
 1 

New York City greenhouse gas emissions estimated 1 

with inverse modelling of aircraft measurements 2 

Joseph R. Pitt*,1,§, Israel Lopez-Coto2,1, Kristian D. Hajny1,3, Jay Tomlin3, Robert Kaeser3, 3 

Thilina Jayarathne3,†, Brian H. Stirm4, Cody R. Floerchinger5, Christopher P. Loughner6, Conor 4 

K. Gately5,7,‡, Lucy R. Hutyra7, Kevin R. Gurney8, Geoffrey S. Roest8, Jianming Liang9, Sharon 5 

Gourdji2, Anna Karion2, James R. Whetstone2, Paul B. Shepson*,1,3 6 

1School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA 7 

2National Institute of Standards and Technology, Gaithersburg, MD 20899, USA 8 

3Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA 9 

4School of Aviation and Transportation Technology, Purdue University, West Lafayette, IN 47906, USA 10 

5Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA 11 

6Air Resources Laboratory, NOAA, College Park, MD 20740, USA 12 

7Department of Earth and Environment, Boston University, Boston, MA 02215, USA 13 

8School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, 14 

USA 15 

9Environmental Systems Research Institute, Redlands, CA 92373, USA 16 

§Current address: School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK 17 

†Current address: Bristol Myers Squibb, New Brunswick, NJ 08901, USA 18 

‡Current address: Metropolitan Area Planning Council, Boston, MA 02111, USA 19 

*Corresponding authors: joseph.pitt@bristol.ac.uk; paul.shepson@stonybrook.edu  20 



 2 

Abstract 21 

Cities are greenhouse gas emission hotspots, making them targets for emission reduction policies. 22 

Effective emission reduction policies must be supported by accurate and transparent emissions 23 

accounting. Top-down approaches to emissions estimation, based on atmospheric greenhouse gas 24 

measurements, are an important and complementary tool to assess, improve and update the 25 

emission inventories on which policy decisions are based and assessed. 26 

In this study we present results from nine research flights measuring CO2 and CH4 around New 27 

York City during the non-growing seasons of 2018 to 2020. We used an ensemble of dispersion 28 

model runs in a Bayesian inverse modelling framework to derive campaign-average posterior 29 

emission estimates for the New York-Newark, N.J. urban area of (125 ± 39) kmol CO2 s
−1 and 30 

(0.62 ± 0.19) kmol CH4 s
−1 (reported as mean ± 1σ variability across the nine flights). We also 31 

derived emission estimates of (45 ± 18) kmol CO2 s
−1 and (0.20 ± 0.07) kmol CH4 s

−1 for the five 32 

boroughs of New York City. These emission rates, among the first top-down estimates for New 33 

York City, are consistent with inventory estimates for CO2 but are 2.4 times larger than the gridded 34 

EPA CH4 inventory, consistent with previous work suggesting CH4 emissions from cities 35 

throughout the northeast U.S. are currently underestimated. 36 

Keywords: urban emissions; greenhouse gas emissions; methane; carbon dioxide; Bayesian 37 

inverse modelling; New York City   38 
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Introduction 39 

Cities are large sources of greenhouse gas emissions, with an estimated 36.8% of total global 40 

emissions coming from within urban extents in the year 2000 (Marcotullio et al., 2013). In North 41 

America this urban share of greenhouse gas emissions was estimated to be even larger (49.2%; 42 

Marcotullio et al., 2013). 43 

To reduce emissions and mitigate climate change, many cities are implementing new policy 44 

practices and regulations (Trencher et al., 2016; Sethi et al., 2020). New York City has legally 45 

binding emission reduction targets of 40% by 2030 and 80% by 2050, relative to 2005 levels (New 46 

York City Mayor’s Office of Sustainability, 2016). As part of the legislative effort to meet these 47 

targets, the city council passed the Climate Mobilization Act, which introduces emission limits on 48 

large and medium-sized buildings under Local Law 97 (Climate Mobilization Act, 2019). 49 

Progress towards emission targets and the efficacy of emission reduction policies can be assessed 50 

through the compilation of city-specific inventories, often referred to as self-reported inventories. 51 

These inventories estimate greenhouse gas emissions using a bottom-up approach, where the total 52 

emission from each source category is calculated by multiplying activity data (e.g., fuel sales) by 53 

an emission factor (e.g., greenhouse gas emissions per unit of fuel sold). Self-reported inventories 54 

typically provide emission estimates at the whole-city level, broken down by emission source. 55 

