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To the editor

This is a response to a letter published June 2020 in Fire Technology by
Chin Ding Ang, Guillermo Rein and Joaquim Peiro, entitled “Unexpected
Oscillations in Fire Modelling Inside a Long Tunnel”. The letter describes
oscillatory behavior of the pressure field in numerical simulations of tunnel fires
performed with the Fire Dynamics Simulator (FDS), versions 6.1.1 through
6.6.0. Here we would like to explain the causes of these oscillations and recent
efforts to improve the simulation of tunnel fires.

Before embarking on a description of the relevant equations, we will first
provide a simple physical explanation for the problem. FDS uses a low-Mach
number formulation of the Navier-Stokes equations, and one of the conse-
quences of this approximation is that the speed of sound is essentially infinite
in the model. For most building fire simulations, this raises no serious issues,
but when a fire is located within a tunnel that might be several kilometers
long, the impact of this assumption is significant. Here’s why—imagine a large
fire within a tunnel, pulsating turbulently. The heat release rate of such a fire
is not perfectly steady, but rather fluctuates in time, causing fluctuations in
the rate of gas expansion (velocity divergence). If the tunnel walls are sealed,
the excess volume is discharged out the end of the tunnel instantaneously
via an increased volumetric flow rate. Of course, in reality, the excess volume
propagates at roughly the speed of sound as a pressure pulse. However, given
that the speed of sound is roughly 300 m/s, the time step required to track
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these pressure pulses could be up to several orders of magnitude smaller than
the time step required to resolve the fire-driven flow.

Now consider the governing equations. In its simplest form, the equation
governing the gas velocity, u, is given by

∂u

∂t
+ F̂ +

1

ρ
∇p̃ = 0 (1)

F̂ represents all the convective, diffusive, and force terms, ρ is the gas density,
and p̃ is the pressure perturbation, the difference between the local and back-
ground pressure, p− p0. If we apply the divergence operator to this equation,
we obtain an elliptic partial differential equation for the pressure perturbation,
p̃:
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Notice on the right hand side of this equation there is a time derivative of the
gas divergence, ∇ · u. The divergence is a measure of the local expansion or
contraction of the gas, and in a fire simulation, the local heat release rate is
the principal component of the divergence.

The discretized form of Eq. (2) is a system of linear equations, Ap̃ = b,
where A is an N ×N matrix and N is the number of grid cells in the mesh. b
represents the right hand side of Eq. (2). Because the elements of the matrix
involve the density, ρ, and because ρ changes twice per time step, the matrix
would require two time-consuming inversions per time step, a cost that would
slow the simulations by an order of magnitude. To alleviate this problem, we
rewrite Eq. (2) as follows:
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The superscript n represents the time step, meaning that at time step n, an
updated pressure is found using its value from the previous time step. To
increase the accuracy of this scheme, Eq. (3) is solved repeatedly forcing the
old and new pressure terms to converge to within some preset tolerance. The
advantage of Eq. (3) over Eq. (2) is that the matrix A does not change with
each time step, and all necessary manipulation of A for the solution of the
linear system of equations can be done once at the start of the simulation.

Now to the problem at hand. The letter authors note that their simulations
of a 50 MW tunnel fire, in the presence of ventilation fans, exhibit very large
oscillations in the mass flow exiting the tunnel. The cause of the problem
is related to the iterative pressure solution. Eq. (3) is solved twice per time
step. In the first part of the time step, or predictor phase, the pressure, p̃,
is used to estimate the velocity, u, at the next time step using a first-order
accurate forward Euler update derived from Eq. (1). In the second part of the
time step, or corrector phase, the estimated velocity is “corrected” and made
second-order accurate in time. This basic predictor-corrector updating scheme
is referred to as a second-order Runge-Kutta method. The spurious oscillations
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the authors notice are caused by the fact that the iterative pressure scheme
in FDS had been initialized by the pressure field from the previous substep.
It had been assumed that the pressure field obtained in the corrector phase of
the previous time step should be used to initialize the iterative scheme in the
predictor phase of the new time step and vice versa. With the exception of long
tunnels, the pressure fields obtained in the two phases of the time step are fairly
similar, and the aforementioned strategy allows for second-order convergence
in time without iteration for some manufactured solutions to the governing
equations. However, for tunnels, it has been observed that the predictor and
corrector pressure fields are very different. As a result, the initial estimates
for the pressure in both the predictor and corrector phases were inaccurate,
leading to an excessive number of iterations. By default, FDS would stop after
10 iterations, not enough to overcome the initial bad estimate of pressure.
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Fig. 1 Mass flow exiting the open end of a tunnel with a 50 MW fire and ventilation fans.
The problematic oscillations are exhibited in the earlier version of FDS.

