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Abstract 
A Deep Neural Network (DNN) based system, 

such as the one used for autonomous vehicle 
operations, is a “black box” of complex interac-
tions resulting in a classifcation or prediction. An 
important question for any such system is how 
to increase the reliability of, and consequently 
the trust in, the underlying model. To this end, 
researchers have largely resorted to adapting ex-
isting testing techniques. For example, similar 
to statement or branch coverage in traditional 
software testing, neuron coverage has been hy-
pothesized as an effective metric for assessing 
a test suite’s strength toward uncovering failures 
and anomalies in the DNN. We investigate the use 
of realistic transformations to create new images 
for testing a trained autonomous vehicle DNN, 
and its impact on neuron coverage as well as the 
model output. 

Introduction 
On October 8, 2020, Waymo offcially opened 

its driver-less riding service in three Arizona 
cities. Many automobile and technology compa-
nies, including Tesla, Uber, Volkswagen, Baidu, 

and others, are not far behind. At their core each 
employs a deep neural network (DNN) that learns 
to recognize objects in the vehicle’s environment 
and make split-second decisions based on current 
conditions. 

There continues to be trust issues involving 
the safety and reliability of these systems [1]. 
Incidents such as the pedestrian fatality caused 
by an Uber SUV in Tempe, Arizona [2] exac-
erbated the situation. The primary approach for 
ensuring the reliability and correctness of these 
autonomous systems involves different software 
verifcation activities, especially testing. Effec-
tive testing of any complex software system is 
challenging. Furthermore, autonomous vehicles 
are primarily data-driven, statistical, and non-
deterministic in nature, which make them even 
more diffcult to properly test and their reliability 
harder to ensure. 

Designing an effective test suite for verifying 
any system involves addressing two broad ques-
tions: a) how to select the test cases, and b) how 
many test cases to select. When source code is 
accessible, code coverage oriented criteria that 
use the structure of the source code are commonly 
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employed to address these questions. One can aim 
to ensure that all statements or all branches in 
the source code are covered, i.e., executed by at 
least one of the test cases in the test suite. These 
two criteria are known as statement coverage and 
branch coverage, respectively. The motivation 
here is that a test suite is unlikely to reveal a bug 
located in a statement or a branch that has never 
been executed. Such coverage metrics are also 
helpful in providing concrete goals for selecting 
a suffcient number of test cases. One can set 
goals such as achieving 90% branch coverage to 
consider a test suite to be suffcient. 

It is generally accepted that a test suite that 
provides higher statement or branch coverage 
better tests a piece of software [3]. This type of 
coverage metric, however, is not suitable when 
testing DNNs [4]. Consequently, researchers and 
practitioners have looked for other metrics and 
strategies to test DNN-based systems [5]. Conse-
quently, newer metrics such as neuron coverage 
(NC), used by DeepXplore [6] and DeepTest [7], 
have emerged. Although the inadequacy of tra-
ditional test coverage criteria when applied to 
DNN-based systems is well established, the use-
fulness of new criterion such as NC is yet to be 
fully studied. While DeepTest [7] has provided 
results in favor of using NC as an effective 
test selection criterion, some newer studies have 
questioned its usefulness [8]. 

In the domain of autonomous vehicle op-
erations, one of the primary test inputs is the 
contiguous set of front-view images and one of 
the computed outputs is the steering angle of the 
vehicle. Numerous research has been performed 
to look for effective ways of training a DNN-
based machine learning algorithm to convert im-
ages into specifc actions [9], [10]. Our focus 
in this paper, however, is on the challenges of 
testing these systems. Testing the trained DNN 
requires the selection of test images. Based on 
the differing fndings regarding NC’s usefulness, 
further exploration is necessary to see how NC is 
impacted by different test image selection strate-
gies, and whether they lead to more effective 
testing of the underlying DNN model. This is 
what we investigate in this paper. 