These estimates can include direct emissions within the city limits (scope 1 emissions), emissions 56 

associated with electricity used within the city but generated elsewhere (scope 2 emissions) and 57 

other indirect emissions that occur elsewhere (e.g., landfill CH4) as a result of activity (e.g., waste 58 

production) within the city (scope 3 emissions; Nangini et al., 2019). The New York City 59 

emissions inventory (MacWhinney and Barnett, 2019) is compiled using a mixed-scope approach 60 

known as the city-induced framework (Fong et al., 2014), which is designed to account for 61 
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emissions attributable to activities within the city limits, regardless of emission location. This 62 

mixed-scope approach includes some emissions from each of scope 1, 2 and 3, but does not include 63 

all the emissions from any single scope. Quantifying indirect emissions is important from a policy 64 

perspective, but it is challenging to assess mixed-scope inventories with atmospheric 65 

measurements, which are only sensitive to scope 1 emissions. 66 

Spatially-resolved inventories of scope 1 emissions have been compiled at the national level, 67 

either using bottom-up approaches (Gately and Hutyra, 2017; Gurney et al., 2020) or using proxy 68 

data to spatially disaggregate national emission totals (Maasakkers et al., 2016; Oda et al., 2018; 69 

Janssens-Maenhout et al., 2019). These can be used to assess and improve the self-reported 70 

inventories or adopted as the primary method by which cities tailor and assess their emission 71 

reduction policies (Hutyra et al., 2014; Gurney and Shepson, 2021). A recent study by Gurney et 72 

al. (2021) compared scope 1 emissions from the national Vulcan inventory with self-reported 73 

inventories from 48 U.S. cities and found that most cities underreported emissions. The spatial 74 

information in gridded national inventories allows them to be combined with atmospheric transport 75 

models to estimate atmospheric mole fractions, allowing direct comparison to measurements and 76 

thus facilitating top-down approaches to estimating emissions. 77 

Many top-down studies have used tower-based measurements of greenhouse gas mole fractions 78 

in an inverse modelling approach to estimate urban emissions (Bréon et al., 2015; Lamb et al., 79 

2016; Lauvaux et al., 2016; 2020; Staufer et al., 2016; Deng et al., 2017; Huang et al., 2019; 80 

Nickless et al., 2019; Yadav et al., 2019). Tower-based sites allow for continuous year-round 81 

observations, enabling top-down fluxes to be estimated at annual timescales. On the other hand, 82 

an individual tower has limited spatial sensitivity, so multiple towers may be required to provide 83 

the necessary spatial coverage to accurately estimate whole-city emissions. Aircraft-based 84 
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measurements cannot provide the continuous temporal coverage of tower observations. However, 85 

by sampling a wide area in a short period of time, well-tailored flight tracks enable aircraft to 86 

provide useful snapshot estimates of whole-city emissions, with the ready ability to define and 87 

change the area of study. 88 

Aircraft measurements can be used in an inverse modelling framework to estimate urban 89 

emissions. This approach incorporates information regarding the prior fluxes, transport model and 90 

measurements, including the error covariance structure for each of these elements. Several 91 

previous studies have applied such a framework to estimate urban fluxes using aircraft 92 

measurements (Brioude et al., 2011; 2013; Pisso et al., 2019; Lopez-Coto et al., 2020). However, 93 

this approach has yet to be applied to estimate New York City greenhouse gas emissions. In this 94 

study we use measurements from nine research flights (during the non-growing season) and an 95 

ensemble of dispersion model runs in an inverse modelling approach to estimate carbon dioxide 96 

and methane emission rates for the New York-Newark, N.J. urban area and the five boroughs of 97 

New York City. 98 

 99 

Methods 100 

Aircraft measurements 101 

Measurements were made on board the Purdue University Airborne Laboratory for Atmospheric 102 

Research (ALAR), a modified Beechcraft Duchess. Full details of the aircraft payload and 103 

sampling configuration are provided by Cambaliza et al. (2014). Carbon dioxide (CO2) and 104 

methane (CH4) mole fractions were measured using a Picarro Cavity Ringdown Spectrometer 105 

(Crosson, 2008), calibrated in flight using three calibration cylinders traceable to the National 106 

Oceanic and Atmospheric Administration (NOAA) reference scales for CO2 (X2007; Tans et al., 107 
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2017) and CH4 (X2004A; Dlugokencky et al., 2005). The cylinders were prepared, filled and 108 

certified by NOAA; details are provided in SI Table S1.1.   109 

Three Picarro analysers were used over the course of the campaign: two different G2301-f 110 

analysers and one G2401-m analyser. The two G2301-f analysers were operated in low-flow mode, 111 

with each species measured at approximately 1.2 s intervals on one analyser and 1.4 s intervals on 112 

the other. The G2401-m analyser took a measurement of each species at approximately 2.3 s 113 

intervals. These analysers exhibited typical precisions of 0.2 ppm (µmol mol−1) for CO2 and 3 ppb 114 

(nmol mol−1) for CH4, based on analysis of data gathered during in-flight and ground-based 115 

calibrations. A linear calibration curve was derived for each flight day using in-flight 116 

measurements of all three calibrations cylinders on board the aircraft. In all cases we obtained r2 117 

values greater than 0.999, demonstrating good instrument linearity. 118 

Flights were performed on nine separate days between November 2018 and March 2020, with 119 

all flights taking place in either November, February or March. Flight tracks are shown in Figure 120 

