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Abstract

Discovering meaningful collective variables for enhancing sampling, via applied biasing

potentials or tailored MC move sets, remains a major challenge within molecular simulation.

While recent studies identifying collective variables with variational autoencoders (VAEs) have

focused on the encoding and latent space discovered by a VAE, the impact of the decoding and

its ability to act as a generative model remains unexplored. We demonstrate how VAEs may

be used to learn (on-the-fly and with minimal human intervention) highly efficient, collective

Monte Carlo moves that accelerate sampling along the learned collective variable. In contrast

to many machine learning-based efforts to bias sampling and generate novel configurations, our

methods result in exact sampling in the ensemble of interest and do not require re-weighting.

In fact, we show that the acceptance rates of our moves approach unity for a perfect VAE

model. While this is never observed in practice, VAE-based Monte Carlo moves still enhance

sampling of new configurations. We demonstrate, however, that the form of the encoding and

decoding distributions, in particular the extent to which the decoder reflects the underlying

physics, greatly impact the performance of the trained VAE.
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1 Introduction

Designing and engineering soft materials requires a fundamental understanding of underlying mi-

crostructures and how their formation is driven by molecular-level interactions. While molecular

simulation provides a promising avenue for studying self-assembly and microstructure formation,

its brute-force application to such problems is often intractable due to insurmountable length and

timescales associated with assembly processes. Coarse-graining1 and enhanced sampling2,3 tech-

niques present potential solutions. In the former, degrees of freedom are removed from the system

by combining atoms or molecules into coarse-grained sites with effective interactions, allowing for

more rapid configurational sampling. However, even with recent advances in coarse-grained poten-

tials4 and training protocols,5 capturing solvent-mediated interactions, like hydrophobic associa-

tions, remains challenging due to their collective, many-body nature.6 Capturing such many-body

interactions involving both solutes and solvent becomes especially relevant when extrapolating

coarse-grained models trained on fine-grained interactions between two peptides, for example, to

simulations of hundreds of interacting peptides. More generally, it is difficult to assess the applica-

bility of a coarse-grained model to regions of configuration space not observed in the fine-grained

training set, despite such exploration often being the motivation behind developing the coarse-

grained model. Enhanced sampling instead preserves atomistic detail, driving sampling along

crucial, low-dimensional coordinates. Unfortunately, it remains difficult to identify collective vari-

ables and appropriate biases to drive sampling, particularly for assembling biomolecules that may

significantly change their structure upon association.

Many of the most recent innovations in collective variable discovery are based on machine

learning, specifically neural networks with autoencoding structures. Chen et al. 7 proposed an

effective strategy for iteratively identifying low-dimensional coordinates of biomolecules with au-

toencoders followed by biased sampling along these coordinates. Tiwary and coworkers8 extended

these techniques by using variational autoencoders (VAEs),9 a state-of-the-art machine learning

method for dimensionality reduction and generative modeling, to simultaneously learn the collec-

tive variable and bias to drive sampling. Related techniques use autoencoding structures to predict
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time series,10–14 which identify coordinates along which dynamics are slow. Unlike VAEs utilized

here and by Ribeiro et al. 8 , these methods focus on dynamics and do not directly learn the proba-

bility density, or equivalently free energy, along a meaningful latent coordinate, a distinction that

is critical to this work.

Here, we demonstrate how training a VAE not only learns a low-dimensional collective vari-

able and its probability density, but also efficient Monte Carlo (MC) moves that pass into and out

of that latent space, accelerating sampling. In other words, we also make use of the learned de-

coding, whereas past efforts with autoencoders have focused solely on the encoding. Crucial to

our methods is the fact that VAEs can predict probability densities for the encoding, latent coordi-

nate, and decoding, in addition to learning mappings to and from a low-dimensional latent space.

The ability to simultaneously learn dimensionality reductions and probability densities is unique

to VAEs and is not present in other modern machine learning techniques for density estimation,

such as normalizing flows15 and generative adversarial networks.16

Generative modeling to produce new configurations typically takes the form of MC or molecu-

lar dynamics simulations. Recent work, however, has utilized machine learning for this task, either

through normalizing flows,17,18 application of standard autoencoders with a modified loss,19,20 or

by combining diverse techniques for dimensionality reduction, time propagation, and decoding.21

These techniques, however, only result in approximate sampling of the ensemble of interest and

require re-weighting to recover correct statistics. Re-weighting must be applied carefully, how-

ever, as biased or limited sampling can still result in inaccurate estimates, as is often observed

in free energy perturbation methods.22,23 In stark contrast, the VAE-based MC moves presented

here satisfy detailed balance and exactly recover the ensemble of interest. This exact sampling is

also enhanced by the VAE’s knowledge of a highly informative latent coordinate, with MC moves

passing into, along, and out of the latent space resulting in rapid configurational transitions.

With exact sampling, our method is related to, and in fact inspired by, resolution exchange24,25

and nested MC.26,27 This includes recent variants based on machine learning.28–31 By learning

the probability density of the latent space, however, our methods directly draw uncorrelated sam-
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ples from this distribution rather than perform long simulations at lower resolution and/or with a

cheaper Hamiltonian. This results in drastically reduced autocorrelation times and more efficient

sampling. In fact, we show that acceptance probabilities of VAE-based MC moves approach unity

in the limit of a VAE model that perfectly learns the statistics of the ensemble used for training.

Training a VAE thus represents a general method of developing collective MC moves with high

acceptance rates, which further extends and complements existing approaches, such as Rosenbluth

sampling,32 hybrid MC,33 and cluster MC moves.34

We organize this paper as follows: Section 2 establishes the mathematical underpinnings of our

methods and derives the main theoretical contribution of this work, Section 3 describes the com-

putational implementation, and Section 4 assesses the applicability of our technique to a variety of

systems and discusses opportunities for improvements.

2 Theory

2.1 VAE Objectives and Probabilistic Models

VAEs consist of an encoding/decoding structure that is probabilistic in nature, shown schematically

in Fig. 1. Given a model for the probability P(x;λ) of a configuration x, our objective is to

maximize the expected log-likelihood 〈lnP(x;λ)〉P(x) =
∫
P (x) lnP(x;λ)dx under sampling over

the true ensemble probability distribution P (x) by modifying the parameters λ. For instance,

one-dimensional data x distributed according to an unknown probability density P (x) might be

modeled with a Gaussian probability density for P(x;λ), with likelihood maximization achieved

by determining the mean and variance of x, which would be the model parameters λ. If the

training ensemble probability does not depend on λ, then maximizing the likelihood of P(x;λ) is
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equivalent to minimizing the relative entropy (or Kullback-Leibler divergence)

KL(P(x;λ) ,P (x)) =
∫
P (x) ln

P (x)
P(x;λ)

dx (1a)

=−〈lnP(x;λ)〉P(x)

+ 〈lnP (x)〉P(x) (1b)

The first term on the right is the negative log-likelihood and the second is not involved in opti-

mizations over the parameters λ. Introducing a set of lower-dimensional (latent) coordinates z and

using Bayes’ rule we obtain the following objective to minimize

−〈lnP(x;λ)〉P(x) =
〈
− lnP(x|z;λ)− lnP(z;λ)

+ lnP(z|x;λ)
〉
P(x)

(2)

At this point, Eq. 2 is a completely general Bayesian modeling objective. To make it useful for

specific applications, the form of the model probability densities must be specified.