Another challenge comes from the fact that 
one needs test images that have not been seen by 
the DNN before and for which the correct steering 

angle is known, which provides a test oracle. 
Synthetically creating new test images from the 
existing ones with known expected driving angle 
addresses this problem. We utilize this approach 
in our study by deriving reasonable, synthetic 
test images from existing images. Specifcally, we 
consider seven synthetic image transformations to 
gain insight into their effectiveness when testing 
autonomous vehicle software. The only image 
transformations considered are the ones that en-
able us to predict the expected steering angle, 
which solves the test oracle problem. Our work 
builds on the framework found in DeepTest [7]. 
We identify an important issue in that approach, 
update it, consider new and refned image trans-
formations, all to better understand the interplay 
between NC and effective testing of autonomous 
vehicles. 

Our research contributions presented in this 
paper include: 

• Showing that the use of new test images 
created by applying transformations to exist-
ing ones, both individually and in groups, 
increases NC. 

• Some transformations are more effective than 
others at achieving higher NC. 

• There is a positive correlation between higher 
NC and the test-suite’s ability to extract output 
deviations, which suggests NC’s potential as a 
measure of test-suite quality. 

The remainder of this paper frst presents 
background material before considering our re-
search setup and approach, which includes the 
two research questions we consider. This is fol-
lowed by the presentation of our results and a dis-
cussion thereof. The paper fnishes by considering 
related work and then presenting our conclusions. 

Background and Relevant Concepts 

Neural Networks and Neuron Coverage (NC) 
A neural network is a computing structure that 

attempts to mimic the design and behavior of 
a human brain. At its core is a computing unit 
called a neuron (or a perceptron). The neurons 
are placed in layers with edges connecting one 
layer to the next. There are weights associated 
with the edges that connect neurons. Based on 
the inputs and the weights, a non-linear activation 
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Figure 1. From image to steering angle output using a DNN 

function is used to decide when a neuron is acti-
vated and thus impacts the neurons in subsequent 
layers. Typically, a neural network will have a 
layer of neurons for accepting inputs as well as 
a layer for producing the computed output. A 
deep neural network or DNN includes additional 
neurons in a series of hidden layers, which enable 
it to be used for complex computation such as 
image classifcation. Users interact with the frst 
and last layer of a DNN, which handle input 
and output respectively. Neurons in intervening 
hidden layers, through their connection weights 
and activation functions, learn complex decision 
mechanisms that contribute to the overall output. 

There is natural appeal to the notion of trans-
ferring traditional code coverage based test ad-
equacy criteria to neuron coverage based test 
adequacy criteria for DNN model testing [6]. The 
idea here is to select a set of test cases (e.g., a set 
of images) that maximize the activated neurons. 
The underlying argument is that if certain neurons 
never get activated during testing, then it is pos-
sible that there may be undiscovered erroneous 
behavior associated with their activation that has 
never been witnessed. Despite this appeal, test 
effectiveness of complex structures such as a 
DNN may be uniquely different. Thus there is 
an ongoing need for the exploration of NC based 
test-adequacy criteria. 

Autonomous Vehicles 
An autonomous vehicle is a self-driving auto-

mobile that uses sensory devices such as cameras, 
infrared sensors, lidar, and global positioning 
systems (GPS) to navigate the world around it 
by making very fast decisions related to steering 
angle adjustment, acceleration, and braking. At 
the core of this complex process is a DNN that 

learns different vehicle operation responses from 
a massive amount of training data. The images 
from the front view camera are the primary data 
sources infuencing the steering angle decision. 
As shown in Figure 1, a front-view image is 
fed into a trained DNN, which, in turn, predicts 
the steering angle that the self-driving car should 
maintain or adopt. 

The output produced by a DNN is the result 
of a series of neurons being activated inside. The 
DNN’s edge weights and neuron thresholds are 
determined during the training of the network. For 
a given input, the neurons of the neural network 
can be labeled either active when the weighted 
input value exceeds the threshold, or inactive. 