S4.1, which also gives the dates and times of the flights. The total flight duration for each day (as 121 

measured from the first usable measurement to the final usable measurement) varied between 2.5 122 

hours to 5.5 hours.  123 

Transport modelling 124 

The surface influence, or footprint, of the sampled air was determined using HYSPLIT v5.0.0 125 

(Hybrid Single Particle Lagrangian Integrated Trajectory Model; Draxler and Hess, 1998; Stein et 126 

al., 2015; Loughner et al., 2021), a Lagrangian particle dispersion model developed by the NOAA 127 

Air Resources Laboratory (ARL). This version of HYSPLIT incorporates elements of STILT 128 

(Stochastic Time-Inverted Lagrangian Transport Model; Gerbig et al., 2003; Lin et al., 2003; 129 

Fasoli et al., 2018), a related model that branched off an earlier version of HYSPLIT. This 130 
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combines features from STILT, including options for a different vertical turbulence scheme that 131 

prevents well-mixed particles from accumulating in low-turbulence regions (Thomson et al., 132 

1997), a varying vertical Lagrangian timescale (Hanna, 1982) and an additional boundary layer 133 

turbulence parameterisation (Hanna, 1982), with recent model development and bug fixes within 134 

HYSPLIT (Loughner et al., 2021). 135 

Each of our HYSPLIT runs was repeated using four different choices of input meteorology and 136 

two different turbulence parameterisations (Hanna, 1982; Kantha and Clayson, 2000) giving us an 137 

eight-member ensemble of dispersion model runs (hereafter referred to as the transport model 138 

ensemble). The input meteorology was taken from four publicly available archived products: the 139 

European Centre for Medium Range Weather Forecasts Fifth Reanalysis (ERA5), the NOAA 140 

Global Forecast System (GFS) model, the NOAA North American Mesoscale Forecast System 141 

(NAM) model, and the NOAA High-Resolution Rapid Refresh (HRRR) model (see SI section S2 142 

for more details on each product).  143 

A separate HYSPLIT model run was conducted for every minute of each flight that included 144 

aircraft sampling within the boundary layer. The mean measured mole fraction for each minute 145 

was calculated as an average over all measurement points where the aircraft was within the 146 

boundary layer, with the corresponding model particle release consisting of ~1000 particles 147 

distributed equally across these measurement locations (covering a horizontal distance of ~ 3 km 148 

to 4 km at typical aircraft speeds). In this way we ensured that the model run was representative 149 

of the measurements we included in our average. 150 

Tiered multi-resolution Bayesian inversion framework 151 

Fluxes were optimised separately for each flight using a Bayesian inversion framework, after 152 

first subtracting the background mole fraction from the aircraft measurements (where the 153 
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background is defined as the mole fraction of CO2 or CH4 within the measured air prior to it 154 

entering the domain; see SI section S9 for details). This process consisted of multiple stages: 155 

1) Optimise fluxes on a large domain at coarse spatial resolution (0.08º × 0.08º). 156 

2) Use the posterior flux map from step 1) to estimate spatial variability in the mole fractions 157 

of CO2 and CH4 flowing into a smaller, high resolution (0.02º × 0.02º) domain, nested within 158 

the large domain and centred on New York City. 159 

3) Optimise fluxes on the smaller, high-resolution domain, taking into account the background 160 

variability calculated in step 2). 161 

The large domain (henceforth referred to as the d01 domain) was bounded by 34.4ºN, 44.4ºN, 162 

83.7ºW, 69.7ºW, while the smaller nested domain (henceforth the d03 domain) was bounded by 163 

39.2ºN, 42.0ºN, 75.7ºW, 72.1ºW (see SI Figure S3.1 for map). This approach takes account of 164 

upwind sources that influenced our measurements and provides an optimised representation of 165 

their influence. This allows us to better isolate the specific contribution from the area of interest 166 

(e.g., the New York-Newark urban area) by providing an optimised background for each minute 167 

of the flight. 168 

A gridded footprint (representing the influence of surface fluxes on the sampled air) was 169 

calculated on both the d01 and d03 domains for each minute of the flight. Modelled mole fraction 170 

enhancements (in units of µmol mol−1; commonly referred to as ppm) were derived by multiplying 171 

these gridded footprints (in units of ppm (µmol m−2 s−1)−1) by surface fluxes (in units of µmol m−2 172 

s−1) of CO2 and CH4. The inventories used to provide prior fluxes are described in the following 173 

section. For both the initial d01 inversion and the nested d03 inversion, optimised posterior fluxes 174 

were obtained by minimising the cost function 𝐽(𝒙):  175 

𝐽(𝒙) =
1

2
[(𝒙 − 𝒙𝒃)