Typically, and as implemented in this work, the decoding distribution P(x|z;λ) of a VAE

for continuous degrees of freedom is modeled as a multivariate normal N (µ(z) ,σ (z)) with no

covariance between degrees of freedom (i.e., the covariance matrix is solely defined by a vector of

its diagonal elements).35 Note that, in the notation defined above, the mean and variance are part of

the model parameters λ. For discrete degrees of freedom, such as for a lattice gas, the decoding is

represented by a Bernoulli distribution Bern(µ(z)), also with probabilistic independence between

sites. To be mathematically precise, the decoding distribution for these models may be decomposed

as

P(x|z) = ∏
i=1

P(xi|z) (3)

For molecules and dense fluids, the assumption of independence is not appropriate, which we make

clear in Section 4. Instead, we require an autoregressive model, as employed in state-of-the-art
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Figure 1: Autoencoding structure involves an encoding to a lower-dimensional space and a decod-
ing to the original space. During training, parameters are adjusted so that configurations sampled
from the ensemble of interest have high probability under P(x|z;λ) after being encoded and de-
coded. To generate new structures, we draw from a simple distribution that is transformed into the
latent distribution to be decoded.
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architectures for generating images36

P(x|z) = P(x1|z)∏
i=2

P(xi|z,x<i) (4)

The meaning of Eq. 4 is that degree of freedom i is sampled with full knowledge of the sampled

values of all i−1 degrees of freedom. As a result, autoregressive models are capable of capturing

even long-range correlations. In practice, sampling then proceeds iteratively, updating the model

probability density for the next degree of freedom that will be sampled based on those already

drawn, i.e., µi (z,x<i) and σi (z,x<i). Autoregressive decoders will be used throughout this work,

except where otherwise indicated.

It is important to note that, even without autoregression, the decoding model is remarkably

flexible due to the dependence of the parameters µ and σ on the latent coordinates z. In fact,

this dependence is approximated by a highly nonlinear, powerful neural network taking the latent

coordinates as inputs, i.e., (µ,σ) = h(z). Any information encoded in the latent space may thus

be communicated to the decoding distribution to build in correlations between degrees of freedom.

Autoregressive structure, then, is most useful for situations where the latent space dimensionality

is lower than that necessary for a lossless encoding, which is desirable for accelerating molecular

simulations.

Latent space distributions, or priors, should be simple enough to facilitate generative modeling,

but also complicated enough to allow for information-rich encodings. This presents a dilemma

that is resolved by placing normalizing flows on the prior.37–41 Normalizing flows15 are bijective

mappings defined by neural networks for which the Jacobian determinant Rz′→z (z′) is exactly

known. This allows for sampling from the classic choice of a standard normal N (0,1) without

overly simple latent distributions arising upon training of the overall VAE objective.40,42,43 By

training the parameters of the neural networks, we learn a mapping f (z′) from a simple distribution

in coordinates z′, here a standard normal, to an arbitrarily complicated distribution in z while

simultaneously gaining the ability to estimate its probability density. Once a VAE is trained, new
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configurations may be generated as shown in Fig. 1 by drawing from a standard normal, passing

through the flow, and decoding.

With the decoding and latent distributions specified, and training data specifying the target

for P(x;λ), Bayes’ rule indicates that there is no freedom left to arbitrarily specify the encoding

distribution. To reclaim this ability and simplify training, we introduce a variational distribu-

tion q(z|x;φ) defined by its own parameters φ. Adding 〈lnq(z|x;φ)〉P(x) to both sides of Eq. 2,

rearranging, and averaging in z over this distribution, we obtain the VAE objective function to

minimize9,35

−
〈

lnP(x;λ)−〈lnq(z|x;φ)− lnP(z|x;λ)〉q(z|x;φ)

〉
P(x)

=
〈
〈− lnP(x|z;λ)− lnP(z;λ)+ lnq(z|x;φ)〉q(z|x;φ)

〉
P(x)

(5)

−〈lnP(x;λ)−KL(q(z|x;φ) ,P(z|x;λ))〉P(x)

=
〈
〈− lnP(x|z;λ)〉q(z|x;φ)+KL(q(z|x;φ) ,P(z;λ))

〉
P(x)

(6)

The right-hand side of Eq. 6 is an upper bound on the negative log likelihood. The bound is tight

when q(z|x;φ) is a close approximation to P(z|x;λ), which is greatly facilitated by a flexible

latent distribution,42 such as one defined by a normalizing flow. We follow typical convention

in VAEs by using a multivariate normal distribution with zero covariance for q(z|x;φ), with the

means and variances represented by φ and determined by the neural network g(x).

Before continuing to define VAE-based MC moves, it is worthwhile to comment on the general-

ity of the Bayesian framework for probabilistic modeling, noting relative entropy coarse-graining44

as a special case. Deterministic mappings, such as those used in coarse-graining, are specific cases

of probabilistic mappings, where the probability density is represented by a delta function defined

by mapping function z = g(x). If this is assumed for the encoder distribution P(z|x;λ), then
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inserting this into the objective in Eq. 2 and averaging over P(z|x;λ) on both sides yields

−〈lnP(x;λ)〉P(x) =
〈
− lnP(x|g(x) ;λ)

− lnP(g(x) ;λ)

+
∫

δ (z−g(x)) lnδ (z−g(x))dz
〉
P(x)

(7)

Though the integral in Eq. 7 diverges, it does not involve any optimizable parameters if the map-

ping is fixed (i.e., not modified during training), and may thus be considered a constant for the

purposes of minimizing the left-hand side. With such a fixed mapping, statistical mechanics sup-

plies that the distribution in latent, or coarse-grained, space will be a Boltzmann distribution with

the coarse-grained potential UCG defined by parameters λU approximating the potential of mean

force. Inserting this into Eq. 7 and neglecting terms that do not depend on optimizable parameters,

we obtain the original relative entropy objective in Ref. 44 with one critical distinction

min(λ,λU )

〈
− lnP(x|g(x) ;λ)+βUCG (g(x) ;λU)−βACG

〉
P(x) (8)

The distribution P(x|g(x);λ) is related to the mapping entropy defined by Shell 44 , who, focusing

on the development of coarse-grained models, assumed this distribution to be uniform and hence a

constant of the optimization. Decoding models presented in this work may instead be dropped into

Eq. 8 and trained simultaneously with coarse-grained potentials to obtain a back-mapping, open-

ing up the possibility of multi-scale models that switch efficiently between resolutions, which we

briefly explore in the Supporting Information (SI). Such ideas have previously been investigated by

Wang and Gómez-Bombarelli 45 , though the authors focus on using an innovative encoder design

to learn coarse-grained mappings and potentials without exploring different probabilistic decoder

models or sampling from the decoding distribution. In the next section, we describe how explicit

use of the decoding probability distribution enables generation of configurations that, along with

appropriate acceptance criteria, exactly sample the fine-grained ensemble of interest.
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2.2 VAE-based MC moves

We are now ready to derive VAE-based MC moves, the main theoretical contribution of this paper.

