# PSCR2021 THE DIGITAL EXPERIENCE #PSCR2021 • PSCR.GOV





# AUGMENTED REALITY USABILITY EVALUATION FRAMEWORK FOR PUBLIC SAFETY



#PSCR2021



### **AR USABILITY TEAM**







Yee-Yin Choong Human Factors Scientist Kurtis Goad Human Factors Scientist

**Kevin Mangold** Computer Scientist Samia Benjida Foreign Guest Researcher

Visualization and Usability Group — Information Technology Laboratory







### DISCLAIMER

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

\* Please note, unless mentioned in reference to a NIST Publication, all information and data presented is preliminary/in-progress and subject to change









### AGENDA

**Project Overview** 

# AR Usability Evaluation Framework for PSCR

Framework Walkthrough – Fire Fighting scenario

Usability Test Console

CONCLUSION

### **PROJECT OVERVIEW**

- Augmented Reality has the potential to benefit first responders
- Usability consists of three main aspects:
  - Effectiveness
  - Efficiency
  - User satisfaction
- This framework will provide guidance on:
  - What types of data should be collected
  - How that data can be analyzed

### WHAT IS AUGMENTED REALITY (AR)?

- "an interactive experience of a real-world environment where the objects that reside in the real world are enhanced by computer-generated perceptual information" (Wikipedia, March 17, 2021)
- Digital enhancements added to the real world
- Examples:
  - Digitally testing out a new couch before you make a purchase
  - Using a GPS to find directions to a new restaurant



Image Source: https://www.wired.com/story/ikea-place-ar-kit-augmented-reality/

### **HOW DOES AR WORK?**

- Two main experiences:
  - Smartphone video
  - Head-mounted displays (headsets or smart glasses)
- Uses various computer-vision and machine learning algorithms to analyze what the user sees to more realistically enhance what is relayed to the user.





Image 1 Source: https://4experience.co/hololens-2-vs-hololens-1-whats-new/ Image 2 Source: https://www.abiresearch.com/blogs/2020/03/05/augmented-reality-smart-glasses/

### HOW CAN AR HELP FIRST RESPONDERS?

- Fire Fighters:
  - Important information could be displayed inside a firefighter's face mask so they don't have to be fumble around with various devices attached to their person.
- Law Enforcement
  - A law enforcement officer could run a check on a driver's license without leaving the person unattended.
- Emergency Medical Services
  - An EMT can view information about a patient while on the scene when determining a treatment plan.

### WHAT IS USABILITY?



#### **EFFECTIVENESS**

Accuracy and completeness with which users achieve specified goals

#### **EFFICIENCY**

Resources (e.g., time, human effort, money and materials) used in relation to the results achieved

#### SATISFACTION

The extent to which the user's physical, cognitive and emotional responses that result from the use of a technology meet the user's needs and expectations

Usability is the extent to which a system, product or service can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use [ISO9241-11]

### AR USABILITY EVALUATION FRAMEWORK

### Assessing the Technology, Not the User



### TASK TYPES FOR AR USABILITY EVALUATION



### ACTION (A)

User performs a specific action in order to complete the task or make a change in the system or physical environment.



#### **DETECTION (D)**

Targets such as objects, information, and people will be placed in the environment for the user to detect.



### **COMMUNICATION (C)**

User is required to communicate with either another user or the usability test administrator, e.g., audio, gesture, non-audio information transferred through the AR device.



### MONITORING (M)

User must track specific states, conditions, objects and people over time and could be required for monitoring multiple targets simultaneously.

### METRICS FOR AR USABILITY EVALUATION

### • Actors

- Users participate in usability evaluation
- *Test admin* conducts/facilitates the usability evaluation

### Metrics Types

- Performance
- Behavioral and Physiological
- Issues-based
- Self-reported

### Usability Category

- Effectiveness
- Efficiency
- Satisfaction

### PERFORMANCE METRICS

| Usability     | Jsability Description                                           |                                                                            | Data Type         | Actor      |
|---------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|-------------------|------------|
| Effectiveness | Task completion                                                 | Whether or not the user completes task intended                            | Binary success or | User       |
|               | rask completion                                                 | Whether of not the user completes task intended                            | Levels of success | Test Admin |
|               | Session                                                         | Whathar ar not the user completes usability session                        | Binary success or | User       |
|               | completion                                                      | whether of not the user completes usability session                        | levels of success | Test Admin |
|               | Completeness Ratio of events completed to total events expected | Datio of overte completed to total overte overeted                         | Datio             | User       |
|               |                                                                 | Ratio                                                                      | Test Admin        |            |
|               |                                                                 | Frequency of user events that do (do not) cause an                         | Counts .          | User       |
|               | Accuracy/Errors                                                 | expected outcome                                                           |                   | Test Admin |
|               | Spatial Accuracy                                                | Correct physical interactions with real or virtual                         | Counte or ratio   | User       |
|               |                                                                 | objects not missing contact with the objects                               | Counts of ratio   | Test Admin |
|               | Event deviation                                                 | Events performed by the user that do not aid in completing the search task | Counts or ratio   | User       |
|               |                                                                 |                                                                            |                   | Test Admin |