Metamorphic Testing 
Traditional software testing relies on the pres-

ence of a test oracle, which is capable of provid-
ing the correct output or expected behavior for a 
given test input. Automated software testing uses 
the oracle to identify failures of the software sys-
tem where the output behavior deviates from that 
of the oracle. In the case of systems that are often 
termed as ‘non-testable’ [11] due to the absence 
of an oracle, such as cryptographic functions 
or scientifc computations, metamorphic testing 
provides a way forward by producing two sets 
of inputs whose outputs should be the same or 
differ in a deterministically predictable way. Thus 
the two test cases can be used as pseudo-oracles 
for each other [12]. With DNN based systems, 
such as autonomous vehicles, producing oracle 
output is possible, but expensive. Thus pseudo-
oracles, such as those provided by metamorphic 
testing, should be utilized whenever possible. 
This approach has been shown effective in testing 
DNN-based systems [13]. In our case we apply 
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synthetic image transformations to create a set 
of new test images. The transformed images are 
metamorphic in nature, i.e., while these transfor-
mations modify the image they do not change the 
expected behavior of the autonomous vehicle. For 
example, we don’t expect the steering angle to 
change if we transform an image by increasing its 
brightness or reducing its contrast. The expected 
behavior can be determined from the original 
oracle behavior and the transformation applied. 
One of the metamorphic transformations that we 
introduce, Flip, requires that the oracle output be 
computed by turning the steering wheel in the 
opposite direction. 

DeepXplore 
DeepXplore [6] showed that even a randomly 

selected set of test cases could achieve 100% 
statement coverage of a DNN while the share 
of internal neurons being activated was no more 
than 34%. This exemplifed the inadequacy of 
traditional code coverage for testing a DNN. 
With the aim of exercising more of the DNN’s 
internals, DeepXplore proposed neuron coverage 
as a metric to select effective test inputs. Their 
testing framework used two DNNs trained for 
the same purpose (e.g., classifying an image) as 
pseudo-oracles of each other and then generated 
test inputs that maximized both NC as well as im-
ages for which the two DNNs produced different 
classifcations. Their study showed this approach 
to be highly effective in discovering corner cases 
of erroneous DNN behavior. 

DeepTest 
The DeepTest work [7] builds on the neuron 

coverage idea, and created synthesized images to 
test DNNs trained for autonomous vehicle opera-
tions. DeepTest applies transformations to images 
to mimic changes in the natural environment such 
as changes in sunlight, rain, fog, etc. Most of the 
transformations they use are metamorphic in that 
they do not change the autonomous vehicle’s ex-
pected steering angle when compared to the orig-
inal image. Thus DeepTest could automatically 
detect if the DNN was producing an erroneous 
behavior using the transformed images. 

The DeepTest researchers worked with trained 
DNNs from the Udacity self-driving Challenge 
data set [14]. Their tool detects previously inac-

Figure 2. An unaltered test image (left) and the same 
image transformed by the DeepTest algorithm (right). 

tive neurons being activated due to a transformed 
image. It uses a greedy search algorithm that 
repeatedly applies transformations to a single 
test image in an attempt to maximize activated 
neurons before moving on to the next test image. 

A possibly unintended consequence of the 
gradient descent search used in DeepTest is that 
it achieves high neuron coverage at the cost of 
potentially over-transforming images. Repeatedly 
modifying a single image causes ever increasing 
distortion leading to the original scene being 
almost unrecognizable. An example is shown in 
Figure 2 where the image on the right is the result 
of repeatedly transforming the image on the left. 
The fxation on increasing neuron coverage seems 
to void the metamorphic nature of the transfor-
mations. The use of such transformations in the 
experiments and the corresponding usefulness of 
the results become dubious. In our experiments, 
we build on the DeepTest framework, but remove 
the repeated transformations of an image to avoid 
this scenario. 

Our Approach and Setup 
We investigate the impact of test images syn-

thesized through transformations on neuron cov-
erage (NC) and predicted steering angle (SA). We 
start with the basic DeepTest tool and modify it to 
avoid the over transformation scenario illustrated 
in Figure 2. Instead, we reset the image back to its 
original, untransformed, version before applying 
subsequent transformations. 