Because all of the model probability distributions in a VAE are known, they can be used as proposal

probabilities for MC moves passing into and out of the latent space. We show in Fig. 2a how we

use the encoder distribution q(z|x;φ) to propose a configuration in latent space z1, the prior P(z)

to sample a new latent configuration z2, and the decoder distribution P(x|z;λ) to propose a new

full-space configuration x2. With the following ratio of acceptance probabilities, we impose super-

detailed balance46 (i.e., requiring that detailed balance be satisfied for all possible paths through

latent space and back)

α1→2

α2→1
=
P (x2)q(z2|x2;φ)P(z1)P(x1|z1;λ)
P (x1)q(z1|x1;φ)P(z2)P(x2|z2;λ)

(9)

Subscripts 1 and 2 indicate the starting and newly proposed configurations, respectively. In the

event that the model is well-trained and the variational distribution is sufficiently flexible, q(z|x;φ)≈

P(z|x;λ). Bayes’ rule then provides that

P(x;λ) =
P(z)P(x|z;λ)

P(z|x;λ)
(10)

Substitution into Eq. 9 leads to

α1→2

α2→1
=
P (x2)P(x1;λ)
P (x1)P(x2;λ)

≈ 1 (11)

As indicated in Eq. 11, the acceptance ratio approaches unity for a well-trained VAE for which the

encoding is lossless. In practice, this limit is difficult to reach, but it is remarkable that, through

training a VAE, we may discover highly efficient MC moves in addition to defining information-

rich latent coordinates. With our formulation, VAE-based MC moves can significantly accelerate
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sampling while satisfying detailed balance. The extent to which sampling is accelerated is only

dependent on how well the VAE model approximates the true distribution, with the theoretical

limit being perfectly uncorrelated sampling of the ensemble of interest.

We may additionally conduct biased VAE-based MC moves in order to achieve more uniform

sampling within the learned CG space. For a given x, a trained VAE provides an estimate of the

biasing potential W (x) that is the negative of the free energy along the latent coordinate and can

be applied to achieve more uniform sampling in z space

βW (x) =− ln
∫

P(z)q(z|x;φ)dz (12)

Intuitively, the integral is the average latent space probability associated with x. Based on the

analytically known transformed prior P(z′) (a standard normal) and the definition of the flow

f (z′) with an easily calculated Jacobian determinant Rz′→z (z′), the probability P(z) for Dl latent

dimensions is

P(z) =
1

(2π)Dl/2 e−
1
2(∑i f−1(zi)

2)+lnRz→z′(z) (13)

While q(z|x;φ) is a known Gaussian, the bijective transformation f−1 (z) appearing in Eq. 13

involves neural networks and is not easily integrated over. In practice, we draw many z from the

distribution q(z|x;φ) and estimate the average of Eq.13 over this sample. Since this is a stochastic

estimate of the biasing potential, the resulting MC simulation will not be strictly equilibrium, but

will satisfy detailed balance on average, and will come closer to doing so as the number of sampled

z increases.

In the work of Noé et al. 17 , an MC sampling scheme based on the model distribution learned

by normalizing flows is also proposed for enhancing sampling. In that scheme, however, the

probability determining MC sampling is that of the latent distribution (note that for a normalizing

flow as utilized in Ref. 17, the “latent” z is of the same dimensionality as x) under mapping from
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the ensemble of training configurations

P(z) =
P (x)

Rx→z (x)
(14)

This is different from the probability of the ensemble of interest by a factor of the Jacobian deter-

minant Rx→z (x), which will not cancel as it changes for different full-space coordinates, so that

the acceptance ratio is
α1→2

α2→1
=
P (x2)Rx→z (x1)

P (x1)Rx→z (x2)
(15)

As a result, the MC sampling scheme of Noé et al. 17 samples the learned latent space, but will

not necessarily produce a sample from the ensemble of interest. It will in the limit of a perfect

normalizing flow model, but otherwise reproduces the distribution that is learned through training

on limited samples. While this does accelerate sampling, it does not result in exact sampling, as

our VAE-based MC moves do, and requires re-weighting.

To achieve exact sampling with normalizing flows, one can propose configurations by sampling

from the latent space (e.g., a standard normal over all degrees of freedom) and mapping back to the

model distribution P(x) learned from training data drawn from P (x). As shown by Nicoli et al. 47 ,

the acceptance ratio that satisfies detailed balance in the ensemble of interest with this proposal

scheme is
α1→2

α2→1
=
P (x2)P(z1)Rz→x (z2)

P (x1)P(z2)Rz→x (z1)
=
P (x2)P(x1)

P (x1)P(x2)
(16)

Wu et al. 48 developed a similar MC scheme based on non-equilibrium candidate MC moves49

that also satisfies detailed balance for non-bijective flows with stochastic sampling layers. While

such MC moves based on normalizing flows may also approach acceptance ratios of unity, no

dimensionality reduction is performed and hence no information-rich latent space is defined. Since

VAEs focus sampling along the learned low-dimensional manifold, they are expected to result in

improved sampling. With our formulation of proposal probabilities for VAE-based MC moves,

sampling is unbiased and exact, contrary to the claims of Nicoli et al. 47 .

Sampling is also expected to be significantly improved over resolution exchange24,25 or nested

12



Initial 
config, 
𝒙!

Final 
config, 
𝒙"

𝒛!

𝒛"

Sample 𝑞 𝒛 𝒙!

Calculate 𝑃 𝒙! 𝒛!

Sample 𝑃 𝒙 𝒛"

Calculate 𝑞 𝒛" 𝒙"

Sample 
𝑃 𝒛

Calculate 
𝑃 𝒛!

(a)

(b)

Figure 2: (a) MC moves are performed by passing through the learned latent space, naturally
leading to efficient MC moves for well-trained VAE models. (b) We show instantaneous values of
the logarithm of the acceptance probability ratio in Eq.9 (top panel) and the largest contributions
to this on the right-hand-side of Eq. 9 (bottom panel). Specifically, −β∆E is the difference in the
lattice gas total energy (particle-particle and chemical potential terms) between configurations x2
and x1, and it is also the logarithm of the ratio of P (x2) to P (x2). Nearly offsetting this term
is the logarithm of the ratio of probabilities output by the decoder. The VAE model used for MC
sampling is autoregressive with a single latent coordinate and trained on the full set of lattice gas
data.
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MC.26,27 In each of those methods, a coarse-grained, or simply computationally cheaper, Hamil-

tonian governs MC moves or molecular dynamics in the latent space. New configurations at full

resolution or with the expensive Hamiltonian are then drawn from these simulations. In contrast,

samples from VAE-based MC moves come directly from the probability density of the prior that

is learned during training. Direct sampling from the latent distribution in this way results in per-

fectly uncorrelated samples, which is the limit of infinitely long simulations in the latent space.

If a specific coarse-grained model is desirable, decoders may be trained as presented here and ap-

plied to similar MC moves with latent configurations generated by coarse-grained simulations. An

example of such training is provided in the SI.

3 Methods

3.1 Neural Network Architecture and VAE Model Training

All models are implemented in TensorFlow50 (version 2.4.0) and trained on an NVIDIA RTX

2080TI GPU. Stochastic encoders are modeled by fully-connected neural networks with 2 hidden

layers of 1200 units each for the lattice gas and 300 units for all other systems. A separate dense

network layer maps the output of the hidden layers to the means and log-variances of the coarse-

grained (CG) space. RELU activation is used for all but the last layer.

Flows follow the RealNVP structure of Dinh et al. 37 but utilize monotonic rational quadratic

splines parametrized by neural networks, as introduced by Durkan et al. 38 , which enables powerful

transformations for both many- and single-dimensional spaces. Neural networks to predict the

spline parameters consist of a single fully-connected layer mapping the latent coordinates z to a

hidden dimension of 200 followed by three dense layers mapping to the spline parameters, where

32 bins on the interval [−10,10] are used to partition spline points. This interval is arbitrary as

long as it encompasses the region of z space with non-zero probability density.

