield ÂB̂†

and Â†B̂† cross terms; as in Eq. (2), the coefficients of
these terms give the state-swapping and two-mode squeez-
ing interaction rates between the cavity mode and readout
mode. The same prescription can be used to identify inter-
action rates between other pairs of modes. To first order in
ε(t), the symmetry of the Wheatstone bridge dictates that
the normal modes separate into two classes: the cavity and
transmission line modes contribute only to the flux at the
left node of the T-junction (Zeff

i,b = 0 for these modes) and
the readout mode contributes only to the flux at the right
node (Zeff

B,tl = 0). The interaction rates between a mode i
and the readout mode are thus given by

giB =
l�
√

Zeff
i,tlZ

eff
B,b

4L0
, (C12)

hiB =
l�
√

Zeff
i,tlZ

eff
B,b

4L0
. (C13)

For any mode i, the interaction rates giB and hiB
are matched when the difference-frequency and sum-
frequency drives produce equal fractional inductance mod-
ulation.

In the following subsection, we derive the scan rate
enhancement in the presence of transmission line modes
to first order in ε(t). The results presented in Fig. 4 also
account for three effects that arise at higher orders in ε(t).
First, as noted above, turning on the modulation causes the
cavity mode to inherit loss from the readout mode; the first
nonzero contribution to this inherited loss enters at second
order in ε(t). Second, the static coupling induced by the
modulation alters the effective normal-mode impedances
Zeff

i,tl and Zeff
B,b and thus modifies the dynamic coupling rates.

Finally, we account for the effects of new couplings that
appear when Eq. (C8) is expanded to higher order in ε(t):

Ĥ int = 1
L0

[(
ε2 + ε4 + . . .

) (
�̂2

1 + �̂2
3

)

− (
ε + ε3 + . . .

)
�̂1�̂3

]

− 1
L0

[(〈ε2〉 + 〈ε4〉 + . . .
) (

�̂2
1 + �̂2

3

)

− (〈ε3〉 + . . .
)
�̂1�̂3

]
. (C14)

The ε2�̂2
1 and ε2�̂2

3 terms generate single-mode squeezing
interaction for the cavity and readout modes, respectively.
When the single-mode squeezing rates exceed the decay
rates of these modes, the visibility on resonance is sup-
pressed and thus the scan rate enhancement is substantially
reduced. We can compensate for these undesired interac-
tions by introducing additional drives at 2ωA and 2ωB.
We numerically optimize the scan rate with respect to the
amplitudes of these additional drives to obtain the results
presented in Fig. 4.

3. Four-mode input-output theory

In Sec. IV, we assert that the transmission line modes
with the most impact on the scan rate enhancement are
those spectrally closest to the cavity mode, labeled C and
D in Fig. 6(c). Here, we quantify the effects of these modes
on the scan rate enhancement using a four-mode input-
output theory model that also includes two additional ports
representing the C- and D-mode internal losses and the
noise incident on these ports. In the main text, we define
ω� = ωB − ωA; for other pairs of modes, we use the nota-
tion �ij = ωi − ωj . We follow the procedure described in
Appendix A to derive relevant elements of the four-mode
susceptibility matrix. In the rotating frame of the readout
mode, the equations of motion are given by
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˙̂A =
(

iω� − κ�

2

)
Â + √

κa ξ̂in,a +√
κ� ξ̂in,� −igAB B̂ eiω�t − ihABe−iφ B̂† eiω�t, (C15)

˙̂B = −κm

2
B̂ +√

κm ξ̂in,m −igAB Â e−iω�t − ihABe−iφÂ†eiω�t − igCB Ĉ e−iω�t − ihCBe−iφ Ĉ† eiω�t

− igDB D̂ e−iω�t − ihDBe−iφ D̂† eiω�t, (C16)