𝑇𝐏𝒃
−1(𝒙 − 𝒙𝒃) + (𝐇𝒙 − 𝒚)𝑇𝐑−1(𝐇𝒙 − 𝒚)]    (1) 176 
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This cost function assumes normally distributed uncertainties and has the following analytical 177 

solution (Enting, 2002; Tarantola, 2005): 178 

𝒙𝒂 = 𝒙𝒃 + 𝐏𝒃𝐇
T(𝐇𝐏𝒃𝐇

T + 𝐑)−1(𝒚 − 𝐇𝒙𝒃)      (2) 179 

Here 𝒙 is a vector containing the fluxes that are to be optimised, 𝒙𝒂 contains the posterior (opti-180 

mised) fluxes, 𝒙𝒃 contains prior fluxes derived from an emissions inventory and 𝐇 is a matrix 181 

containing the modelled footprint for each minute of the flight. The vector 𝒚 contains the measured 182 

mole fraction enhancements for each minute of the flight, relative to a background value repre-183 

senting the mole fraction present in the sampled air when it entered the domain. For the d01 inver-184 

sion, this background value was taken to be constant, while for the d03 inversion a spatially-vary-185 

ing background was calculated based on the posterior fluxes within the d01 domain (see SI section 186 

S9 for more details, including details of a sensitivity analysis to determine the impact of the nested 187 

inversion approach). The error covariance matrices 𝐏𝒃 and 𝐑 represent uncertainty in the prior 188 

fluxes and model-measurement mismatch respectively. 189 

Error covariances 190 

Following previous studies (Lauvaux et al., 2016; 2020; Lopez-Coto et al., 2017; 2020), the off-191 

diagonal components of the error covariance matrix 𝐏𝒃 were populated using an exponential 192 

covariance model (in space). The diagonal elements of 𝐏𝒃 were populated on the assumption that 193 

the 1σ flux uncertainty in each grid cell equalled 100% of the prior flux within that grid cell, 194 

following the values used by Lopez-Coto et al. (2017; 2020). For comparison, Andres et al. (2016) 195 

reported 2σ grid-cell-level uncertainties for a global CO2 inventory ranging from 4% to more than 196 

190%, averaging about 120%. Gately and Hutyra (2017) reported 50% to 250% differences 197 

between ACES (Anthropogenic Carbon Emissions System; version 1) and three global 198 

disaggregated CO2 inventories at city scales, with grid-cell-level differences of over 100% for half 199 
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of the grid cells (urban and rural) in the northeast U.S. For CH4 there are no good estimates of 200 

grid-cell-level uncertainty, but considering recent work indicating inventories significantly 201 

underestimate urban CH4 emissions, and the lack of knowledge about CH4 sources at urban scales, 202 

we can only assume that the relative uncertainties are at least as large as for CO2. A lower limit 203 

uncertainty in each grid cell was set to 1 µmol m−2 s−1 and 1 nmol m−2 s−1 for CO2 and CH4 204 

respectively, allowing some correction in grid cells with very low prior fluxes. 205 

The off-diagonal elements of the prior flux error covariance matrix, representing the correlation 206 

between prior flux errors in different grid cells, were calculated according to an exponential decay 207 

model based on the distance between grid cells (Lauvaux et al., 2012; 2016; 2020; Lopez-Coto et 208 

al., 2017; 2020). The correlation length was set to 10 km following Lopez-Coto et al. (2017) who 209 

found this value to be appropriate for studies at urban scales. A variogram analysis of the spread 210 

of the prior flux ensemble indicated that the exponential covariance model and the correlation 211 

length used here are appropriate for both species in both domains (see SI section S11). The same 212 

approach to constructing 𝐏𝒃 was used for both the d01 and d03 inversions. 213 

A double exponential covariance model (in space and time) was selected for the model-meas-214 

urement mismatch error covariance matrix 𝐑, with a correlation length of 1 km and a correlation 215 

time of 1 hour based on the short correlation length and time scales reported for atmospheric trace 216 

gases in urban environments (Shusterman et al., 2018; Turner et al., 2020). The diagonal elements 217 

of 𝐑 represent the combined uncertainty due to random error in the measurements, model and 218 

background for each minute of the flight. This was calculated by combining background uncer-219 

tainty (see below) with the variance across the eight transport model ensemble members for a given 220 

minute and the variance in measured mole fraction during that minute. In all cases, low limits for 221 
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the uncertainty of 0.2 ppm (µmol mol−1) and 3 ppb (nmol mol−1) were used for CO2 and CH4 222 

respectively, based on an analysis of instrument precision from calibration data. 223 

The background uncertainty for the d01 inversion was derived by calculating the respective var-224 

iances in measured and modelled mole fractions across the background data points, then summing 225 

these variances (see SI section S9 for the definition of the background points). For the d03 inver-226 

sion these terms were combined with the variance of the spatially-varying component of the back-227 

ground (i.e., the outside contribution derived from the posterior d01 fluxes), taken across the eight 228 

transport model ensemble members. 229 

Prior fluxes 230 

Separate inversions were performed using three different CO2 flux priors and four different CH4 231 

flux priors. For CO2 we used fluxes from Vulcan v3.0 (Gurney et al., 2020), ACES v2.0 (Gately 232 

and Hutyra, 2017) and EDGAR v5.0 (Emission Database for Global Atmospheric Research; 233 

European Commission Joint Research Centre (JRC)/Netherlands Environmental Assessment 234 