### **PERFORMANCE METRICS**

(continued)

| Usability                   | Usability<br>Metrics | Description                                                                                               | Data Type                    | Actor |
|-----------------------------|----------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|-------|
| Efficiency                  | Time-on-Task         | Time spent performing a task                                                                              | Task duration                | User  |
|                             | Time until Event     | The time between a predefined stimuli presentation (e.g., visual, auditory) and the start of a user event | Task duration                | User  |
|                             | Time-on-Session      | Time spent performing the usability session                                                               | Session duration             | User  |
| Effectiveness<br>Efficiency | Learnability         | Whether user's performance differ (improve or degrade) over time                                          | Multiple trials<br>over time | User  |

### BEHAVIORAL AND PHYSIOLOGICAL METRICS

| Usability     | Usability Metrics                                     | Description                                                                                                                                       | Data Type                 | Actor |
|---------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|
| Effectiveness | Eye Tracking–Scan<br>patterns                         | The order or pattern in which the user looks at while completing a task                                                                           | Eye-tracking<br>heat maps | User  |
|               | Mental workload                                       | An index of questions answered by the user in order to assess mental workload for a task or the session                                           | NASA-TLX                  | User  |
| Efficiency    | Eye Tracking–Dwell time                               | Duration of eye gaze directed at a specific target                                                                                                | Duration                  | User  |
|               | Eye Tracking–number of fixations                      | Frequency of instances of eye gazes directed at a specific location or object                                                                     | Counts                    | User  |
|               | Communication effort–<br>Speaker turns                | Number of turns in conversation between two speakers                                                                                              | Counts                    | User  |
|               | Communication Effort–<br>Words spoken                 | Number of words spoken by one user                                                                                                                | Counts                    | User  |
|               | Communication Effort–<br>Grounding questions<br>asked | Number of questions asked to another user in order<br>to help understand information presented by the<br>system or in the environment of the user | Counts                    | User  |

### **BEHAVIORAL AND PHYSIOLOGICAL METRICS**

(continued)

| Usability     | Usability<br>Metrics | Description                                           | Data Type    | Actor      |
|---------------|----------------------|-------------------------------------------------------|--------------|------------|
| Effectiveness | Verbal               | User's verbal interactions with test admin during the | Observations | User       |
| Efficiency    |                      | session                                               |              | Test Admin |
|               | Nonverbal            | User's nonverbal information observed by test         | Observations | User       |
|               |                      | admin during the session                              |              | Test Admin |
|               | Facial               | User's facial expressions observed by test admin      | Observations | User       |
|               | expressions          | during the session                                    |              | Test Admin |

### SELF-REPORTED METRICS & ISSUES-BASED METRICS

### • Self-reported Metrics

| Category     | Usability Metrics           | Description                                                                                                                                                      | Data Type                              | Actor |
|--------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|
| Satisfaction | Post-task<br>Post-session   | <ul> <li>Ease of Use</li> <li>Task and Content Specific Questions</li> <li>Perception of Outcomes/Interactions</li> <li>Comfort</li> <li>Learnability</li> </ul> | Scale ratings<br>and/or open-<br>ended | User  |
|              | Pre-Session<br>Expectations | An index of questions answered by the user,<br>before using the system to assess the user's<br>expectations about the system prior to using it                   | Scale ratings<br>and/or open-<br>ended | User  |

#### Issues-based Metrics

| Category      | Usability Metrics   | Description                                   | Data Type        | Actor |
|---------------|---------------------|-----------------------------------------------|------------------|-------|
| Effectiveness | Identify issues and | Usability issues identified by the Test Admin | Counts and       | Test  |
| Efficiency    | severity ratings    | during the session                            | severity ratings | Admin |

### **FRAMEWORK STEPS**



### FRAMEWORK EXAMPLE





#### **HEADS UP DISPLAY**

A HUD was designed for firefighters to use when responding to emergencies. The HUD uses AR components to aid in firefighters' missions.



#### **BOOTS ON THE GROUND FIREFIGHTER**

A boots on the ground perspective was chosen for evaluation of the HUD.