˙̂C =
(

i�BC − κC

2

)
Ĉ +√

κC ξ̂in,C −igCB B̂ eiω�t − ihCBe−iφ B̂† eiω�t, (C17)

˙̂D =
(

i�BD − κD

2

)
D̂ + √

κD ξ̂in,D −igDB B̂ eiω�t − ihDBe−iφ B̂† eiω�t. (C18)

We solve these equations in the frequency domain and apply the general input-output relations given by Eq. (7), extended
to include the two additional ports, to obtain the susceptibility-matrix elements. The susceptibilities relevant to the
measurement-port output field are

ζ
(4)

mk (ω) = iη−1(ω)[gABβ∗(−ω) − hABeiφγ (ω)]
√

κmκk, (C19)

ζ
(4)

mk†(ω) = iη−1(ω)[hABe−iφβ∗(−ω) − gABγ (ω)]
√

κmκk, (C20)

ζ
(4)
mj (ω) = iη−1(ω)[gj Bβ∗(−ω) − hj Beiφγ (ω)]

{ √
κj κm [iω + (κ�/2)]

i
(
ω + �j A

)+ (κj /2)

}
, (C21)

ζ
(4)

mj †(ω) = iη−1(ω)[hj Be−iφβ∗(−ω) − gj Bγ (ω)]
{√

κj κm [iω + (κ�/2)]
i(ω − �j A) + (κj /2)

}
, (C22)

ζ (4)
mm(ω) = 1 − η−1(ω)β∗(−ω)κm

(
iω + κ�

2

)
, (C23)

ζ
(4)

mm†(ω) = −η−1(ω)γ (ω)κm

(
iω + κ�

2

)
, (C24)

as well as their conjugates, where k = {a, �}, j = {C, D}, and we define

η(ω) = β(ω)β∗(−ω) − γ (ω)γ ∗(−ω), (C25)

β(ω) =
(

iω + κm

2

) (
iω + κ�

2

)
+ (

g2
AB − h2

AB

)+
∑

j

[
g2

j B

i(ω + �j A) + κj
2

− h2
j B

i(ω − �j A) + (κj /2)

]
[iω + (κ�/2)] ,

(C26)

γ (ω) =
∑

j

2igj Bhj Be−iφ [iω + (κ�/2)] �j A[
i(ω − �j A) + (κj /2)

] [
i(ω + �j A) + (κj /2)

] . (C27)

These expressions indicate that the presence of
transmission line modes affects the behavior of CEASE-
FIRE in three ways: the susceptibilities governing the
transmission of fields from the ports on the axion cavity to
the measurement port are modified, noise from the internal
loss of the transmission line modes can be transmitted to
the measurement port, and the measurement-port reflection
susceptibility is also modified.

We now consider these three effects in turn, in each case
assuming that gAB = hAB, gj B = hj B, and κA = κj � �j A
for both j = C and j = D. Working out the axion mode
transmission susceptibilities subject to these conditions,

we find that

ζ
(4)

mk (ω)

ζmk(ω)
= ζ

(4)

mk†(ω)

ζmk†(ω)
= 1. (C28)

That is, when interaction rates are matched, the CEASE-
FIRE transmission susceptibilities are unchanged from
their values in the two-mode model.

Next, we evaluate the gain experienced by noise from
the j mode internal loss (j = C, D) and the gain experi-
enced by noise from the cavity-mode internal loss; to qual-
itatively illustrate the behavior, it is sufficient to consider
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the gain on resonance. This gain ratio is

∣∣∣∣∣
ζ

(4)
mj (0)

ζ
(4)
m� (0)

∣∣∣∣∣
2

=
(

gj B

gAB

)2
κ2

�

4�2
j A

. (C29)

With the circuit parameters that optimize the CEASEFIRE
scan rate, gj B ≈ 3gAB, because the coupling capacitor Cc
reduces the contribution of the cavity mode to the flux
at the tl port relative to the contribution from the trans-
mission line modes. However, κ� ∼ (

10−2 − 10−3
)
�j A in

roughly 95% of the cavity-mode tuning range. In other
words, the large detuning of the transmission line modes
from the cavity mode suppresses transmission of amplified
noise from the internal loss of these modes and the scan
rate enhancement is preserved.