Agency (PBL), 2019; Crippa et al., 2020). For CH4 we used fluxes from EDGAR v5.0, EDGAR 235 

v4.2 (European Commission Joint Research Centre (JRC)/Netherlands Environmental Assessment 236 

Agency (PBL), 2011) and the gridded Environmental Protection Agency (GEPA) inventory 237 

(Maasakkers et al., 2016). Because EDGAR v4.2 uses a population proxy to distribute fluxes, it 238 

contains much larger emissions from urban areas compared to EDGAR v5.0 and the GEPA 239 

inventory (conversely it is known to underestimate emissions in oil and natural gas production 240 

regions). To bridge this large emissions gap between inventories, we also used a composite CH4 241 

prior containing the average of the GEPA fluxes and the EDGAR v4.2 fluxes in each grid cell. 242 

In all cases we used annual average emissions for the most recent year available: 2015 for 243 

Vulcan, 2017 for ACES, 2018 for EDGAR v5.0 CO2, 2015 for EDGAR v5.0 CH4, 2012 for the 244 
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GEPA, and 2008 for EDGAR v4.2. The use of annual average fluxes (even for those inventories 245 

for which hourly fluxes are available) was motivated by the fact that we did not have inventory 246 

fluxes for the actual flight days (which were more recent than the latest available inventory data). 247 

Furthermore, holding the prior emission rates constant for each flight ensures that flight-to-flight 248 

differences in posterior emission rates are not a consequence of prior temporal variability. While 249 

prior constraints are important for solving ill-posed problems, it is known that the choice of prior 250 

flux map can influence the posterior fluxes (Lauvaux et al., 2020). By using multiple priors for 251 

each gas we reduce the dependency of our mean posterior fluxes on one specific prior. 252 

A conservative method was used to regrid each prior to the extent and resolution of the d01 and 253 

d03 domains (Zhuang, 2020). Canadian emissions for the U.S.-specific priors (Vulcan, ACES and 254 

GEPA) were taken from EDGAR v5.0. A more detailed discussion of prior fluxes is given in SI 255 

section S3. 256 

Sensitivity analysis 257 

In addition to our base case ensemble of inversions, we performed a sensitivity analysis to better 258 

understand the impact of different background choices and prior error covariance parameters in 259 

our posterior results, as well as to quantify uncertainties in the methodology. A full description of 260 

the sensitivity test cases is provided in SI sections S10 and S11. 261 

 262 

Results and discussion 263 

Total posterior emission rates were calculated for both the five boroughs of New York City 264 

(NYC) and the wider New York-Newark urban area (see SI section S3 for area definitions). The 265 

wider urban area better represents the area of sensitivity for our flights (see SI Figure S4.1 for 266 

footprint maps), therefore these wider urban area emission totals are the focus of analysis in this 267 
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section. Emission rate estimates for the five boroughs of NYC are also presented due to the high 268 

policy relevance of this area. 269 

Urban area posterior emission rates 270 

Figure 1 shows total emission rates within the New York-Newark urban area boundary, broken 271 

down by flight, prior and transport model. The mean posterior emission rate for CO2 was (125 ± 272 

39) kmol s−1, where the reported uncertainty represents the 1σ variability across the nine flights 273 

(using ensemble-average totals for each flight). Also shown (in purple) are inventory emissions 274 

from the hourly ACES inventory and hourly Vulcan inventory, calculated using only dates and 275 

hours that were representative of our flights (see SI section S5 for details). The mean value of these 276 

representative inventory emissions was (145 ± 21) kmol s−1 for ACES (15.5% larger than our mean 277 

posterior estimate) and (124 ± 20) kmol s−1 for Vulcan (0.9% lower than our mean posterior 278 

estimate). The inventory variability reported here represents 1σ across 45 representative days in 279 

each inventory. Both our mean posterior emission rate and these representative inventory emission 280 

rates are larger than the corresponding annual average emission rates (116 kmol s−1 for ACES and 281 

105 kmol s−1 for Vulcan) that we used as priors. While we do not expect these representative 282 

inventory values (from previous years) to agree perfectly with our mean posterior emissions rates, 283 

the agreement shown here is well within the observed flight-to-flight variability of our estimates 284 

as well as the expected daily variability of the inventories. 285 
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286 

Figure 1. Boxplots of the total posterior emission rates for the New York-Newark urban area. 287 

Results are shown for CO2 (a, c, e) and CH4 (b, d, f), grouped by flight (a, b), by prior (c, d) and 288 

by transport model (e, f). Mean posterior emission rates are represented by red crosses and panels 289 

(c) and (d) also show prior values as blue crosses. The dashed lines represent the mean posterior 290 

(red) and prior (blue) emission rates taken over all flights, model ensemble members and priors. 291 

In the CO2 panels, representative inventory estimates are also shown (ACI is ACES inventory and 292 

VUI is Vulcan inventory). In the transport model panels (e, f) ER is ERA5, GF is GFS, HR is 293 