Image Transformations 
Our study employs seven metamorphic image 

transformations. The chosen transformations al-
low us to predict the expected steering angle for 
the new images. Some of the transformations are 
more realistic in term of likely-to-occur while 
driving. For example, changes in brightness are 
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caused all the time by clouds moving past the 
sun. We experimented with all the transforma-
tions used in the DeepTest study and found that 
some of the transformations (e.g., shear) were 
not metamorphic and were prone to change the 
images towards unrealistic scenarios. Our initial 
exploration led us to choose four transformations: 
Scale, Contrast, Brightness, and Blur. We saw a 
similar problem with translating an image simul-
taneously both in x and y direction. We therefore 
separate it into two transformations: Translate-
X and Translate-Y, and limit the range. This 
ensured the generation of reasonable images after 
applying the transformation. Finally, we introduce 
a completely new metamorphic transformation, 
Flip, which horizontally fips an image. Unlike 
the other six, which do not effect the predicted 
steering angle, Flip requires changing its sign, 
i.e, moving the steering angle in the opposite 
direction. Through Flip we aim to create new 
synthetic test images that are clear and with 
known expected steering angle. Moreover, we are 
interested in observing the impact of NC when 
such pseudo new images are fed to the trained 
DNN. All the transformations except Flip take 
a parameter that dictates how much alteration to 
make to the image (e.g., the number of pixels 
to translate the image by). While not reported 
here, we also performed a systematic study of 
different parameter values used for transforming 
the images. Those experiments did not show any 
signifcant impact on NC or predicted steering an-
gle with particular value combinations or values 
outside our selected range. That work did fnd 
however that a small number of random parame-
ter values provides suffcient diversity. Thus, we 
randomly select parameter values from slightly 
narrower ranges than used in the DeepTest ex-
periments. The narrower range ensures that the 
correct steering angle is unaffected by the trans-
formation. 

The following list details the seven transfor-
mations and the parameter range used for each. 

1) Translate X: This transformation shifts the 
image left or right by the given number of 
pixels. The range considered from left shift 
to right shift is [−X : X] − [−50 : 49]. 

2) Translate Y: This transformation shifts the 
image up or down by the given number of 

pixels. The range considered from up shift 
to down shift is [−Y : Y ] − [−50 : 49]. 

3) Scale: This transformation shrinks or en-
larges the image along both the x and y-
axes by a given percentage. The range of 
percentages considered is [0.5 % : 1.9 %]. 

4) Contrast: This transformation increases or 
decreases the contrast of the image by a 
given alpha value. The range considered is 
[0.5 % : 1.9 %]. 

5) Brightness: This transformation changes an 
image’s brightness by a given bias param-
eter. The range considered is [-21 : 20]. 

6) Blur: This transformation blurs the image in 
one of three ways (chosen randomly) based 
on a parameter in the range [1 : 10]. 

7) Flip: This transformation fips the image 
across the vertical axis. No parameter here. 

One of the contributions of our work is that, in 
addition to applying individual transformations, 
we also apply multiple transformations to create 
a new test image. We use the term transformation 
group to refer to one or more transformations. For 
example, when the transformation group {Flip, 
Contrast, Translate-Y} is applied to an image, 
the image is fipped, its contrast is adjusted, and 
it is translated along the y-axis. While we do 
not present the details here due to space, our 
experiments show that the application order of 
the transformations that make up a transformation 
group does not effect our neuron coverage results. 

The Metrics Used In Our Study 
To investigate the impact of different trans-

formation groups, we must measure the increased 
NC associated with the application of a particular 
transformation group. We accomplish this using 
the metric Isolation Neuron Coverage (INC) de-
fned as follows: 

• Isolation Neuron Coverage (INC) is computed 
relative to a set of N unaltered images that 
are frst run through the model to establish 
a baseline NC. The specifc transformation 
group being studied is then applied to each 
image before it is run through the model to 
identify the number of additional neurons ac-
tivated above the baseline. Between images the 
coverage is reset to the baseline thus isolating 
the contribution of each transformed image. 
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Our study also considers the steering angle 
predicted by the model. Each image in the data set 
includes the expected steering angle that should 
be produced by the DNN. In other words, we have 
a test oracle for the images making it possible to 
consider the accuracy of the DNN’s steering angle 
prediction. We do so by computing the Steering 
Angle Deviation (SAD): 

• Steering Angle Deviation (SAD) is defned as 
the absolute value of the difference between 
the predicted steering angle and the oracle 
steering angle for a given image. 