Finally, we consider the reflection susceptibility of the
measurement port, which turns out to undergo the most
significant change due to these effects. Again, it is suf-
ficient to consider the behavior of the susceptibility on
resonance. The phase-preserving reflection susceptibility
becomes

ζ (4)
mm(0) = −1 + 8i

κm

(
gCB2

�CA
+ gDB2

�DA

)
(C30)

and the phase-conjugating reflection susceptibility
becomes

ζ
(4)

mm†(0) = − 8i
κm

(
gCB2

�CA
+ gDB2

�DA

)
e−iφ . (C31)

These susceptibilities do not have unit magnitude and thus
measurement noise incident on the measurement port can
be amplified in reflection (a similar effect occurs for an h >

g mismatch; see Appendix B).
The amplification of reflected measurement noise can be

traced to the third term of Eq. (C26), in which �j A appears
with the opposite sign in the g2

j B and h2
j B terms, such that

these terms do not cancel when gj B = hj B. This, in turn,
is a result of the fact that the detuning of the difference-
frequency drive the from the B-mode/j -mode frequency
difference and the detuning of the sum-frequency drive
from the B-mode/j -mode frequency sum have opposite
sign. Assuming the hierarchy of mode frequencies illus-
trated in Fig. 6(c) for concreteness, we see that ω� is larger
than �BD by �DA while ω� is smaller than ωB + ωD by
�DA. The situation is reversed for the C mode: ω� < �BC
and ω� > ωB + ωC.

However, when the A mode is spectrally centered
between the C and D modes (�CA = −�DA), the D mode
compensates for the imbalance of the drive detunings as
seen by the C mode and vice versa. If we further assume
that gCB = gDB (generically true to a good approximation,
since spectrally close transmission line modes contribute
comparably to the flux at the tl port), the contributions

of the C and D modes to the reflection susceptibilities
Eqs. (C30) and (C31) cancel and we recover the two-mode
behavior. All effects of transmission line modes further
detuned from the A mode are suppressed by the large
detuning and exhibit the same cancellation when the A
mode is spectrally centered between the C and D modes.

4. Scan rate enhancement and transmission line length
variation

We find the scan rate enhancement in the extended
model following the same procedure as in Appendix A.
The definition of the four-mode input spectral density
matrix S(4)

in is analogous to Eq. (A14), with additional terms
for the vacuum and thermal noise at the C and D ports, and
the output spectral density matrix is given by

S(4)
out(ω) = [

ζ (4)(ω)
]∗

S(4)

in

[
ζ (4)(ω)

]T
. (C32)

To calculate the measurement-port output spectral density,
we require only the susceptibility matrix elements given
by Eqs. (C19) through (C24) and their conjugates. We then
transform the measurement-port output spectral density to
the quadrature basis and define the visibility α

(4)

CF(ω) in
terms of amplified-quadrature output spectral densities in
the amplified quadrature. The scan rate enhancement in the
extended model is then given by

E(4) =
∫

dω[α(4)

CF(ω)]2p2
A∫

dω[α0(ω)]2
κm=2κ�

, (C33)

where pA is the cavity-mode self-participation defined in
Eq. (C4). To simplify the notation, we denote the four-
mode scan rate enhancement in Figs. 4 and 7 simply
as E.

