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ABSTRACT
Laser powder-bed fusion is an additive manufacturing (AM)

process that offers exciting advantages for the fabrication of
metallic parts compared to traditional techniques, such as the
ability to create complex geometries with less material waste.
However, the intricacy of the additive process and extreme cyclic
heating and cooling leads to material defects and variations in
mechanical properties; this often results in unpredictable and
even inferior performance of additively manufactured materi-
als. Key indicators for the potential performance of a fabricated
part are the geometry and temperature of the melt pool during
the building process, due to its impact upon the underlining mi-
crostructure. Computational models, such as those based on the
finite element method, of the AM process can be used to elu-
cidate and predict the effects of various process parameters on
the melt pool, according to physical principles. However, these
physics-based models tend to be too computationally expensive
for real-time process control. Hence, in this work, a hybrid
model utilizing neural networks is proposed and demonstrated to
be an accurate and efficient alternative for predicting melt pool
geometries in AM, which provides a unified description of the
melting conditions. The results of both a physics-based finite
element model and the hybrid model are compared to real-time
experimental measurements of the melt pool during single-layer
AM builds using various scanning strategies.
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1 Introduction
Metal additive manufacturing (AM) produces metallic parts

by fusing materials in a layer-by-layer fashion directly from a
3D CAD model [1]. Laser powder bed fusion (L-PBF) is a com-
mon AM process in which a thin layer of metallic powder is
spread on a substrate and a laser source selectively melts and
fuses neighboring powder particles and the previous layer. This
is repeated in a layer-by-layer fashion until the desired final part
is formed. Since L-PBF has the potential to produce highly cus-
tomizable parts with complex geometries and internal structures
it has garnered great interest from the aerospace, automotive, and
biomedical industries [2–4]. Despite offering these advantages
and several others, L-PBF is known to struggle with producing
parts which have reliable and repeatable mechanical performance
due to inconsistencies in the microstructure [5]. However, recent
studies prove both the microstructure and mechanical properties
of parts produced through AM are significantly influenced by the
size and shape of melt pool [6].

In L-PBF, the formation of the melt pool is the key to de-
scribing the powder-bulk material interactions because it is an
intermediate step between solidification and laser source absorp-
tion [7]. This is because the localized solid powder heats up and
melts into a liquid after absorbing energy from the passing laser,
then cools down and solidifies into a bulk material with a result
microstructure as the laser moves further away. For example,
porosity in L-PBF may occur due to either improper melt pool
formation from insufficient melting caused by too little energy
absorption or trapped gas caused by vaporization and too much
energy absorption [8, 9]. Much research has shown that energy
absportion in AM can be traced in AM through a combination
of process parameters such as laser power, scanning speed and
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spot size, as well as the scanning strategy of the energy source.
Hence, desired quality of a part fabricated from L-PBF may be
achieved through controlling the melt pool by manipulating these
processing parameters.

There have been many research efforts aimed at understand-
ing the influence of different process parameters and material
properties on part quality [10,11]. These attempts with computa-
tional modeling and simulations have been used to explain rela-
tionships between process parameters and melt pool formation.
Although, experiments are capable of directly capturing physi-
cal phenomena, they tend to be time consuming, expensive, and
suffer from uncertainties due to inconsistencies in the process
and errors with sensors [12]. Experimental data-driven model-
ing method is an straight forward and robust approach that has
been widely used in AM domain [13, 14]. The predictive result,
if well comply with the experimental conditions, can be used to
optimize the L-PBF process with promised solution [15]. How-
ever, due to a lack of physical understanding in the model, the
pure data-driven model is sensitive to these experimental condi-
tions that are not part of the input variables. More specifically,
the models are only applicable for unique scan strategies due to
the manner in which they are constructed. Therefore, their pre-
dictions may significantly decrease in accuracy if a different scan
strategy is implemented [16].

For these reasons, physics-based computational modeling
has become a crucial complement to experimental investiga-
tions for understanding process-structure-property relations in
AM [17]. For example, experiments and simulations have re-
vealed that high energy input can produce larger melt pools when
other parameters remain unchanged [18–21]. Hence, melt pools
in AM are commonly manipulated by controlling the energy in-
put of the system. In-situ control of the energy input may be
easy, but melt pool formation may also be greatly affected by
other factors which are extremely difficult and/or nearly impos-
sible to control.