Of particular interest here is the potential to 
examine the effectiveness of NC as a predictor 
of test suite performance. Specifcally, we are 
interested in knowing if test suites that produce 
higher NC also lead to the discovery of more 
anomalous behavior, which would be captured as 
greater SAD. This situation parallels a traditional 
test suite that provides greater code coverage be-
ing more likely to uncover more program faults. 
Should such a connection exist then test suites 
providing higher NC could be deemed better test 
suites. 

Research Questions 
We are interested in better understanding the 

impact of transformation on INC and SAD. Our 
initial working hypothesis is that higher NC is in-
dicative of a stronger test suite, and a stronger test 
suite is going to be more effective in discovering 
anomalies (weakness in the model). To explore 
this relationship, we consider two key research 
questions: 

• RQ1 Do certain image transformations achieve 
higher neuron coverage than others? 

• RQ2 What impact, if any, do transformed 
images have on the predicted steering angle? 

RQ1 actually goes beyond simply asking if 
transformation increases NC and considers the 
relative impact of different transformation groups. 
Then RQ2 factors in consideration of SAD in 
order to evaluate the effectiveness of neuron cov-
erage as a predictor of test suite strength. 

Experimental Setup 
Our experimental setup builds on the 

DeepTest [7] framework, written using python 

version 2.7. We modifed the framework such 
that image transformations are not repeatedly 
applied to the same image. Like DeepTest, we 
work with the Rambo model [15] from the 
Udacity self-driving challenge [14]. Rambo uses 
three separate Convolutional Neural Networks 
(CNNs) for determining the steering angle. With 
each application of the model we measured the 
number of its total 18899 neurons that were 
activated during each steering angle computation. 

The Udacity self-driving challenge data in-
cludes 5000 still-frame images chopped from a 
thirty minute video, which was taken by a car 
as it drove down the road. The images are from 
a front-view video feed and thus taken from 
the point of view of a driver. In some of our 
experiments we used a sample of 100 images 
selected by picking every 50th image. 

Results and Discussion 

RQ1: All Transformations Not Created Equal 

Going beyond the question “Does transforma-
tion increase neuron coverage?” we investigate if 
certain transformation groups distinguish them-
selves. Such transformation groups are valuable 
if higher neuron coverage proves to be a useful 
metric for selecting test images. 

Visually, Figure 3 shows the average INC gain 
for each transformation relative to the baseline. 
A statistical test using the analysis of variance 
(ANOVA) [16] fnds a strong difference (p-value 
< 0.0001) and thus in Table 1 we show the 
results of Tukey’s post-hoc Honest Signifcance 
Difference (HSD) test [16] applied to the INC 
7C1 data (the additional neuron coverage of the 
individual transformations). Here 7C1 denotes 
the combinations of seven things (our transfor-
mations) taken one at a time. Thus 7C1 refers 
to each of the seven transformations considered 
individually. In the resulting groups, shown in 
Table 1, transformations sharing a letter are not 
statistically separable. While the existence of 
overlaps means that there is no simple order, it is 
clear from the data that Flip and Contrast are top 
performers where Flip outperforms all the other 
transformations except Contrast. Next, Translate-
X and Translate-Y are in the middle, where it is 
interesting that only Translate-Y can be separated 
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Figure 3. Transformation’s impact on gain in Isolation Neuron Coverage (INC). Baseline includes 14871 
neurons out of 18899 total neurons. 

from Contrast. Finally, Scale, Brightness, and 
Blur all produce notably inferior increases. 