A simple one line code change has solved the problem first identified by
Ang and his colleagues. The predictor and corrector values of H are stored
separately and the initial predictor value for time step n is taken as the final
predictor value from n − 1, and similarly for the corrector. This change was
made in FDS version 6.7.6, released in June 2021 (see Fig. 1).

The authors’ sample case demonstrating the problem raises yet another
challenging issue related to the simulation of tunnel fires; that is, multiple
meshes and parallel computing. Ang et al. used a single numerical mesh to span
the entire length of the tunnel, leading to extremely long run times because
FDS can only exploit a handful of processors to solve the governing equations
on a single mesh. If the mesh is broken up into multiple, abutting meshes,
the simulation can be sped up considerably, assuming that the equation for
pressure (3) can be solved quickly and efficiently on multiple meshes. The
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Poisson equation solver used in FDS can only be applied on a single mesh,
and these meshes are processed in parallel by either multiple processes on
a single computer or over a fast computer network. FDS exploits the same
iterative pressure-solving technique described above to “stitch together” the
pressure fields of the multiple meshes. The more the pressure field fluctuates
from one time step to another, the more iterations are necessary to obtain an
accurate solution.

One way to speed up convergence of the algorithm has recently been devel-
oped. A detailed description of this method can be found in the FDS Technical
Reference Guide that accompanies the latest release of FDS (6.7.6). First, we
write Eq. (3) in an equivalent form as it is written in the FDS documentation:

∇2H = −
[
∂
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ρ
+
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2
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The vector F is similar to F̂ from above, but it now absorbs the extra pressure
term. The combination of p̃/ρ and ‖u‖/2 is a convenient way to save on the
cost of finite differencing. Now we decompose H as follows:

H(x) = H̄(x) +H ′(x) (5)

where x = (x, y, z) and x is the lengthwise spatial coordinate of the tunnel.
The equation for H̄ becomes:

d2H̄

dx2
= −

[
∂

∂t
(∇· u) +∇· F

]
(6)

The bars over the terms on the right side of the equation denote integration
of these terms in the lateral directions; thus, these terms are functions solely
of x and form a simple ordinary differential equation that can be solved over
the length of the entire tunnel with a simple, fast tri-diagonal linear solver.
The full three-dimensional Poisson equation for H ′ can then be solved on each
mesh in parallel using H̄ as an initial estimate, or preconditioner.

An example of the new pressure solving technique is shown in Fig. 2. In
this example, a 1600 m long tunnel with a square cross section that is 10 m
by 10 m has a 60 MW fire at its mid point and a ventilation current of 2 m/s
blowing towards its open end. The FDS simulation is performed with 80 sep-
arate meshes spanning the length of the tunnel. The left hand plot of Fig. 2
displays the mass flow rate through the tunnel. The upstream mass flow rate
is ramped up quickly to approximately 240 kg/s at time t = 0. Without the
preconditioning technique in the pressure solver discussed above, the down-
stream mass flow rate oscillates wildly, but with the preconditioner, the mass
flow rate is as expected, eventually leveling off at 240 kg/s as the tunnel gas
and surface temperatures reach steady-state. The right hand plot of Fig. 2 dis-
plays the steady-state profile of perturbation pressure, p̃, along the length of
the tunnel for three grid resolutions. Note that even with the preconditioner,
there is still a considerable fluctuation in the pressure due to the low Mach
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Fig. 2 (Left) Mass flow rate as a function of time through a tunnel of length 1600 m with
a 60 MW fire and 2 m/s ventilation velocity. (Right) Perturbation pressure, p̃, along the
length of the tunnel. The tunnel is open at 1600 m. The calculation is performed at three
grid resolutions.

number assumption, but the accelerated convergence of the pressure solver
successfully handles it.

This pressure solving feature has been implemented in FDS version 6.7.6.
It is limited to cases where multiple meshes span a tunnel with no open bound-
aries along its lateral walls, ceiling and floor. The ends of the tunnel can be
specified as either passive openings or as forced flow boundaries. If the tunnel
does have openings along the lateral walls, one can still create openings to
an ambient void to represent leakage, access points, and so on. In FDS, these
openings tend to dampen pressure oscillations because they provide a pressure
relief that absorbs excess volume generated by the pulsating fire.