Conditionally independent decoders contain fully-connected networks with tanh activations

and hidden dimensions of 1200 for the lattice gas and 300 for all other systems. A fully-connected
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network with no activation then predicts the logits associated with the probabilities of each lattice

site containing a particle, or the means and log-variances of degrees of freedom in continuous

systems. The autoregressive decoder similarly starts with two fully-connected neural networks

with tanh activations and hidden dimensions of 1200 (or 300 for all but the lattice gas). Another

fully-connected layer then maps to a set of starting logit values for the lattice, or mean and log-

variance values for other systems. A masked network51 with identical input and output dimensions

predicts additive shifts to the outputs predicted by the previous layer. Masking is used to enforce

autoregressive structure, with each degree of freedom only influenced by degrees of freedom with

a lower index. For example, the base logit value predicted for the first degree of freedom by the

previous layer will not be modified by this masked network, while the second degree of freedom

will be shifted by an amount that depends only on the sampled value for the first degree of freedom,

as well as the latent space since skip connections52 are utilized. When generating new structures,

this means that a loop over the dimensionality of the full configurational space is performed. Each

degree of freedom is sampled before passing that and all previously sampled values to the masked

network in order to create the distribution for the next degree of freedom, thus requiring as many

evaluations of the masked neural network as dimensions in the space.

The decoding model distribution P(x|z;λ) is highly system-dependent. For all systems stud-

ied and VAE models implemented, it is important to note that we have not applied convolutional

schemes or considered permutational invariances (e.g., lattice sites or particle identities) of system

degrees of freedom. As such, each trained VAE model is specific to the ordering of degrees of free-

dom and coordinate system chosen for the training data. Lattice gas configurations are discrete,

and so a Bernoulli distribution is chosen for the decoder P(x|z;λ) ∼ Bern(µ(z)), where µ is the

vector of probabilities for each site to be occupied (or, equivalently, mean occupancy). The param-

eters λ are the logits α associated with the probabilities for each site, with, for site i, µi =
1

1+e−αi .

Logits are output by the decoder’s neural network h(z) because their values are unconstrained

on the real line, but their definition guarantees probabilities between 0 and 1. For continuous,

non-periodic degrees of freedom, P(x|z;λ) ∼ N
(
µ(z),σ2(z)

)
. Directly sampling continuous,
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periodic degrees of freedom, such as dihedral angles of molecules, requires a von Mises distri-

bution P(x|z;λ) ∼ vonMises(µ(z),κ(z)). If the decoder alternatively predicts sine-cosine pairs,

we use a Gaussian distribution instead, though, as we show in the SI, this tends to perform more

poorly than a von Mises distribution (Figs. S3-5, Table S1). Notice that σ2 and κ must be positive,

and so their natural logarithms are output by h(z) and transformed.

Models are all trained with an Adam optimizer53 with a learning rate of 0.0001 and other

parameters following their default values in TensorFlow. For VAE models of the lattice gas, the

encoder and decoder are first trained with a weight on the Kullback-Leibler (KL) divergence term

annealed from 0 to 1 over 20 epochs. This helps prevent initial domination of the KL divergence

term and collapse of the encoding to an overly simple, uninformative distribution.54 We subse-

quently optimize with the full ELBO objective for 80 epochs over shuffled data with a batch size

of 200, which achieves converged loss functions and reproducible results (Figs. S6-8). When train-

ing on mid- and high-density data, the training time with the full loss is extended to 180 epochs

since these datasets contain fewer samples (Fig. S6). For molecular systems, we instead anneal

for 40 epochs and train manually until improvement in the 5% of the training set left out for val-

idation becomes small (see Figs. S9-11). For n-eicosane, this is 320 epochs (Fig. S9). Alanine

required 480 epochs (Fig. S10), and training of the 2D fluid dimer system required 160 epochs

after annealing (Fig. S11).

3.2 Simulations

Simulations of a 2D lattice gas are executed with translation, insertion, and deletion MC moves, as

described in detail in the SI. Reference data for training VAE models comes from two simulations,

one starting at low density and one starting at high density, of 100000000 steps each with config-

urations saved every 1000 steps, with trajectories in particle number shown in Fig. S15. While

validation during training involves a randomly selected 5% of the reference data, an independent

test set was used to assess VAE models. The independent test data set comes from initiating 100

independent MC simulations (with only translation, insertion, and deletion moves) from random
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configurations drawn from the trajectory generated by VAE-based MC moves using an autoregres-

sive model with a 1D latent space trained on the reference data set. We run each simulation for

2000000 steps with configurations again saved every 1 000 steps. In all MC simulations with-

out VAE-based moves, we selected translation randomly with 50% probability and insertion and

deletion each with 25% probability.

For model polymers and alanine dipeptide, we use the OpenMM package55 to generate config-

urations with molecular dynamics simulations. Eicosane in vacuum is modeled with the TraPPE

united atom representation.56 We model alanine dipeptide in vacuum with the AMBER99-SB force

field.57 All molecular systems are simulated for 1 µs with configurations saved every 1 ps. Train-

ing data for VAEs is sampled uniformly from every tenth configuration to yield 100000 samples.

For all molecular systems, bond-angle-torsion coordinates (computed using the BAT analysis mod-

ule of MDAnalysis58–60) are used with rigid translation and rotation removed for the purposes of

training VAEs. Bonds with constrained lengths are also removed from the degrees of freedom

provided for training, leaving only non-rigid bonds, angles, and dihedrals. During the encoding

process, all periodic degrees of freedom (i.e., dihedral angles) are converted to sine-cosine pairs,

which provides coordinates that keep similar angles close to each other regardless of the presence

of periodic boundaries.7 Unlike Chen et al. 7 , we are not necessarily interested in directly utilizing

the discovered latent space for biasing molecular dynamics simulations, so its smoothness only

affects the ease with which the flow on the prior converts this distribution to a standard normal.

Additionally, those authors only considered autoencoders with a reconstruction term in the loss

(first term on the right-hand-side of Eq. 6). Introduction of the KL divergence term pushes the

encoding to be smooth to facilitate the prior flow. As such, we do not consider explicit addition of

circular degrees of freedom to the latent space.7

The 2D Lennard-Jones fluid system with a single highly attractive dimer is described in Ref.

17. We conduct simulations using the software61 published in association with the work of Noé

et al. 17 . Simulations starting from both open and closed states are run for 10000000 steps with

configurations saved every 100 steps after a burn-in period of 10000 steps. As crossing between
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open and closed states is never observed, this generates 100000 configurations from each of the

open and closed states that are used for training VAE models. Before training, all particle identi-

ties are permuted to keep each particle trajectory localized to a small region within the simulation

box17 rather than passing through all parts of the box as particles diffuse past each other. Permuted

particle trajectories are also centered and whitened before training, which improves VAE perfor-

mance (Fig. S3, Table S1). Full details for simulations of molecular systems and the 2D fluid are

provided in the SI.

4 Results and discussion

4.1 Lattice gas

As a first test of VAE-based MC moves, we turn to a lattice gas, which is a realistic model of a

fluid under conditions of vapor-liquid phase equilibria and exhibits fluctuating microstructures. In

two dimensions, this model may be represented by a binary image, with each pixel assuming a 0

where no particle exists and a 1 where a particle is present. All simulations are performed in the

grand canonical ensemble, with the particle-particle interaction strength and chemical potential

chosen to make low- and high-density configurations equally probable at equilibrium, though the

data used for training below does not necessarily reflect this due to finite sampling. Further details

are provided in Section 3 and the SI.