A fire was reported to have started in an apartment in a building. The local fire department was alerted and dispatched, a crew donned their gear and loaded onto a fire engine and a ladder truck, and they drove to the scene following a route planned by the command officer. Upon arrival, smoke can be seen coming from the open 2<sup>nd</sup> story apartment window of the two-story building. It was reported to the command officer by other building residents that they did not know whether the resident(s) of the apartment on fire was in the building or not.

Evaluation Goal Users & Scenario & Task Selection Selection Metric Selection Selection

# CONTEXT of USE APARTMENT FIRE





### **PROCEDURAL ANALYSIS DIAGRAM**





### **TASK TYPES**



Evaluation Goal Users & Scenario & Task Selection Metric Selection Selection

• Action

- Communication
- Detection
- Monitor

| TASK SELECTION |                                                                                       |                                                                                                                 | Evaluation<br>Goal<br>Goal<br>Users &<br>Context<br>of Use                                         | Scenario<br>& Task<br>Selection Measure<br>Selection Selection                                                             |
|----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|                | ACTION                                                                                | COMMUNICATION                                                                                                   | DETECTION                                                                                          | MONITOR                                                                                                                    |
|                | <ul> <li>Search Location</li> <li>Open/Close Doors</li> <li>Move Obstacles</li> </ul> | <ul> <li>Report<br/>Environmental<br/>conditions</li> <li>Report Victims</li> <li>Report Self Status</li> </ul> | <ul> <li>Detect Hazards</li> <li>Detect Victims</li> <li>Detect Building<br/>Conditions</li> </ul> | <ul> <li>Monitor Self Status</li> <li>Monitor<br/>Building/Hazard<br/>Status</li> <li>Monitor Victim<br/>Status</li> </ul> |

#### ACTION

**TASK SELECTION** 

#### Search Location

- Open/Close Doors
- Move Obstacles

- Report Environmental conditions
- Report Victims
- Report Self Status

Detect Hazards
Detect Victims
Detect Ruilding

 Detect Building Conditions • Monitor Self Status

MONITOR

- Monitor Building/Hazard Status
- Monitor Victim Status

#### Evaluation Goal Users & Context of Use Scenario & Task Selection Metric Selection Selection

#### COMMUNICATION

#### DETECT

### **METRIC SELECTION**

Evaluation Goal

Users & Context of Use

Scenario & Task Selection

Measure Selection

#### EFFECTIVENESS

- Task Completion
- Task
   <u>Completeness</u>
- Error
- Eye Tracking (Sequence/Scan Patterns)
- Event Deviation
- Spatial Accuracy

#### EFFICIENCY

- Time on Task
- Eye Tracking (Dwell Time)
- Eye Tracking (Number of Fixations)

#### SATISFACTION

 Post-Session Survey

### **METRIC SELECTION**

Evaluation Goal

Users & Context of Use

Scenario & Task Selection

Measure Selection

#### EFFECTIVENESS

- Task Completion
- Task
   Completeness
- Error
- Eye Tracking (Sequence/Scan Patterns)
- Event Deviation
- Spatial Accuracy

#### EFFICIENCY

- Time on Task
- Eye Tracking (Dwell Time)
- Eye Tracking (Number of Fixations)

#### SATISFACTION

 Post-Session Survey



### • Action

• Search Location



### • Action

• Search Location

### Communication

• Report Conditions



### • Action

• Search Location

### Communication

• Report Conditions

### Detection

Detect Hazards



### • Action

Search Location

### Communication

• Report Conditions

### Detection

• Detect Hazards

### Monitoring

• Monitor Self Status



### **USABILITY CONSOLE**

- A web-enabled tool used to aid usability test admins in annotating important events over the course of an evaluation session
  - Can be accessed through a computer or mobile device
- Designed to replace a laptop or paper/pen
- Keeps track of multiple participants and all of the events for a particular evaluation session
- Capable of ingesting live data from external devices

### **USABILITY CONSOLE BENEFITS**

- Buttons can be predefined to allow for quick and easy annotation of highly anticipated events
- Ability to add custom notes or event
- Quick view of recently added events



### **EXTERNAL DEVICE INTEGRATION**

- External devices are able to connect to the console to log events or other relevant data
  - Can be an Augmented Reality headset or other internet-capable devices/sensors



# CONCLUSION

# **AR Usability Evaluation Framework for PSCR**

## Explicit structures



Consistent terminology and an initial set of usability metrics



Comparability across public safety AR research and development efforts



Sharing of usability evaluation results and help establish design guidelines

### **THANK YOU**



×

usability@nist.gov



<u>https://www.nist.gov/itl/iad/visualization-and-usability-group</u> <u>https://www.nist.gov/ctl/pscr/research-portfolios/user-interfaceuser-experience</u>