HRRR and NA is NAM while the 2 and 5 respectively represent the Kantha and Clayson (2000) 294 

and Hanna (1982) turbulence parameterisations. The boxes extend between the upper and lower 295 

quartiles, with the median values shown as solid horizontal black bars. The whiskers extend to the 296 

highest and lowest data points within 1.5 times the interquartile range of the upper and lower 297 

quartiles, respectively. All data outside these whiskers are shown as individual points. 298 
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The posterior CO2 emission estimates represent total emissions and are influenced by any 299 

contribution from biospheric respiration and photosynthesis, while the inventories only include 300 

anthropogenic fluxes. However, the flights in this study were conducted during the non-growing 301 

season and the estimated biospheric contribution was very small, ~ 2% on average (see SI section 302 

S6 for details). 303 

The posterior CH4 emission rates calculated for the New York-Newark urban area using all four 304 

priors are much larger than emission rates from the GEPA and EDGAR v5.0 inventories, but much 305 

smaller than the emission rate from EDGAR v4.2. The mean posterior CH4 emission rate was (0.62 306 

± 0.19) kmol s−1 (1σ variability across flights). This mean posterior total is 2.4 times larger than 307 

the annual value from the GEPA inventory. 308 

The temporal variability of urban CH4 emissions on diurnal, weekly and seasonal timescales is 309 

poorly understood. None of the CH4 inventories used in this study provide emission estimates on 310 

hourly timescales, so it is not possible to repeat the calculation of representative inventory totals 311 

presented above for CO2. Recent studies in Los Angeles (Yadav et al., 2019) and Washington, DC-312 

Baltimore (Huang et al., 2019) found large seasonal cycles in urban CH4 emissions. Floerchinger 313 

et al. (2021) observed significant seasonal variability in the biogenic fraction of CH4 emissions for 314 

several cities, including New York. More flights are required to provide the annual coverage 315 

necessary to confirm if strong seasonality also exists in total CH4 emissions for the New York-316 

Newark urban area. 317 

It is important to emphasise that our mean posterior emission rates (for both CO2 and CH4) do 318 

not represent estimates of annual average emissions, but can be regarded as the current best top-319 

down estimate for the non-growing-season, daytime value. However, the finding that emissions 320 

are underestimated in the GEPA inventory is likely to hold at the annual timescale, as emissions 321 
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during much of the rest of the year would have to be almost zero in order to offset the 2.4 times 322 

larger CH4 emissions observed during November, February and March in this study. 323 

Sources of variability and uncertainty analysis 324 

The flight-to-flight variability in urban area posterior emission rate was 31% for both CO2 and 325 

CH4 (1σ, relative to the mean posterior emission rate). These values for relative flight-to-flight 326 

variability are similar to those reported by Lopez-Coto et al. (2020) for the Washington, DC-327 

Baltimore urban area. Table 1 gives the 1σ spread in posterior emission rate across base case 328 

ensemble members (transport models and priors) and sensitivity test ensemble members (prior 329 

error covariance parameters and background definitions – see SI for more details), including the 330 

average spread for a single flight and the spread in campaign-average emissions. For both species, 331 

flight-to-flight variability in posterior emission rate was larger than the combined spread across 332 

the ensembles (calculated by adding individual ensemble spreads in quadrature). It is noteworthy 333 

that the combined ensemble spread for CH4 is much smaller than the difference between the mean 334 

posterior emission rate and the inventory values. 335 

 336 

Table 1: 1σ spread in posterior emission rate for the New York-Newark urban area across each 337 

ensemble, relative to the base case ensemble mean.  338 

 Single-flight 

ensemble spread 

Campaign-average 

ensemble spread 

Ensemble CO2 (%) CH4 (%) CO2 (%) CH4 (%) 

Transport model 13 12 3.8 3.6 

Prior 8.2 18 7.9 18 

Prior flux covariance parameters 4.6 4.2 3.7 2.8 

Background 4.6 8.6 4.3 7.7 

Combined 16 24 10 20 
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To provide a rough estimate of expected variability in true CO2 emissions from flight to flight, 339 

we calculated the variance in inventory emissions for the urban area using dates and hours 340 

corresponding to each flight (see SI section S5 for details). The standard deviation in inventory 341 

emissions across 45 representative days in ACES was equal to 15% of the average emissions across 342 

these days, while for Vulcan this value was 16% (boxplots showing these representative emissions 343 

for both inventories are shown in purple in Figure 1). 344 

There are multiple potential reasons why the flight-to-flight variability (31%) of our posterior 345 

emissions is larger than that calculated using representative inventory emissions. Differences in 346 

sampling pattern for each flight (shown in SI Figure S4.1) mean that different parts of the urban 347 

area were sampled on different flights. Because the measurements are not sensitive to the whole 348 

urban area for each flight, emissions in unsampled areas default to the emission rate of the prior. 349 