Training a VAE with a single latent dimension results in a learned latent distribution (Fig. 1)

that, aside from translation and scaling, is similar to the distribution of particle numbers used for

training shown as a dashed black line in Fig. 3. From samples generated at various percentiles of

P(z) in Fig. 1, it is clear that this coordinate also encodes particle density. These results are for

a VAE with an autoregressive decoder, which successfully generates configurations with particle

number, energy, and cluster size distributions matching the training data (Fig. 3). The only notable

difference from the training data is a slightly broader high-energy tail in the distribution of total

energies. In contrast, Fig. 3 also shows that conditionally independent decoders are only capable of
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Figure 3: Distributions of (a) numbers of particles, (b) total energy (particle-particle and chemi-
cal potential contributions), and (c) particle cluster size are shown for various VAE models with
a single latent dimension trained on lattice gas data. All distributions are reproduced well with
autoregressive decoders, but poorly for conditionally independent decoder models. Black dashed
lines represent normalized fine-grained ensemble histograms over 200000 samples from the refer-
ence simulations, while model curves represent 10000 draws from standard normal samples passed
through a flow and decoded.
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accurately capturing distributions in particle number. Such models ignore long-range dependencies

and fail to capture the correct cluster size distribution, which results in higher potential energies.

We note that the ability of a VAE model to reproduce inputs is sensitive to its overall struc-

ture. For instance, increasing the latent dimension allows for more expressive latent spaces and

improved conditionally independent models. Reconstructions (passing configurations through the

encoder and decoder and resampling) from an autoregressive model with a single latent dimension

correctly capture the size and number of clusters, but do not place clusters in the same locations

as the original image (Fig. S12). Moving up to 10 latent dimensions provides enough information

for both autoregressive and conditionally independent models to match the locations of clusters.

However, the conditionally independent model still includes too many small clusters that lead to

high energies (Fig. S12).

Because a VAE learns a distribution based on a training data set, it will also learn inaccuracies

or biases associated with this data. This is clear from Fig. 3 in that the distribution in particle

number generated by the VAE matches that of the original dataset, which, due to limited sampling,

is asymmetric rather than equally weighted to high and low densities. Unfortunately, this means

that we expect trained VAE models to be only sparingly transferable, with relevance only to the

data on which they are trained. Fig. 4 shows that this is indeed the case. When trained on low-

density data alone, a VAE recognizes that high-density configurations should be placed far away in

both latent space and configurational space, but drastically underpredicts the density. Due to this,

the resulting configurations are of high energy, with their likelihood over-represented compared

to the ground-truth ensemble. Given that high-density configurations were never observed during

training, this might be anticipated, but we even observe a lack of transferability when the training

data does include configurations relevant to the new conditions.

High-temperature data include configurations that are also likely at low temperatures, but re-

constructing low-temperature data from a VAE trained on high-temperature information results in

particle number distributions significantly shifted and broadened (Fig. 4). This is related to the

fact that the trained VAE has no sense of temperature and attempts to reproduce the training dis-
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Figure 4: Particle number (a) and total energy distributions (b) are shown for models trained at
specific density ranges or temperatures and applied to reconstructing data at a different density
or temperature. The black dashed and dotted curves represent data at high and low temperatures.
Blue curves are from reconstructions (i.e., passing through the encoder and decoder) of data from
all densities with the VAE trained only on low densities (N less than 200). Orange curves are for
a VAE trained on high-temperature (β = 1.77) data and applied to reconstructing low-temperature
(β = 2.00) data.

tribution, which is broader at high temperatures, rather than exact configurations. Even though

low-temperature configurations have been observed at a high temperature, their distribution of en-

codings in latent space and subsequent full-space decodings, are permissively broadened compared

to what would need to be learned at a lower temperature. This acts to also broaden the reconstructed

grand canonical energy distribution and shift it to higher energies. Figs. S13-14 of the SI demon-

strate that we can build in explicit temperature dependence by training with datasets from multiple

temperatures and scaling the variance of the prior distribution based on reduced temperatures, as

described by Noé et al. 17 . While this enables the generation of configurations specific to a given

temperature, it requires more extensive training data and, as we show later, does not limit the use of

VAEs trained at one temperature to propose moves at another. Note that an inability to reconstruct

distributions of data at different temperatures does not necessarily mean that the produced config-

urations are unphysical. Reconstructed configurations are likely to be physically relevant, but with

the probability of their occurrence overestimated. As such, we demonstrate below (Fig. 6c) that

VAE-based MC moves are in fact capable of accelerating sampling at temperatures different from
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those used for VAE training.

Even if a VAE model is inaccurate due to limited training data, VAE-based MC moves exactly

sample from the ensemble of interest and accelerate sampling in two ways: (1) increase acceptance

rates by modeling probabilities used for proposals that offset probabilities governing sampling, as

shown in Eq. 11 and (2) drive rapid conformational transitions by generating new configurations

from a learned distribution in a lower-dimensional space (i.e., samples are drawn directly from

P(z)) in Eq. 9). We observe the first mechanism in the lower panel of Fig. 2, which displays

“time” series of the acceptance probability ratio in Eq. 9 for VAE-based MC moves. The data

show that the ratio of P(x|z;λ) terms are highly correlated to, and largely offset by, total energy

differences. Logarithms of other probabilities appearing in Eq. 9 are two orders of magnitude

smaller, indicating that the model places the largest uncertainty in the decoding distribution. This

is consistent with the idea that the encoding involves information loss and thus moving back, from a

lower to a higher dimension, involves some guesswork. Probabilities in Eq. 9 do not exactly cancel,

however, and the fraction of accepted MC moves (i.e., acceptance rate) based on a Metropolis

criterion facc is 0.17 for the VAE model displayed in Fig. 2. Though significantly less than the

theoretical upper bound of unity, this acceptance rate is approximately the same as that observed

for MC simulations of a lattice gas with only translation, insertion, and deletion moves. Compared

to these reference MC simulations, however, VAE-based moves accelerate sampling along the

latent dimension, which is related to the particle density. This second mechanism for enhancing

sampling is clear from comparing the time series of particle numbers in Fig. 5b and Fig. S15.

VAE-based moves lead to many transitions between low- and high-density states, whereas only 6

such transitions were observed in 5 orders of magnitude more simulation steps with the standard

move set. Autocorrelation functions in Fig. 5a provide further evidence that VAE-based MC moves

drastically enhance sampling.

Despite reduced autocorrelation times, VAE-based moves are limited in their sampling based

on the data used in training. Fig. 5 shows that a VAE trained only on low-density data will only

increase sampling within the low-density regime. This is directly tied to the lack of transfer-
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Figure 5: Autocorrelation times are shown for various trained VAE models in (a) with associated
sample trajectories in particle number shown in (b). Black-dashed curves represent the reference
MC with translation, insertion, and deletion moves, while colored curves are MC simulation based
on VAE models. Blue curves are models trained with all lattice gas data (low-, mid-, and high-
densities), green with only low-density data (below 200 particles), and orange with only mid-
density data (between 200 and 584 particles). All VAE models are trained with autoregressive
decoders and a latent space with 1 dimension.
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ability of the model — if a specific configurational space is never sampled, the VAE will not

place any support of its probability distributions in this region. When trained on only mid-density

(low-probability) data, the VAE still proposes moves with a shorter autocorrelation time than the

reference (orange curves in Fig. 5), but with a low acceptance rate (Table 1). To efficiently drive

sampling beyond that used for training, a biasing function based on the learned latent distribution

may be applied. This is demonstrated in Fig. 6b for VAE-based MC moves, using a VAE trained

on all of the lattice gas training data. In cases of extremely poor sampling, such as the VAE trained

on mid-density data, a combination of VAE-based and traditional MC moves is likely required to

achieve improved sampling under the influence of the VAE-learned biasing potential.