Environmental conditions and geometric variations are also
known to affect melt pool shape and sizes [12]. For example,
both simulations and experiments have proven that the presence
of surfactants, such as oxygen, can change the shape of the melt
pool by affecting it’s surface tension [22]. Additionally, the scan
pattern also affects the shape and size of the melt pool due to heat
transfer across adjacent tracks and/or layers [23, 24]. Due to all
these potential parameters, the melt pool may vary both in time
and space during the L-PBF process, which can detrimentally af-
fect mechanical properties of the part. This has led researchers
to investigate the influence the toolpath has on the melt pool ge-
ometry, in addition to the process parameters.

Several different types of models have been applied to in-
vestigate variations in the melt pool for multi-track and/or multi-
layer builds. Two-dimensional [12] and semi-analytical models
[25] can provide the variations in melt pool size for multi-track
builds but they do so with limited fidelity. A two-dimensional

model cannot capture the full melt pool shape and semi-analytic
models must neglect key physical phenomena in the AM process.
High-fidelity, three-dimensional, models utilizing computational
fluid dynamics have also been used to overcome these discrep-
ancies [26–28]. However, when too much physics is considered
the model’s computational cost becomes too high to investigate
the AM process at the part-scale. Therefore, these models tend
to be limited to simulating very few layers and/or tracks with a
short track length. On the contrary, models based on the finite el-
ement method (FEM) offer a desirable trade off between physics
considered and feasible domain size to investigate tool paths and
melt pools of an AM build.

Although, FEM models can provide a thermal history of an
entire part being built [29–32], but they do so by purely con-
sidering heat conduction and neglecting the fluid flow behav-
ior within the melt pool. This simplification can lead to pre-
dictions of inaccurate temperature fields if extensive calibrations
are neglected. In order to overcome these disadvantages, while
preserving the ability to make predictions on the part-scale at a
low computational cost a hybrid model is presented. The hybrid
model aims to utilize data analytic to both improve the accuracy
and efficiency of physics-based simulations by intertwining com-
putational and experimental data. Previous hybrid approaches
demonstrated an improvement in both efficiency and accuracy
using a small amount of experimental data by integrating it with
physics-based simulations, but they did not consider the effects
of the scan strategy [33, 34].

This work uses these ideas to investigate tool path design
for the L-PBF process by combining numerical simulations and
experiments to construct a hybrid model. This paper begins by
describing the methodology of the study (Sec. 2). First the ex-
perimental procedure (Sec. 2.1) used to measurement attributes
of the melt pool is provided. Second, the thermal model, based
on FEM, of the L-PBF process is presented (Sec. 2.2), and fol-
lowed by the description of the hybrid model (Sec. 2.3). Next,
details the development and performance of the hybrid model by
using variations in the surface area of the melt pool as a case
study (Sec. 3). In order to do this, images from the experiments
are converted to temperatures scales (Sec. 3.1) and compared
against the FEM model (Sec. 3.2). Finally, the hybrid model is
shown to reduce errors seen from both the initial FEM simula-
tions and pure data-driven models (Sec. 3.3).

2 Methodology
An integrated computational and experimental approach is

taken to model the L-PBF process for Inconel 625 (IN-625) al-
loys. Since we are interested in toolpath design, this paper fo-
cuses on the part scale. Experiments are used to record in-situ
images of the melt pool under highly controlled conditions. In
addition, the thermal dynamics for the same material and tool-
paths are predicted using a physics-based model. Thereafter, a
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FIGURE 1: In-situ melt-pool image registration

hybrid model is constructed for which combines the two for im-
proved predictive capabilities.

2.1 Experimental Set-Up
The experiments is conducted on The National Institute

of Standards and Technology (NIST) Additive Manufacturing
Metrology Testbed (AMMT) [35]. The NIST AMMT is a fully
custom, open-platform laser powder bed fusion (LBPF) system
to advance controls, monitoring, and metrology research. The in-
house developed AM control software (SAM) allows the creation
of various scan strategies from a simple combination of different
scan strategies and laser power/speed control [15]. The melt-pool
incandescent emission is diverted to a high-speed camera by a
dichroic mirror and filtered at a bandwidth of (85 +/- 20) nm, as
shown in Fig. 1. The custom optics enable 1:1 magnification and
an image resolution of 8 µm/pixel. The camera is triggered by
the laser position and hence the melt-pool image can be mapped
to its location precisely.