In addition, different areas were sampled at different times within each flight, which for sources 350 

with large hourly variability in emission rate can result in apparent flight-to-flight variability in 351 

posterior emissions. Thus, this irregular sampling combined with large spatio-temporal variability 352 

in fluxes can become aliased as apparent temporal variability, as demonstrated by Lopez-Coto et 353 

al. (2020). In addition, for a given ensemble (e.g., transport or background), errors in the ensemble 354 

mean can differ in magnitude and direction for each flight, thus increasing the observed flight-to-355 

flight variability. 356 

Finally, the variability in inventory emissions may not be truly representative of real emission 357 

variability because the temporal emission profiles in the inventories are partly based on 358 

interpolation and/or downscaling using proxy data (resulting in smoothed temporal emission 359 

profiles). It is also worth considering that inventory emissions are for previous years, which may 360 

have had lower variability than the flight days, and that the flights were conducted in two different 361 
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winters (2018 to 2019 and 2019 to 2020) while the inventories are only for a single year each, so 362 

potential interannual variability is not accounted for. 363 

Quantifying the accuracy of the emission rate estimates is challenging since the true value is not 364 

known. On one hand, the combined campaign-average ensemble spreads (10% for CO2, 20% for 365 

CH4) could be larger than the uncertainty of the mean posterior emission rate, because this mean 366 

value represents an average over the base case ensemble members. Conversely, the potential 367 

methodological sources of flight-to-flight variability discussed above (e.g., emission aliasing) are 368 

not accounted for in the campaign-average ensemble spread, but nonetheless contribute towards 369 

the overall uncertainty. In general we focus on flight-to-flight variability when reporting results, 370 

rather than the campaign-average ensemble spread, but it is important to note that the 1σ flight-to-371 

flight variability includes both real variability in emissions as well as methodological uncertainty. 372 

NYC posterior emission rates 373 

We also calculated mean posterior emission rates for the five boroughs of NYC: (45 ± 18) kmol 374 

CO2 s
−1 and (0.20 ± 0.07) kmol CH4 s

−1 (1σ variability across flights). As was the case for the 375 

urban area totals, inventory CO2 emission rates calculated for NYC using dates and hours 376 

representative of our flights are consistent with our posterior values. The representative NYC 377 

emission rate for ACES was (45 ± 9) kmol CO2 s
−1, while for Vulcan it was (52 ± 10) kmol CO2 378 

s−1. The fact that the mean NYC posterior emission rate for CO2 is in line with expectations based 379 

on representative inventory emissions (within 15% for both inventories) is an encouraging sign 380 

that the inversion is able to estimate emissions at spatial scales smaller than the wider urban area. 381 

Further details of the spatial structure of prior and posterior fluxes in central NYC are given in SI 382 

section S8. 383 
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It is difficult to compare our posterior emission rates directly to the NYC self-reported inventory 384 

(SRI), because that inventory includes a mixture of scope 1, 2 and 3 emissions and does not provide 385 

scope 1 totals for each emitted species. The 2019 SRI total for CH4 is 0.21 kmol s−1 (New York 386 

City Mayor’s Office of Sustainability, 2020), but this is dominated by waste emissions (0.17 kmol 387 

s−1), which are mainly scope 3 (as landfill waste is exported from the city; MacWhinney and 388 

Klagsbald, 2017). The SRI CH4 emission estimate for natural gas distribution leakage is a scope 1 389 

value; for 2019 this was calculated to be 0.041 kmol s−1 (21% of our posterior emission total). 390 

Considering that previous studies (Plant et al., 2019; Floerchinger et al., 2021) have shown that 391 

the majority of New York CH4 emissions are from thermogenic (i.e. natural gas) sources, it is 392 

likely that the SRI underestimates scope 1 thermogenic emissions. More measurements of NYC 393 

C2H6 emissions could enable a direct quantitative assessment of thermogenic SRI CH4 emissions. 394 

CO2 emissions in the NYC SRI are also comprised of multiple scopes, but a recent study (Gurney 395 

et al., 2021) has shown that total emissions from scope-1-only source categories in the NYC SRI 396 

are lower than the corresponding total Vulcan emissions for these categories by 19%. 397 

Posterior–prior spatial differences 398 

The spatial distributions of the difference between posterior and prior fluxes are shown in Figure 399 

2. Prior emissions were adjusted upwards throughout the urban area for Edgar v5.0 CO2, Edgar 400 

v5.0 CH4 and GEPA CH4. Conversely the large prior CH4 emissions in Edgar v4.2 (distributed 401 

according to population) were adjusted downwards throughout the urban area. Posterior fluxes 402 

estimated using the Vulcan and ACES CO2 priors showed an upwards adjustment throughout most 403 

of the urban area, but a downwards adjustment in central New York City (specifically in the 404 

southern part of Manhattan – see SI Figure S8.1 for a zoomed in map). The spread across posterior 405 

fluxes using three different priors for this area is smaller than the spread across the prior fluxes 406 
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themselves. However, further research is required, including higher resolution transport models, 407 

to understand whether small scale spatial features observed in these posterior emission maps reflect 408 

real spatial patterns in emissions or artefacts of the relatively coarse resolution of the transport 409 

models used (see SI section S2 for more details regarding the transport model configuration). New 410 