Sampling from VAE-based MC moves is far less limited by a VAE’s knowledge of temper-

ature than the configurations seen during training. While we demonstrated earlier that our VAE

models have no sense of temperature, VAE-based MC moves will still satisfy detailed balance at

any temperature, regardless of the model chosen for proposing new configurations. It is likely

that the latent space learned at one temperature is still meaningful at another, resulting in rapid

barrier crossing, which is borne out in Fig. 6c. Acceptance probabilities, however, are decreased

by an order of magnitude to 0.01 when applying a VAE trained at β = 1.77 to an MC simulation

at β = 2.00, and to 0.006 for simulations at β = 1.60. Fig. 6c shows, though, that even when

started from a poorly sampled and biased distribution of configurations at a different temperature

than the VAE-based MC simulation, the correct distributions at other temperatures may be ob-

tained. At the lower temperature in particular, sampling is significantly accelerated compared to

MC simulations with standard move sets. Iterative VAE-based MC simulations and training of

VAEs at progressively lower temperatures is thus a potentially efficient route for obtaining difficult

to sample, low-temperature distributions of configurations.

Regardless of the quality of the training data or resulting VAE model, the nature of the VAE-

based MC moves will still preserve detailed balance and produce configurations consistent with

the ensemble of interest. This is apparent in Fig. 6a where the input distribution of lattice gas con-

figurations is asymmetric in particle number density due to limited sampling (i.e., the free energy
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Figure 6: (a) Free energy profiles along particle number for a lattice gas are shown for the reference
(training) MC data (black, dashed) and for VAE-based MC moves with an autoregressive model
trained on all of the data with a latent dimension of 1 (blue). (b) Uncorrected profile based on
the visited states histogram (dotted gray) exhibiting flattened sampling when a bias according to
Eq. 12 is added to VAE-based moves. The reweighted profile, correcting for the bias, is shown
in orange. (c) VAE-based MC moves can accelerate simulations at temperatures other than that
at which they were trained. The dashed curve represents training data at β = 1.77, which was
used to initialize a VAE-based MC simulations at both lower (β = 2.00) and higher (β = 1.60)
temperatures (blue and red curves), below and above the critical temperature. Correct distributions
are recovered at these temperatures, as shown by the circles in each corresponding color, which
come from running 200000 configurations pulled uniformly from 100 independent MC simulations
(translation, insertion, and deletion moves for 2000000 steps) initiated from random configurations
drawn from distributions generated by VAE-based MC at each temperature.

25



profile is incorrectly tilted), but the results of a VAE-based MC simulation reflect a symmetric

distribution, which is expected for the chosen particle-particle interaction and chemical poten-

tial. Even though the VAE model generates configurations that closely reproduce the unbalanced

sampling of the training data (Fig. 3), detailed balance is enforced through Eq. 9. However, incon-

sistencies in the training data reflected in the VAE will reduce the acceptance rate, as seen for the

case of training on only unlikely, mid-density data. Stated differently, facc should be indicative of

the quality of the VAE model, as it reflects how well the underlying loss objective P(x) is matched.

Judging model quality based on facc, however, must be caveated with the fact that MC moves

only consider relative probabilities between proposed configurations. Inaccuracies associated with

relative frequencies of globally defined macrostates, such as low and high densities of the lattice

gas, are not reflected in this metric unless configurations from both such states are proposed. For

instance, MC moves based on a VAE trained with only low-density configurations have an ac-

ceptance rate of 0.14 (Table 1). This is artificially high because the model only proposes new

configurations with low densities and the relative probabilities that the model has learned are accu-

rate for that region of configuration space. Global accuracy across configurations is better probed

via the structural metrics presented in Fig. 3, and is generally hard to assess without some prior

knowledge of the system at hand. Values of loss functions are specific to the training data set, and

only provide estimates of global accuracy if all phase-space is correctly represented.

Despite only tracking relative accuracy of a VAE model, it is interesting to compare facc for

different models and training data sets for the lattice gas in Table 1. Incomplete or biased training

data drives the acceptance rate down, as most notably observed by training on mid-density data.

Interestingly, increasing the latent dimensionality also lowers acceptance. Reasons for this are

unclear. It may be that with 10 latent dimensions, the VAE model becomes capable of memoriz-

ing the training data. We noted this earlier as an ability to more accurately capture not only the

approximate density, but also the shapes and locations of particle or vacancy clusters (Fig. S12).

Subtle overfitting, evident as preferences for specific sizes and locations of particle clusters, is then

possible since the training data is generated from a single trajectory that does not fully sample
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configurational space. While such bias undoubtedly exists, Table 1 does not reveal large changes

in the loss, in particular the reconstruction contribution, between the training data set and an in-

dependently generated test set. While the increase in the loss is larger compared to a VAE with a

single latent dimension, the reconstruction loss remains lower for the test set and the acceptance

rate drops by nearly half.

Table 1: Acceptance rates and loss information for VAE-based MC simulations of a lattice gas.
Loss information for training involves the data set used to train each model, while the test data set
was generated independently (200000 configurations were pulled uniformly from 100 trajectories
initiated from random samples of the 1D VAE-based MC trajectory, each involving 2000000 steps
with only translation, insertion, and deletion moves) and is used in all models to generate the test
loss information.

Model Training Data Latent Dim, Dl facc Train Loss Train Recon Train KL Test Loss Test Recon Test KL
Ref MC N/A N/A 0.16 N/A N/A N/A N/A N/A N/A

Full VAE all data 1 0.17 225.4 224.0 1.4 231.9 230.3 1.6
Full VAE low-density 1 0.14 217.9 216.5 1.4 363.2 354.9 8.3
Full VAE mid-density 1 0.0043 267.2 264.6 2.6 265.8 262.8 3.0
Full VAE high-density 1 0.048 216.6 215.7 0.9 348.8 341.9 6.9
Full VAE all data 10 0.091 224.5 213.9 10.6 234.3 222.7 11.6
Full VAE 1D VAE-based MC 1 0.16 225.3 223.9 1.4 231.8 230.4 1.4
Full VAE 10D VAE-based MC 10 0.018 216.6 204.7 11.9 242.5 229.5 13.0

While it is difficult to fully understand the subtle dependence of facc on training data and latent

dimensionality, trajectories generated by VAE-based MC moves do satisfy detailed balance and

typically more thoroughly sample phase space due to shorter autocorrelation times (Fig. 5). Using

configurations generated by VAE models, we can train new VAEs that are expected to exhibit

enhanced probabilistic models and hence improved acceptance rates. Indeed, we find that the

resulting models generate more symmetric distributions of particle densities (Fig. S16). However,

facc is not observed to increase over previous models. If configurations over the entire phase

space are proposed and detailed balance is observed, then inaccuracies in relative frequencies of

global states should result in lower acceptance. We find, however, that the performance of the

VAEs trained on VAE-based MC trajectories are highly susceptible to the frequency with which

configurations are saved. The number of steps between snapshots should be much longer than the

autocorrelation time to prevent multiple of the same configuration entering the training set. More

optimal MC procedures may involve both VAE-based moves and local translation, insertion, and
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deletion, though we do not pursue such fine-tuning of MC move sets to enhance facc in this work.

4.2 More realistic molecular and fluid systems

While a lattice gas is discrete and represented well by Bernoulli distributions in the decoder, VAEs

can also handle systems with continuous degrees of freedom through autoregressive decoders that

predict the means and variances of Gaussian (or other continuous) distributions. We examine

the performance of such VAEs trained on various systems, including united-atom n-eicosane in

vacuum, alanine dipeptide in vacuum, and a 2D Lennard-Jones (LJ) fluid containing a single dimer

pair interacting via a double-well potential.17,49 Model decoder probability distributions and data

preprocessing are discussed in Section 3, while full simulation details are provided in the SI. All

VAE models employ autoregressive decoders and for all systems we compare VAEs trained with

either 1 or 20 latent dimensions.