Cubic Inconel 625 parts with the same design are built with
different scan strategies. The design is shown in Fig. 2. The pur-
pose of different corner chamfers is to give the part a distinctive
orientation. The three scan strategies studied are: (a) constant
build-speed with linear path (also known as skywrite), (b) Ex-
act stop with island linear path, (c) Continuous with island spiral
path. The nominal scan speed and laser power are 800 mm/s
and 195 W respectively. Also a layer thickness of 20 µm, and an
inter-layer rotation angle of 67◦ are applied.

2.2 Physics-based Modeling with FEM
A macro-scale thermal analysis is used to model the L-PBF

process for a multi-track build. This analysis is done using a
transient thermal Finite Element solver [36] to predict the global
history for the laser traversing across a single layer of powder

FIGURE 2: Part design (in mm)

covering a solid substrate. The governing heat transfer energy
balance to be solved is:

∂ρcp

∂ t
=

∂

∂xi
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k

∂T
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)
(1)

where ρ is the material density, cp is the specific heat, t is the
time, xi are the spatial coordinates, k is the conductivity of the
material, and T is the temperature.

The moving laser in the L-PBF process is modeled as a heat
source described by the Gaussian distribution:
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)
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where P is the power of the laser, η is an absorptivity factor to
limit the amount of energy absorbed by the material from the
laser which is taken to be 30 %, and Rb is the radius of the laser.
The variables x, y, and z are local coordinates of the laser. Heat
loss on the d free surfaces of the model is simulated though a
combination of convection and radiation. Convective heat loss is
defined by

qconv = hc (T −T∞) (3)

where hc is a convection coefficient, T is the surface tempera-
tures, and T∞ is the far-field (ambient) temperature. Radiation
heat loss is defined using the Stefan-Boltzmann law, given by

qrad = σsε
(
T 4 −T 4

∞

)
(4)

where σ is the Stefan-Boltzmann constant and ε is the surface
emissivity of the material.

Since this approach models the L-PBF process at the macro-
scale, the powder layer is treated as a continuous media and it is
distinguished from the substrate through its material properties.
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This is achieved through the use of a consolidated factor, φ de-
fined by the range of 0-1. The value of 0 denotes the material
is in the original powder state (no consolidation), whereas 1 de-
notes a bulk state (fully consolidated). As seen from (5), φ is
determined by temperature history, where Tpeak is the local peak
temperature, and Tsolidus and Tliquidus are the material’s solidus
and liquidus temperatures respectively. It should be noted that
through this definition φ solely increases monotonically.

φ =
Tpeak −Tsolidus

Tliquidus −Tsolidus
(5)

Since φ denotes the state of the material at a given time, it is
used to determine state-dependent effective material properties.
By assuming a linear dependence, the effective material property,
λ , is determined by (6), where λbulk and λpowder are the appropri-
ate material property for the powder and bulk solid. However, in
this work it is assumed this relation only applies to the material’s
thermal conductivity and density.

λ = λbulkφ +λpowder(1−φ) (6)

Based on prior research [37–39], it is assumed that the ther-
mal conductivity of the powder is 2.1 W/m/k. However, the lo-
cal density of the powder, ρpowder, is determine by (7), where
ψ is the powder packing (taken to be 50 %), and ρbulk is the
density of the bulk solid.

ρpowder = ψρbulk (7)

The build parameters, including laser speed and power and
the toolpath, and the material are chosen based on the aforemen-
tioned experiments. By keeping these aspects consistent, com-
parisons between the simulations and experiments can be drawn
confidently.

2.3 Hybrid Model Approach
Physics-based computational models can provide unlimited

predictions at any location on the part based on general phys-
ical rules and simplified environmental conditions. The FEM
model developed in this can be applied for any L-PBF machines
as a universal approach by adjusting the constant parameters
and input variables. However, the model cannot incorporate ex-
cluded parameters such as specific conditions in AM machines
and powder material. Although these parameters are constant for
the same AM machine, the machine-to-machine differences can
cause significant variation in the results. The hybrid model aims
to capture the effect generated by the hidden conditions which
are not included in the FEM model.