We also considered the transformation pairs 
of INC 7C2, i.e., combinations of two trans-
formations from the group of 7. As shown in 
Table 2, the combination of Flip and Contrast 
with a mean of 8.45 distinguished itself from 
all the other pairs in terms of increased neuron 
coverage. While there is considerable overlap, 
two other main groups become evident. First, in 
the middle are pairs that include Translate X, 
and fnally at the bottom are groups with none 
of Flip, Contrast, or Translate X. Looking at the 
combintions of three transformations applied to 
the images, i.e., from the INC 7C3 produced data, 
there is greater overlap between transformation 
groups, but all the triples with both Flip and 
Contrast come before those with one of the two, 
which come before those without either of the 
two transformations. Looking at INC 7Ci for 
i > 3 this basic pattern continues although as the 
number of transformations in the transformation 
groups increases, there is ever greater overlap. 

In summary for RQ1, not only does transfor-
mation bring increased neuron coverage, but Flip 
and Contrast stand out. Thus where higher neuron 
coverage is the goal, these two transformations 
should be preferred. Intuitively, Flip changes the 
images drastically compared to others and thus 
likely requires more neurons to be activated to 
process those images. Similarly, it is possible that 
Contrast plays a relatively more important role in 
identifying the features that leads to the steering 
angle computation by the DNN. 

Table 1. Transformation Cover Comparison 

Transformation 
Mean Neuron 
Count Increase Group 

Flip 4.41 a 
Contrast 3.68 ab 
Translate X 3.09 bc 
Translate Y 2.33 c 
Scale 0.46 d 
Blur 0.43 d 
Brightness 0.38 d 

Table 2. Transformation Pair INC Comparison 

Transformation 
Mean INC 

Increase Group 
Contrast + Flip 8.45 a 

Contrast + Brightness 5.93 b 
... 

Translate X + Flip 4.27 bcde 

Translate X + Brightness 3.40 cde 
... 

Translate Y + Scale 2.27 ef 
Brightness + Blur 0.58 f 
Scale + Blur 0.55 f 
Scale + Brightness 0.54 f 

RQ2: Is there a Connection Between INC and 
SAD 

Given transformation’s impact on neuron cov-
erage, a natural follow-up question is what im-
pact, if any, does transformation have on the 
model’s steering angle prediction? We intention-
ally limited our chosen transformations to pre-
serve the known expected steering angle (Flip 
requires inverting the steering direction), which 
provides us with an oracle. 

This leads us to investigate the relation be-
tween INC and SAD. Recall that INC is the neu-
ron coverage achieved by each image in isolation 
and SAD is the absolute value of the difference 
between the model-predicted steering angle and 
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the oracle steering angle. Here greater SAD is in-
dicative of potentially anomalous behavior. Thus 
if transformation leads to greater deviation, then it 
has proven effective in uncovering potential bugs 
or weaknesses in the model. 

As a preliminary investigation, we frst con-
sider transformation’s impact on SAD. Similar to 
the pattern seen in Figure 3 when using trans-
formation groups of size one, Flip leads to the 
largest mean SAD, followed by Contrast, and 
then Translate X. We also consider larger trans-
formation groups where the same patterns per-
petuate. For example, size-three transformation 
groups that include Flip and Contrast dominate 
the larger mean SAD values. Of the two, Flip 
more consistently leads to a greater deviation in 
steering angle. This pattern is reminiscent of the 
neuron coverage where Flip is a consistent top 
performer. Thus the data suggests a connection 
between neuron coverage and SAD. 

Finally, we compare INC and SAD directly 
using linear regression [16]. We applied R’s lm 
function using SAD as the response variable and 
INC as the explanatory variable. Aggregated over 
all seven transformations, lm yields the following 
relation with a p-value < 0.0001: 

SAD = 0.043 + 0.0017 × INC. 

Most relevant to our research is that the 
slope of the regression line is positive indicating 
that, although small, increased INC is associated 
with greater SAD. This result persists in the 
larger transformation groups. For example, none 
of 7C3’s 35 transformation groups yields a line 
with a negative slope. 

Digging deeper, we include the interaction 
term between transformation group and neuron 
coverage. The model uncovers two interesting 
results. First, neuron coverage continues to have 
a positive coeffcient (p-value = 0.007). Second, 
Flip differentiates itself (p-value = 0.0164) where 
the slope for Flip is three times steeper than the 
slope using the aggregated data. 