Table 2: Acceptance rates and loss information for VAE-based MC simulations of various systems
over 1000000 total attempts. Note that, while the KL divergence term is always positive, the sign
and magnitude of the reconstruction loss depend on the form of the decoder probabilistic model
and the specific training data, leading to differences between systems.

System Latent Dim, Dl facc Loss Recon KL

n-Eicosane
1 0.00010 −4.2 −5.3 1.0

20 0.0093 −10.2 −22.6 12.5

Dialanine
1 0.14 −52.3 −53.3 1.0

20 0.12 −52.0 −58.2 6.2
2D fluid with
dimer

1 0.000005 65.2 61.7 3.5
20 0.00078 52.5 15.6 36.9

Results from VAE-based MC simulations for all of the more realistic systems explored are

shown along with training loss information in Table 2. For all systems but dialanine, facc increases

in moving from 1 to 20 latent dimensions. This improvement is always coincident with a lower

value of the reconstruction loss function. However, for dialanine, we see that better reconstruction

loss does not necessarily result in improved acceptance of VAE-based MC moves. The reduced

reconstruction loss with lower facc and higher total loss is indicative that 20 latent dimensions for

dialanine results in slight overfitting. This points to a subtle balance between reconstruction and
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KL terms in the loss that will depend on the latent dimensionality and decoding model among

other choices of the VAE architecture. Indeed, increasing the weight on the KL term,62 or spe-

cific decompositions of it,42,63–66 is thought to improve training in some cases and result in more

independent and informative latent space coordinates. The reconstruction term drives the model

to reproduce input configurations faithfully, while the KL divergence ensures that this is done by

encoding a minimal amount of information. An example of this tradeoff is provided in Fig. S17,

where it is clear that a VAE with a conditionally independent decoder trained on lattice gas data

produces a more complicated latent distribution compared to an autoregressive decoder with a

more expressive decoding model.

It is encouraging, however, that the acceptance rates for alanine dipepeptide presented in Ta-

ble 2 are similar to those for a lattice gas. While VAE-based MC moves enhance sampling in all

studied systems through their proposal of non-local transitions, facc is much lower for n-eicosane

in vacuum and the 2D LJ fluid. Examining various configurational distributions associated with

each system in Fig. 7, we find that low acceptance rates in VAE-based MC moves are driven mainly

by an inability of decoding probabilistic models to capture the physics of the system at hand. This

was clear in our discussion of switching from conditionally independent to autoregressive models

for a lattice gas, and we also show in the SI (Figs. S3-S5, Table S1) that direct prediction of di-

hedral angles via von Mises distributions, rather than predicting sine-cosine pairs with Gaussians,

improves facc.

In the first column of Fig. 7, we present distributions of the potential energy U , the radius of

gyration Rg, and the dihedral angles φ for united atom n-eicosane. Moving from 1 to 20 latent

dimensions results in significant shifting of potential energies to lower values and more accurate

reproduction of dihedrals. Even with 20 latent dimensions, however, the trained VAE only accu-

rately reproduces a subset of the marginal distributions and correlations between dihedrals (Fig. 7

and Fig. S4). Since marginal distributions over angles are all approximately Gaussian and in-

dependent of other angles and dihedrals (Fig. S4), the decoder should be able to model angular

distributions without any latent information and focus instead on dihedrals.
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Figure 7: VAE performance in generating potential energy distributions and various structural
metrics is shown for (from left to right) n-eicosane in vacuum modeled with the TraPPE united
atom representation,56 alanine dipeptide in vacuum modeled with the AMBER99-SB force field,57

and finally a 2D Lennard-Jones fluid with a single highly attractive dimer as described in Ref. 17.
Black dashed curves represent the distribution of the training data for reference. Blue curves are for
latent spaces with 1 dimension and orange are for those with 20 dimensions. For n-eicosane, the
last two rows show distributions for the radius of gyration Rg and all dihedral angles φ . Dialanine
structural features include the Φ and Ψ backbone dihedrals, and for the 2D fluid we show the
distribution of the dimer distance as well as all interparticle distances. Insets in the first row show
sample configurational snapshots of each system.
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Rather than precisely encoding dihedral values, however, the VAE is driven to learn their un-

derlying distributions by the KL divergence term. That there is difficulty in doing this indicates

that, even with a large latent space and autoregressive decoding structure, the probabilistic models

may not be able to capture all of the correlations in the high-dimensional dihedral space. Further

evidence for this comes in the form of much lower probabilities predicted for configurations with

low Rg values. Such collapsed states are induced by attractive LJ interactions between particles67

that undoubtedly create longer-range, more subtle correlations that complicate training of the de-

coder model. An inability of the VAE to capture collapsed states, while still capturing some local

correlations between dihedrals, suggests that the decoder particularly neglects correlations arising

from non-bonded interactions. In contrast, dialanine is much more rigid, with interatomic (LJ and

electrostatic) interactions playing a minor role compared to dihedral potentials on the Φ and Ψ

torsions. With less opportunities for atomic overlaps and fewer long-range, collective correlations,

VAE-generated potential energy and configurational distributions for dialanine better match the

training data (Fig. 7, column 2) and facc is also much higher (Table 2).

In the last column of Fig. 7, we consider a 2D Lennard-Jones fluid with a single particle dimer

of differing interactions, as described in Ref.17. The single particle pair (in blue in Fig. 7) inter-

acts with a double-well potential with highly attractive basins separated by a high barrier such that

dimer dissociation/association represents a slow transition. As such, data is generated by sampling

for equal amounts of time in each dimer state, though these two states are not actually equivalent

in free energy. The fluid is contained within repulsive walls and is free to move within these con-

fines, though particle trajectories are permuted, centered, and whitened before VAE training, as

described in Section 3. A single latent dimension captures distinct associated and dissociated pop-

ulations, but produces distributions more dissimilar to the reference than twenty-dimensional latent

spaces, which only exhibit slight broadening of the low-distance peak. For 20 latent dimensions,

the distribution of all interparticle distances (including the dimer) mostly matches the reference.

However, closer inspection reveals that small interparticle distance peaks, representing nearest or

next-nearest neighbors, are broadened. Such inaccuracies represent particle overlaps that lead to
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large potential energies.

Figure 8: Free energy profiles along Φ and Ψ dihedrals of dialanine in vacuum for (a) training data
from MD simulations at 300 K and VAE-based MC with a 1D latent space at (b) 300 K, (c) 200
K, and (d) 400K. VAE-based MC simulations (1000 parallel simulations of 10000 steps each with
configurations saved every 100 steps) recover the expected ensembles at the training temperature
and at much lower and higher temperatures.

While results for n-eicosane and the 2D LJ fluid demonstrate the difficulties in training VAEs

to avoid unrealistic atomic overlaps and to respect collective attractions, VAE-based MC moves

can still prove useful in accelerating sampling. Fig. 8 reveals that the free energy profile in the

space of the Φ and Ψ backbone dihedrals generated by VAE-based MC matches that from the MD

simulation producing training data. Without any additional training, VAE-based MC simulations

are also able to generate ensembles at temperatures 100 K lower and higher than the training

dataset. Configurations in the small basin around [Φ,Ψ] = [π/2,−π/4] are sampled more sparsely

compared to the training data due to their low probability in the VAE model and the absence of

additional MC moves that sample locally. However, probabilities of these configurations relative

to better-sampled free energy basins are only slightly lower than from MD sampling. This is

likely attributable to deficiencies in the sampling of the single, long MD simulation, which only

experienced 2 transitions to and from the more unlikely states. In contrast, the VAE-based MC

simulations experienced many such transitions, achieving better relative global probabilities of
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configurations at the expense of less local exploration within the high free energy basin.