FIGURE 3: Example of hybrid modeling approach

Figure 3 shows an example of the hybrid modeling ap-
proach. The solid red curve is the actual model and the dashed
blue curve is the simulation model. The solid dots represent the
experimental data. The dashed yellow line is the surrogate model
fit based on the four experimental data points using linear regres-
sion method. Due to the limited sample size, the experimental
surrogate model fails to approach the actual curve. However, a
hybrid model combining with the simulation and experimental
data can accurately fit the actual curve. Instead of directly build-
ing a model by the given data points, the hybrid model focuses on
calibrating the existing simulation by this additional information.

The grey-box modeling approach is used to build the hybrid
model in this work [40]. The actual result can be represented as
a combination of the simulated result and the error:

yexp = ysim + ε (8)

where yexp is the experimental measurement, which is assumed
to be the ground truth in this work, ysim is the simulated result,
and ε is the corresponding error, which is defined as the residual.
The term ysim can be directly derived from:

ysim = fsim(x) (9)

where fsim(x) represents the simulation model or the simulation-
based surrogate model. A new dataset of the residual can be
derived from calculating the error between every experimentally
measured data point and the computationally predicted result. A
surrogate model of the residual ε̃ can be presented as:

ε̃ = fres(x) (10)

As a result, the final prediction is formulated by two components:

ỹ = fsim(x)+ fres(x) (11)
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As seen in Alg. 1, the hybrid modeling approach has 7 major
steps. However, step 1 could be skipped if the simulation has low
computational cost. In this study, the simulation-based surrogate
model is generated to reduce the simulation time. The surrogate
models in Step 1 and Step 6 both deploy the feed-forward neural
network method [41].

Algorithm 1 Hybrid model construction
Step 1: Build simulation-based surrogate model
Step 2: Design sampling method
Step 3: Collect measurement data from physical experiment
Step 4: Estimate the results by the same sampling method using

simulation-based surrogate model
Step 5: Calculate the error between experimental and simulation

result, ε = yexp − ysim
Step 6: Build the surrogate model for the error using Eqn. (10)
Step 7: Build the hybrid model by combining the simulation-

based and error surrogate models using Eqn. (11)

Figure 4 shows the neural network structure of the surro-
gate model in Step 6. The feed-forward neural network contains
two hidden layers with 10 nodes for each. The neural network is
fully connected with the Levenberg-Marquardt activation func-
tion. The x and y coordinates construct the input layer, and the
residual ε̃ is the final output. The simulation-based surrogate
model deploys the same neural network structure and input vari-
ables, such that its results replaces the outputs of the physics-
based simulation ỹ. The neural network is trained by 80 % of
data and tested by the other 20 %, and the Normalized Root Mean
Square Error (NRMSE) is used to evaluate the performance of
the model.

NRMSE =

√
∑

N
i=1(ỹi − yexp,i)2/N

ȳ
(12)

where i is the ith data point and ȳ is the average measured value.

3 Case Study Results
To demonstrate some capabilities of the hybrid model, the

surface of the melt pool visible to the laser is used as the output
in this case study. Hence, this section details how the threshold of
the experimental images are determined in order to ensure they
contained the actual melt pool. The surface area, which varies
both in time and space, of the melt pool is measured by an in-situ
sensor using this threshold for three unique toolpaths. Then the
aforementioned FEM model is employed and its predicted results

FIGURE 4: The neural network structure of ε̃

are compared to the experiments for the same toolpaths. In order
to reduce errors between the two, the hybrid model is employed
and its error is compared to that of the FEM simulations.

3.1 Post-process analysis of Camera Images
The AMMT captures in-situ coaixal images during the build.

The images are grayscaled from 0 to 255. Previous AMMT
benchmark studies investigated the grayscale to temperature cal-
ibration [42, 43]. Figure 5 shows the calibration curve based on
the preliminary findings [44]. Through implementing these pro-
cedures, the temperature measured from the thermal sensor was
calibrated to the correlated optical grayscale value. Note, the
minimum calibration measurement is for a grayscale of 5. A
value lower than this would need to be extrapolated based on a
fit to the available data. The grayscale is saturated at 255 with
the relative temperature 1290◦C.