In general a stronger test suite for a system is 
one that reveals more errant behaviors or failures. 
Refecting on our two research questions, in the 
domain of autonomous vehicle operations and 
especially in terms of steering angle prediction, a 
stronger test suite would reveal more and larger 
SADs as indicative of model weakness. If that 

stronger test suite also achieves higher neuron 
coverage, then neuron coverage could be argued 
to be a useful proxy for the strength of a test 
suite. 

Based on our data, we see a small positive 
correlation between transformations that generate 
higher neuron coverage and those that reveal 
more and larger mean steering angle deviations. 
In other words, the data suggests that higher 
neuron coverage may be an indicator of test suite 
strength. 

However, care must be taken with this correla-
tion as we do not know that the increase in neuron 
coverage is causing the increase in steering angle 
deviations. Regardless, it seems that transformed 
images, likened to test cases in traditional soft-
ware, have the potential to discover erroneous 
behaviors as manifested by their propensity to 
yield higher deviations in the predicted output. 

Threats to Validity 
Our experiments and results have some lim-

itations. We have worked with only one DNN 
model, Rambo [15]. Our initial set of images for 
testing the DNN was taken from the set used 
with DeepTest [7]. Increasing the external validity 
of our results by repeating our experiments with 
other DNNs, perhaps with other failure metrics, 
is an important part of our future work. 

Another limitation of our analysis is that it 
does not isolate when the SAD rises to the level 
of grossly erroneous or failure inducing. Instead 
of arbitrarily selecting a threshold where we can 
say angle is erroneous, we looked simply at the 
relationship between NC and SAD. 

Related Work 
A number of studies have taken the approach 

of testing DNNs with synthetically created road 
images [6], [7], [17], [18]. Among them, Deep-
Road [17] argues that the images used in Deep-
Xplore [6] and DeepTest [7] do not realistically 
represent real-world driving scenarios. DeepRoad 
alleviates the problem by using a Generative 
Adversarial Network (GAN) [19] based technique 
to synthesize realistic driving scenes. However, 
the GAN based technique does not provide any 
guarantee of image creation preserving desired 
steering angle. Contrary to DeepTest’s fndings, 
Harel-Canada et al., [8], did not fnd neuron 
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coverage to be an effective metric to derive new 
test images. They argue that individual neurons 
do not represent specifc features of an image and 
thus the value in maximizing neuron activations 
is questionable. 

Sun [20] proposed a new set of coverage 
criteria instead inspired by the modifed con-
dition/decision coverage (MC/DC) criterion of 
traditional software systems. The search for a 
more effective test image selection approach led 
the Deepgauge study [21] to propose a set of cov-
erage criteria based on covering different sections 
of the network as well as the range of values 
output by a neuron (boundary coverage). 

Conclusion 
We investigated the use of image transforma-

tion to create new test images and how these 
images impact the neuron coverage achieved by a 
DNN. We frst found that while transformation in-
creases neuron coverage, certain transformations 
achieve higher neuron coverage than others. In 
fact our newly introduced image transformation, 
Flip, which does not require a new oracle for 
testing, achieves higher neuron coverage than 
other existing transformations. Furthermore, com-
binations of transformations also prove useful and 
often achieve even higher neuron coverage. 

Our data shows a small, but positive, cor-
relation between neuron coverage and steering 
angle deviations. Parallel to the neuron coverage 
results, the positive correlation is strongest with 
Flip. More importantly, we never found a negative 
correlation between neuron coverage and steering 
angle deviation among any applied transforma-
tions. This suggests that neuron coverage might 
act as a proxy for test-suite strength; however, 
there is a need for further investigation to discover 
whether neuron coverage is a consistent indicator 
of test-suite strength. 

As DNNs become more integral to modern 
technology, more thorough understanding of these 
sophisticated black-box systems is warranted. 
This includes not only empirical testing work, 
such as presented here, but also theoretical work 
aimed at providing a deeper understanding. For 
DNNs that take images as their input, having an 
effective metric for selecting good test images 
is an important aspect of their testing. The use 
of transformed images that do not require a new 

test oracle, combined with neuron coverage, may 
prove a good candidate for this role. 
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