Figure 9: VAE-based MC simulations starting from the training data distribution (dashed black
curve) approach the true equilibrium distribution (green diamonds from umbrella sampling, as
described in Ref. 17) for the distance between dimer particles, which places the open state 6 kBT
higher in free energy. Free energy profiles are generated from the second half of 1000 VAE-based
MC simulations (20 latent dimensions) run in parallel for 100000 steps with configurations saved
every 1000 steps. Increased acceptance rates in VAE-based MC simulations with configurational
bias selection (orange) allow for a closer approach to equilibrium for the same number of MC
steps.

Global sampling is accelerated in the 2D LJ fluid in a manner reminiscent of VAE-based MC

simulations of the lattice gas. Specifically, the distributions based on equal sampling of the closed

and open dimer states used for training are transformed into a preference for the closed state. Af-

ter many VAE-based MC moves that globally transition the system, we see in Fig. 9 that the free

energy profile along dimer distance d approaches that from umbrella sampling. Due to low accep-

tance rates, this takes many MC trials, though, as described in Appendix A, we find that generating

many configurations for each trial and combining VAE-based proposals with configurational bias

selection increases acceptance by orders of magnitude. Fig. 9 and Fig. S18 show that these moves

speed convergence to the equilibrium distribution. Despite low acceptance rates, VAE-based MC

moves are still computationally efficient for recovering correct, equilibrium sampling compared

to MD or standard MC simulations, which have difficulty crossing the 20 kBT barrier separating

open and closed states. For systems with high free energy barriers, especially those for which low-
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dimensional descriptions are unknown or nonintuitive, VAE-based MC is thus a promising route to

accelerate global sampling and refine equilibrium ensembles generated by molecular simulation.

5 Conclusions

The VAE-based MC moves developed here provide a new tool for accelerating molecular simu-

lations. Moving within the VAE-learned information-rich latent space leads to highly collective

transitions. By encoding and decoding these transitions, we learn efficient proposal moves for

MC simulations. Since the objective of training a VAE is to learn the probability density of the

ensemble of interest, the proposal probabilities approximate the configurational probability. As a

VAE model more closely matches the true probability density, the acceptance rate of VAE-based

MC moves gets closer to unity. However, even if the model is poor, the VAE-based MC moves

still satisfy detailed balance and sample the ensemble of interest exactly. This means that we can

still fruitfully employ a VAE model to perform VAE-based MC moves that rapidly correct inac-

curacies in the training data due to finite sampling. VAE-based MC moves may also be used to

efficiently sample at temperatures different from that at which training data was generated. This is

particularly helpful when applied to lower-temperature simulations where VAE-based MC moves

propose transitions bypassing high free energy barriers. To increase acceptance rates of VAE-based

moves, we have clearly shown that a VAE’s probabilistic models should more closely match the

underlying physics.

It is comforting to know that, regardless of how poorly the VAE model performs, the VAE-

based MC moves will sample the intended ensemble — and the degree to which sampling is ac-

celerated depends on the creativity and power put into the probabilistic modeling effort. This is

of course true of any MC simulation effort for which the proposed moves satisfy detailed balance.

However, we present a framework by which a computer may be used to learn such moves inde-

pendently. Human creativity and physical understanding is still needed, however, in designing

VAE models, in particular decoding distributions. We envision the iterative process of training and

34



redesigning VAE models as a powerful future paradigm in developing MC move sets.

Developing probabilistic decoding models that correctly account for intermolecular interac-

tions and prevent particle-particle overlaps will be an essential element of transitioning VAE-based

MC moves to molecular and fluid systems. We expect that this will not only entail more sophis-

ticated, tailored decoder models, but also involve augmentation of the data input and output by

a VAE (e.g., devising probabilistic models that include information about pairwise atomic dis-

tances). Neural networks designed to respect translational, rotational, and permutational invariance

(or equivariance) of molecular interactions68,69 also hold promise for improving VAE-based MC

moves. In particular, recent innovations in convolutional, autoregressive networks for backmap-

ping with conditional generative adversarial networks70,71 might be fruitfully employed to enhance

decoders in future work. Efficient convolution schemes, applied to both the encoder and decoder,

will also be necessary to make models system-size independent. However, convolutions and deep

learning on point clouds remain active areas of research in the machine learning community at

large.72–75 Unique modifications, such as the proposed incorporation of equivariant convolutions

into VAEs for molecules,76 will be required to adapt current methods to highly structured, corre-

lated point clouds representing molecular fluids. With such tools in hand, it may become possible

to efficiently switch between implicit and explicit solvent models within a single simulation, en-

abling large-scale investigations of self-assembling systems while recovering the precise role of

solvent in driving the assembly process. Many similarly exciting applications exist, presenting

unique opportunities to extend the VAE-based MC framework we have developed in this work.

Appendix A Configurational bias selection

For the same VAE model, acceptance rates may be significantly improved by using configurational

bias selection of trial configurations. In the case of of the 2D LJ fluid system, acceptance for a

VAE model with a 20D latent space can be increased from 0.00078 to 0.0082, an order of mag-

nitude increase. With configurational bias selection for MC moves,46 M trial configurations are
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proposed, where M = 100 for the results shown in Fig. 9 and acceptance rates just cited. We gen-

erate configurations based on a trained VAE model as described in Section 2.2, passing into, along,

and out of the latent space. In reverse, we generate M− 1 configurations and augment this set

with the current configuration to produce M backwards moves. Due to the highly parallel nature of

the VAE code running on a GPU, generating many configurations comes virtually free in terms of

computational time, only incurring additional memory costs. If potential energy calculations are

similarly parallelized, as implemented for the 2D LJ fluid61 VAE-based proposals with configura-

tional bias selections run at nearly the same speed as standard VAE-based MC moves. We assign

weights to each configuration by first grouping together terms in Eq. 9 to approximate the marginal

probability of the ith forward or backward configuration under the VAE model

P(xi;λ)≈
P(xi|zi;λ)P(zi)

q(zi|xi;φ)
(17)

This keeps the weight on each configuration independent of other configurations and the specific

path followed though latent space — in other words, all combinations of forward and backward

configurations are possible. Each forward configuration is assigned the configurational bias weight

wF,i =
e−βU(xF,i)/P(xF,i;λ)

WF
(18)

The subscript F indicates that the configuration is from the set generated for the forward trials (B

will be used for backward). β is the reciprocal temperature and U is the potential energy. The

normalization factor WF, or Rosenbluth factor,46 is given by

WF =
M

∑
i

e−βU(xF,i)/P(xF,i;λ) (19)

We efficiently select a new configuration in the forward direction based on these weights via the

Gumbel-max trick.77 In the reverse direction, the current configuration is automatically selected,
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which leads to the ratio of acceptance probabilities

α1→2

α2→1
=

WF

WB
(20)

We arrive at this result by noting that the proposal probability in the forward direction involves the

probability of generating all forward and backward configurations except the initial configuration,

and in the reverse direction we consider all but the probability of generating the selected new

configuration. The probabilities for generating configurations cancel except for the probabilities

of generating the current and newly selected configurations. The Boltzmann weight and proposal

probabilities of the current and new configurations cancel those in the numerator of the selection

weights, resulting in the above acceptance ratio. More involved derivations and explanations of

configurational bias moves may be found in Ref.46, with the use of arbitrary proposal distributions

addressed in Ref.78.
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