The melting temperature of IN-625 is between 1290◦C to
1350◦C [45]. This study uses 1300◦C to find the melt pool out-
line, with the relative grayscale equal to 10. This value is above
the aforementioned minimum calibrated grayscale value of 5,
and thus falls within the range of available measured data. The
melt pool surface area is calculated by the enclosed area of the
outline, where the scattering pixels would be removed in image
pre-processing. Note, the curve is derived based on preliminary
research findings. Therefore, it may suffer some uncertainties but
it is believed to be adequate for this study. The same grayscale
value to calculate the melt pool surface area is used for all cases.
Hypothetically, it is appropriate to make parallel comparison be-
tween cases, but the calibrated temperature may not be accurate
enough.

Figure 7 shows the three scan patterns studied in this work.
All three cases use the same laser power (195 W) and scan speed
(800 mm/s). Case 1 uses a skywrite approach with a traditional
stripe pattern with an overshooting strategy. Here the overshoot-
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FIGURE 5: Grayscale to temperature calibration curve based on
preliminary experimental result

(a) (b)

FIGURE 6: An example melt pool coaxial image calibrated from
grayscale (a) to temperature (b)

ing indicates the laser beam continues to scan the area outside
the part with zero laser power in order to maintain the same
scan speed at the infilling area. Case 2 uses an island scan ap-
proach with linear paths and no overshooting. Whereas Case 3
uses an island scan approach, but with a spiral concentrating pat-
tern. The no overshooting Case 2 and 3, due to the laser beam
has to change direction within the infilling region, the scan speed
would be operated to reduce and accelerate. This status would
cause energy density vary in the infilling area but was captured
by the simulation.

The frequency of the coaxial camera is 2000 Hz for all the
cases. Therefore, the total number of images for each case de-
pends on the laser scanning time. As a result, Case 1 to 3 collect
2661, 3884, and 6884 images, respectively.

3.2 FEM Simulation Results
The in-situ surface areas of the melt pool measured by the

experiments are compared against the FEM model, shown by

(a) (b)

(c)

FIGURE 7: The complete scan patterns for Case 1 (a), Case 2
(b), and Case 3 (c). The green and red points are the start and
end scanning position of the laser, respectively. The arrow points
to the moving direction of the laser, where the skywriting (laser
power = 0) path is also included

FIGURE 8: Example simulation of the L-PBF process from the
FEM model. The effective powder layer was designed to be only
one element thick, whereas the rest of the mesh in the depth mim-
icked the build plate.

Fig. 8, for the tool paths given by Fig. 7). This is done in the
FEM model by calculating the surface area of the region above
the solidus temperature at various time steps while the laser is
nonzero. Since the time resolution of the camera in the exper-
iments is 2000 Hz, data in the simulation is collected approxi-
mately every 50 µs.

The simulations consisted of a computational domain of
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12 mm x 12 mm x 1 mm with a fine mesh of 50 µm x 50 µm x
25 µm for the powder layer and surrounding area that the the
melt pool interacts with, and a slightly coarser mesh of 50 µm
x 50 µm x 50 µm for the rest of the domain. All the simula-
tions had about 1.3 million elements in total. Additionally, the
thermophysical properties of IN-625 summarized in Table 1 are
used. While all other properties are assumed to be constant,
temperature-dependent polynomial functions are fitted to exper-
imental measurements [46] of thermal conductivity and specific
heat capacity.

Each surface area is approximated through a combination of
a cubic interpolation and a convex hull. Using cubic interpolation
the predicted temperature values from the top surface of the FEM
model are mapped to a 2D grid with a grid spacing half that of
the powder layer in the full-scale model. This ensures that the
shape of the melt pool is well resolved. Then the surface area
is calculated via a convex hull around the predicted melt pool
region.

As seen by Fig. 9, the surface areas from the experiments
and the simulations agree well qualitatively and provide simi-
lar trends. For Case 1, the surface area of the melt pool gradu-
ally increases in time. This is expected to occur when the dwell
time between tracks is not small enough for the previous track
to cool down before the laser starts melting the subsequent track.
In this case, the residual heat within the previous track trans-
fer to the new track and causes an increased size in the melt
pool. Although the experimental measurements have a larger
spread than the FEM model, they both show a linear relation-
ship. Similarly, Case 2 also shows a linear relationship despite
using an island scan approach. Although they provide similar
trends, the experiments and simulations disagree with respect the
rate at which the melt pool grows over time. For both cases, the
numerically predicted rate is noticeably smaller than that of the
experiments. However, one potential cause of this discrepancy
could be noise in the data. Although the trends in the data are
clear, for both cases the spread in experimental measurements is
relatively large.