York City is a very complex land/urban/water interface and increased resolution would allow for 411 

better representation of smaller spatial features that could alter the local circulations. 412 

 413 

 414 

Figure 2. Maps showing the campaign-average difference between posterior and prior fluxes. 415 

Results are shown for CO2 (a–c) and CH4 (d–f). The New York-Newark urban area boundary is 416 

shown in black. Colour scale is saturated at the shown limits. 417 

 418 
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Emission ratio 419 

The average posterior CH4:CO2 emission ratio for the New York-Newark urban area is (4.9 ± 420 

0.7) nmol µmol−1 (1σ variability across flights), and for New York City it is (4.4 ± 1.1) nmol 421 

µmol−1. As for the posterior CO2 and CH4 emission rate estimates, this ratio should be interpreted 422 

as an average over the dates and times (daytime, non-growing season) of our flights, not an 423 

annually representative value. Nonetheless, it is interesting to compare our emission ratio against 424 

enhancement ratios for the New York-Newark urban area reported by previous studies. Plant et al. 425 

(2019) reported an average CH4:CO2 enhancement ratio of 7.2 (+1.4/−1.0) nmol µmol−1 (95% 426 

confidence interval), taken over 10 flight days during April and May 2018. A lower enhancement 427 

ratio of 3.7 (+0.3/−0.2) nmol µmol−1 (95% confidence interval) was reported by Floerchinger et 428 

al. (2021) for a single (“winter”) flight in March 2018 (see SI Figure S7.1 for a comparison plot). 429 

Plant et al. (2019) also estimated a CH4 emission rate for the urban area, which they calculated 430 

as the product of their CH4:CO2 enhancement ratio and an inventory estimate of CO2 emissions. 431 

They derived a total CH4 emission rate that was 2.7 times larger than the GEPA inventory value, 432 

in relatively close agreement to the results of our study (2.4 times larger than the GEPA inventory). 433 

At first sight, this appears at odds with the fact that the Plant et al. (2019) enhancement ratio is 434 

significantly larger than our estimated emission ratio. This apparent discrepancy is reconciled by 435 

considering that the CO2 inventory emission rate used by Plant et al. (2019) is lower than our mean 436 

posterior CO2 emissions. This is not unexpected, as CO2 emission inventories suggest emissions 437 

during April and May are typically lower than emissions during November, February and March 438 

(as shown in SI Figure S5.1). 439 

 440 

 441 
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Conclusions 442 

Our posterior emission rate estimates show good agreement with representative values from the 443 

ACES and Vulcan CO2 inventories. In contrast, none of the available CH4 inventories fell within 444 

a factor of 2 of our posterior estimates. It is of particular policy relevance that our posterior CH4 445 

emission rate estimate for the New York-Newark urban area was 2.4 times larger than the GEPA 446 

inventory. Taken together with previous studies in other cities, there is strong evidence that the 447 

GEPA inventory widely underestimates urban CH4 emissions. 448 

Underestimation of urban CH4 emissions could impede urban emission reduction policies if 449 

cities neglect to address important (but difficult to quantify) emission sources such as natural gas 450 

leaks. Accurate, spatially-resolved bottom-up estimates of U.S. CH4 emissions would allow cities 451 

to develop better informed emission reduction policies, but uncertainty in the magnitude and 452 

location of key sources (e.g., emissions from natural gas distribution) makes it difficult to compile 453 

such an inventory with the required accuracy. 454 

Aircraft measurements enable top-down estimates of urban greenhouse gas emissions at spatial 455 

scales representative of the whole urban area. To track changes in annual emissions, it is necessary 456 

to design aircraft sampling campaigns to include repeat flights covering weekly and seasonal 457 

timescales of emission variability. In addition, as suggested by Lopez-Coto et al. (2020), increasing 458 

the number of simultaneous measurements might at least partially alleviate the flight-to-flight 459 

variability caused by irregular sampling. In the case of New York City, increasing the seasonal 460 

coverage of flights to better quantify the poorly understood seasonal cycle of CH4 emissions is a 461 

particular priority. Regular aircraft sampling could be especially valuable in cases such as New 462 

York that lack an extensive network of urban tower measurements. 463 
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Inverse modelling can play a key role going forward by providing independent quantification of 464 

emissions in near-real time. It can be used to evaluate emission estimates in the past (if 465 

measurements exist) and it can be used to update inventories and tailor policy in the present. There 466 

is an inherent positive feedback loop between top-down inverse modelling emission estimates and 467 

inventory development. Top-down emission estimates can be used to improve the models and data 468 

on which the inventories rely, resulting in better inventory products. These improved inventories 469 

then provide more accurate priors for subsequent inverse modelling studies, resulting in improved 470 

emission estimates and reduced posterior uncertainties. Together, top-down and bottom-up 471 

emission estimation approaches can effectively guide emission reduction policy in urban areas. 472 

 473 
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