In Fig. 4 in the main text, we plot the scan rate enhance-
ment for the special case ωA = (ωC + ωD)/2. Figure 7(a)
shows the scan rate enhancement over one FSR as a
function of the cavity mode detuning �A from this opti-
mal operating frequency, using the same parameters as
in Fig. 4(a). The peak scan rate enhancement midway
between transmission line modes is E = 15.6 and the aver-
age scan rate enhancement over a 100 MHz range centered
at this point is Ē = 10.8. To scan continuous regions
of axion parameter space over more than one FSR, the
transmission line modes can be shifted in frequency by
adjusting the length of the line. Figure 7(b) shows the scan
rate enhancement as a function of the frequency for five
transmission line lengths ranging from 50 to 70 cm. Con-
tinuous tuning of the transmission line would allow for a
scan rate enhancement near its maximum value over fre-
quency ranges much larger than one FSR, as shown in
Fig. 7(c).
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FIG. 7. The scan rate enhancement with the cavity mode tuned between transmission line modes, using the same parameters as
in Fig. 4(a). (a) The scan rate enhancement over one FSR, assuming a 50-cm line such that �FSR/2π = 300 MHz. The scan rate
enhancement peaks when the cavity mode is midway between the C and D modes. Away from this point, the scan rate enhancement
decreases due to measurement noise being amplified in reflection; the average scan rate enhancement within a 100-MHz window
centered at (ωC + ωD)/2 is 10.8. As the cavity mode nears a transmission line mode, the modes have an avoided crossing, in which
no normal-mode solution exists. These inoperable frequency ranges are shown by hatched regions. (b) The scan rate enhancement for
five different transmission line lengths ranging from 50 to 70 cm. The transmission line length sets the FSR, altering the frequencies
at which the scan rate enhancement peaks. (c) The scan rate enhancement with a transmission line of continuously tunable length. The
black lines connect the peaks between various transmission line lengths to indicate the scan rate enhancement achievable by tuning the
length continuously.

[1] K. M. Backes, et al., A quantum-enhanced search for dark
matter axions, Nature 590, 238 (2020).

[2] M. Tse, et al., Quantum-Enhanced Advanced LIGO Detec-
tors in the Era of Gravitational-Wave Astronomy, Phys.
Rev. Lett. 123, 231107 (2019).

[3] E. Megidish, J. Broz, N. Greene, and H. Häffner, Improved
Test of Local Lorentz Invariance from a Deterministic
Preparation of Entangled States, Phys. Rev. Lett. 122,
123605 (2019).

[4] P. Sikivie, Detection rates for “invisible”-axion searches,
Phys. Rev. D 32, 2988 (1985).

[5] B. M. Brubaker, et al., First Results from a Microwave Cav-
ity Axion Search at 24 μeV, Phys. Rev. Lett. 118, 061302
(2017).

[6] L. Zhong, et al., Results from phase 1 of the HAYSTAC
microwave cavity axion experiment, Phys. Rev. D 97,
092001 (2018).

[7] N. Du, et al. (ADMX Collaboration), Search for Invisible
Axion Dark Matter with the Axion Dark Matter Experi-
ment, Phys. Rev. Lett. 120, 151301 (2018).

[8] T. Braine, et al. (ADMX Collaboration), Extended
Search for the Invisible Axion with the Axion Dark
Matter Experiment, Phys. Rev. Lett. 124, 101303
(2020).

[9] S. Lee, S. Ahn, J. Choi, B. R. Ko, and Y. K. Semertzidis,
Axion Dark Matter Search Around 6.7 μeV, Phys. Rev.
Lett. 124, 101802 (2020).

[10] M. Malnou, D. A. Palken, B. M. Brubaker, L. R. Vale, G.
C. Hilton, and K. W. Lehnert, Squeezed Vacuum Used to

Accelerate the Search for a Weak Classical Signal, Phys.
Rev. X 9, 021023 (2019).

[11] M. Dine, W. Fischler, and M. Srednicki, A simple solution
to the strong CP problem with a harmless axion, Phys. Lett.
B 104, 199 (1981).

[12] A. R. Zhitnitsky, On possible suppression of the axion
hadron interactions, Sov. J. Nucl. Phys. 31, 260 (1980).