As noted by Fig. 9c, the trend in Case 3 is significantly
different than that of the other two cases. Although, both Case 2
and Case 3 have an island scan strategy, the islands in Case 3 have
less thermal interactions with each other. Due to this decrease of
heat transfer across subsequent islands, the distribution of melt
pool size is more representative by a single island.

3.3 Hybrid Model
To construct the hybrid model, each case first builds a

simulation-based surrogate model to substitute the original sim-
ulation model to reduce the computational time. The testing
dataset is used to validate both the simulation-based surrogate
model and the hybrid model. Table 2 lists the NRMSE for the
simulation-based surrogate model and the hybrid models of each

case. The tabulated results are consistent with Figure 9, since it
states that the simulation of Case 3 has the lowest predictive er-
ror and Case 2 shows the highest. The hybrid model reduces the
NRMSE to less than 1.0 for all cases. Though the final NRMSE
for Case 3 drops to 0.0.0302 which denotes a 54.03 % improve-
ment.

Figure 10 plots the contours of the melt pool surface areas
for each case. The simulation-based surrogate model maps the
melt pool area distribution over the layer. Case 1 accurately pre-
dicts the melt pool size gradually increases from the bottom right
to the top left corner. It also shows the melt pool sizes close to the
edge are smaller than those inside the build. Both the variation
from island to island, and within the each island for Cases 2 and
3 are well predicted. However, the simulation lacks some details
at some specific locations. For example, melt pool size of Case
1 from the simulation is generally higher than the experiment.
Additionally, the bottom island of Case 2 does not completely
match the experimental result. Plus the predicted melt pools at
the edges of some islands do not agree well the experimental re-
sult. Case 3 shows a consistent trend of the evolution of melt
pool size for the complex scan strategy, but it can be observed
that the areas at center of the islands are under-predicted.

The hybrid model uses the training data to upgrade the orig-
inal simulation-based surrogate model. It shows significant im-
provement for all cases, but is not perfect. The general melt pool
sizes are reduced to match the actual sizes for Case 1. The inac-
curacies within the island edge are corrected for Case 2. Lastly,
predictions for Case 3 becomes significantly closer to the exper-
imental measurements.

3.4 Performance of the hybrid model
The hybrid model can improve predictive accuracy by inte-

grating the physics-based simulation and experimental data ef-
fectively. Previous models have demonstrated this capability, but
unlike the model presented here, they lacked the ability to con-
sider the scan strategy for an AM build citeyang2020scan. The
simulations can generate an unlimited amount of data points if
the computational time is acceptable. However, the cost of col-
lecting in-situ experimental data for AM is exceedingly high.
Therefore, a higher sampling rate would indicate a higher cost
of the sensor and increased data processing. This increases the
difficulties of conducting real-time process control for AM since
the system would become overwhelmed with data. As a result,
an ideal hybrid model should use a minimum amount of experi-
mental data to provide the highest predictive accuracy.

This section designs a comparative study to investigate the
impact of the sampling rate on the hybrid model’s predictive ac-
curacy. Each case selects 20 % evenly distributed data points
from the experiment to be the fixed validation dataset. The re-
maining data constructs the training dataset. The hybrid model
would partially utilize the training data to build the model, where
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TABLE 1: Thermophysical properties of IN-625 used for the FEM simulations

Physical Property Value Source

Density (kg/m3) 8440 [47]

Solidus temperature (K) 1563 [48]

Liquidus temperature (K) 1623 [48]

Specific heat capacity (J/kg/K) 0.2437T +338.39 [46]

Thermal conductivity (W/m/K) 0.0153T +5.2366 [46]

Latent heat of fusion (kJ/kg/K) 290 [47]

(a) (b)

(c)

FIGURE 9: Comparisons of how the melt pool surface area evolves in time according to the experiments and simulations for Case 1 (a),
Case 2 (b), and Case 3 (c)

TABLE 2: Model performance NRMSE of 3 cases by simulation-
based surrogate model and hybrid model.

Case 1 Case 2 Case 3

Simulation 0.1170 0.1258 0.0657

Hybrid 0.0821 0.1041 0.0302

Improvement 29.83 % 17.25 % 54.03 %

the simulation part keeps the same. The portion of the training
data is from 10 % to 100 % with 5 % increment. For example,
Case 1 has 2661 experimental data points. The training dataset
has 2129 samples. The hybrid model with the least sample size
would only use 213 data points. The picked points would be
evenly distributed on the design space regardless to the sample
size.

Figure 11 shows the NRMSE of each case with different
sample size. Case 1 shows the NRMSE beyond 15 % has no sig-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 10: The contour plots of melt pool surface area for Case 1 (a-c), Case 2 (d-f), and Case 3 (g-i). Where the columns are results
from experiments, FEM simulations and the hybrid modelling, respectively. The unit of the colorbar is mm2

nificant difference. The final NRMSE at 100 % is 0.0811, which
is close to the number reached at 15 % - 0.0839. However, the
hybrid model increases sample size from 319 to 2129. Case 3
shows the similar result to Case 1, where the NRMSE approaches
its converged point at 35 %. Considering the larger initial sample
size (6884). It can reduce the sample size from 5507 to 2409.

Case 2 is more complicated that the increasing sample size
can gradually reduce NRMSE from 0.1286 to 0.1041. However,
the chart in Figure 9 shows a nearly flat curve between 40 % to
90 %. In addition, the total improvement for Case 2 is less than

0.03. The improvement introduced by the sample size seems not
effective as there is no significant difference after sample size
over 2409 as mentioned in previous paragraph.

4 Discussion and future work
The hybrid model in this paper solely uses simulation data

from a heat conduction based model. Although the hybrid model
proves to be more accurate than the initial FEM model for all the
cases presented, this is partially based on the simulation-based
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TABLE 3: Comparison of computational cost between the models for each case

Num. Processors Case 1 Case 2 Case 3

FEM simulation 24 848 min 1189 min 1419 min

Hybrid model 1 < 1min < 1min < 1min

Improvement - 29.83 % 17.25 % 54.03 %

FIGURE 11: Performance of hybrid models with different train-
ing data size

surrogate model. In order to improve the accuracy of the hy-
brid model, the simulation-based surrogate model could include
predictions from simulations which includes more physics. For
example, a thermal-fluid model which incorporates the velocity
field within the melt pool. However, such models tend to have
a high computational cost so directly modeling the domains fea-
tured in this work would be difficult. The physics in the sim-
ulation can only capture the included parameters and variables.
All deducted factors by the theoretical simplification would be-
come uncertainties. Such factors could be powder quality, cham-
ber temperature, substrate roughness, and laser instability. Those
factors were ignored and have negative impact to the predictive
accuracy.

The hybrid model only depends on a single material system
as well, in this case IN-625. In addition to using predictions from

multiple physics-based models, the hybrid model could be gener-
alized with transfer learning. Through transfer learning, the hy-
brid model would be able to combine a high volume of data from
multiple sources and use it for new circumstances. In particular,
it could use information from a database of experimental mea-
surements for particular processing conditions and use it to bet-
ter predict melt pool behavior for new ones. It is easy to generate
simulation data for various process parameters and/or material
systems, but with the help of prior knowledge from experimen-
tal measurements the hybrid model could ensure the predicted
results are accurate.

5 Conclusion
In this work we demonstrate that a proposed hybrid model

can be used to improve the accuracy of traditionally physics-
based simulations for the L-PBF process and potentially expe-
dite toolpath design. Initially, numerical results are predicted by
a conduction-based FEM model and in-situ melt pool surface ar-
eas are measured from coaxial photography. The FEM model
agrees well with the experimental observations qualitatively, but
there are some quantitative discrepancies between the two.

In our approach, we attempt to reduce these discrepancies
by constructing a hybrid model based on combining simulation-
based and error-based surrogate models using data analytics.
Each surrogate model is constructed by a feed-forward neural
network. However, the simulation-based model uses data from
the solely from the FEM simulations, whereas the error-based
model uses data from both the experiment and FEM simulations.
The performance of the hybrid model is demonstrated by com-
paring how well it predicts the spatially-varying surface areas for
three toolpaths against the FEM results. It is proven that the hy-
brid model has less error than the FEM model with respect to the
experimentally measured data. Due to this improved accuracy
and computational efficiency, the hybrid model has potential ap-
plications in real-time toolpath planning.