[13] D. Palken, Ph.D. thesis, University of Colorado, Boulder,
2020.

[14] S. Al Kenany, et al., Design and operational experience of a
microwave cavity axion detector for the 20–100 μeV range,
Nucl. Instrum. Methods A 854, 11 (2017).

[15] A third source of noise, contributed by the added noise
of phase-insensitive amplifiers, has historically been an
important contribution but can be made negligible by per-
forming phase-sensitive measurement [1].

[16] N. Bergeal, R. Vijay, V. E. Manucharyan, I. Siddiqi, R. J.
Schoelkopf, S. M. Girvin, and M. H. Devoret, Analog infor-
mation processing at the quantum limit with a Josephson
ring modulator, Nat. Phys. 6, 296 (2010).

[17] B. J. Chapman, B. A. Moores, E. I. Rosenthal, J. Kerckhoff,
and K. W. Lehnert, General purpose multiplexing device
for cryogenic microwave systems, Appl. Phys. Lett. 108,
222602 (2016).

[18] T.-C. Chien, O. Lanes, C. Liu, X. Cao, P. Lu, S. Motz, G.
Liu, D. Pekker, and M. Hatridge, Multiparametric amplifi-
cation and qubit measurement with a Kerr-free Josephson
ring modulator, Phys. Rev. A 101, 042336 (2020).

[19] A. Metelmann and A. A. Clerk, Nonreciprocal Photon
Transmission and Amplification via Reservoir Engineering,
Phys. Rev. X 5, 021025 (2015).

040350-17



K. WURTZ et al. PRX QUANTUM 2, 040350 (2021)

[20] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt,
and R. J. Schoelkopf, Introduction to quantum noise, mea-
surement, and amplification, Rev. Mod. Phys. 82, 1155
(2010).

[21] D. F. Walls and G. J. Milburn, Quantum Optics (Springer-
Verlag, Berlin, 2008).

[22] C. M. Caves, Quantum limits on noise in linear amplifiers,
Phys. Rev. D 26, 1817 (1982).

[23] Because the gain decreases rapidly off resonance, a low-
noise secondary amplifier is necessary to preserve the
visibility bandwidth. In principle, we could use a single-
quadrature amplifier for this purpose to avoid the half
quantum of noise added by a phase-insensitive amplifier.
However, this would require added operational complexity
and would only confer a small benefit to overall scan rate
enhancement.

[24] A. V. Dixit, S. Chakram, K. He, A. Agrawal, R. K. Naik, D.
I. Schuster, and A. Chou, Searching for Dark Matter with
a Superconducting Qubit, Phys. Rev. Lett. 126, 141302
(2021).

[25] S. Chaudhuri, K. D. Irwin, P. W. Graham, and
J. Mardon, Optimal electromagnetic searches for axion

and hidden-photon dark matter, arXiv:1904.05806
(2019).

[26] S. K. Lamoreaux, K. A. van Bibber, K. W. Lehnert, and
G. Carosi, Analysis of single-photon and linear amplifier
detectors for microwave cavity dark matter axion searches,
Phys. Rev. D 88, 035020 (2013).

[27] For θ = φ/2 + π/2, the terms in square brackets become
±i(g − h). This shows that when g = h, the input quadra-
ture orthogonal to the amplified quadrature is completely
decoupled from the output.

[28] H. Zheng, M. Silveri, R. T. Brierley, S. M. Girvin, and
K. W. Lehnert, Accelerating dark-matter axion searches
with quantum measurement technology, arXiv:1607.02529
(2016).

[29] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair, S. Shankar,
L. Frunzio, M. H. Devoret, R. J. Schoelkopf, and S. M.
Girvin, Black-Box Superconducting Circuit Quantization,
Phys. Rev. Lett. 108, 240502 (2012).

Correction: A conversion error caused a term to drop out in
Equation (2) and has been fixed.

040350-18