In order to further improve the hybrid model’s accuracy, data
from additional simulations with higher fidelity models could
be used. Through integrating data from experiments and multi-
physics simulations, the hybrid model could be more extensi-
ble with respect to processing conditions. For example, a heat-
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conduction model cannot capture key-hole mode behavior well.
In this way, transfer learning could become very applicable. This
work uses a feed-forward neural network in order to construct the
simulation-based surrogate model and the error-based surrogate
model. Through the use of transfer learning, the model would
be able to used prior-obtained knowledge to predict aspects of
the AM process for new circumstances, such as a new material
system. This ability would be immensely beneficial for process
control in AM.

Acknowledgment
For this work, K. Jones acknowledge the support by North-

western University under the Walter P. Murphy Fellowship and
the National Institute of Standards and Technology (NIST) under
Cooperative Agreement number NIST 70NANB17H283.

Disclaimer
Certain commercial systems are identified in this paper.

Such identification does not imply recommendation or endorse-
ment by NIST; nor does it imply that the products identified
are necessarily the best available for the purpose. Further, any
opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily re-
flect the views of NIST or any other supporting U.S. government
or corporate organizations.

REFERENCES
[1] Bourell, D., Beaman, J., Marcus, H., and Barlow, J., 1990.

“Solid freeform fabrication: An advanced manufacturing
approach”. In International Solid Freeform Fabrication
Symposium, pp. 1–7.

[2] Vojislav, P., Juan, V. H. G., Olga, J. F., Javier, D. G., Jose,
R. B. P., and Luis, P. G., 2011. “Additive layered manufac-
turing: sectors of industrial application shown through case
studies”. International Journal of Production Research,
49(4), pp. 1061–1079.

[3] Yan, C., Hussein, A., and Raymont, D., 2012. “Evaluations
of cellular lattice structures manufactured using selective
laser melting”. International Journal of Machine Tools and
Manufacture, 62, pp. 32–38.

[4] Guo, N., and Leu, M. C., 2013. “Additive manufacturing:
technology, applications and research needs”. Frontiers of
Mechanical Engineering, 8(3), pp. 215–243.

[5] Bourell, D., Leu, M., and Rosen, D., 2009. Roadmap for
additive manufacturing-Identifying the future of freeform
processing. The University of Texas at Austin, Laboratory
for Freeform Fabrication, Advanced Manufacturing Center.

[6] Liu, Y., Li, S., Wang, H., Hou, W., Hao, Y., Yang, R.,
Sercombe, T., and Zhang, L., 2016. “Microstructure, de-

fects and mechanical behavior of beta-type titanium porous
structures manufactured by electron beam melting and se-
lective laser melting”. Acta Materialia, 113, pp. 56–67.

[7] Witherell, P., Feng, S. C., Martukanitz, R., Simpson, T. W.,
John, D. B., Michaleris, P., Liu, Z.-k., and Chen, L.-q.,
2014. “Toward metamodels for composable and reusable
additive manufacturing process models”. In 34th Comput-
ers and Information in Engineering Conference, Proceed-
ings of the ASME Design Engineering Technical Confer-
ence, American Society of Mechanical Engineers (ASME).
061025.

[8] Cunningham, R., Narra, S. P., Montgomery, C., Beuth, J.,
and Rollett, A. D., 2017. “Synchrotron-based x-ray mi-
crotomography characterization of the effect of processing
variables on porosity formation in laser power-bed additive
manufacturing of ti-6al-4v”. JOM, 69(3), pp. 479–484.

[9] Tang, M., Postorius, P. C., and Beuth, J. L., 2017. “Pre-
diction of lack-of-fusion porosity for powder bed fusion”.
Additive Manufacturing, 14, pp. 39–48.

[10] Read, N., Wang, W., Essa, K., and Attallah, M. M., 2015.
“Selective laser melting of alsi10mg alloy: Process optimi-
sation and mechanical properties development”. Materials
& Design, 65, pp. 417–424.

[11] Criales, L. E., Arısoy, Y. M., and Özel, T., 2016. “Sen-
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