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Large-scale measurements linking genetic background to biological function have driven
a need for models that can incorporate these data for reliable predictions and insight
into the underlying biophysical system. Recent modeling efforts, however, prioritize pre-
dictive accuracy at the expense of model interpretability. Here, we present LANTERN
(landscape interpretable nonparametric model, https://github.com/usnistgov/lantern),
a hierarchical Bayesian model that distills genotype–phenotype landscape (GPL) mea-
surements into a low-dimensional feature space that represents the fundamental biolog-
ical mechanisms of the system while also enabling straightforward, explainable predic-
tions. Across a benchmark of large-scale datasets, LANTERN equals or outperforms
all alternative approaches, including deep neural networks. LANTERN furthermore
extracts useful insights of the landscape, including its inherent dimensionality, a latent
space of additive mutational effects, and metrics of landscape structure. LANTERN
facilitates straightforward discovery of fundamental mechanisms in GPLs, while also
reliably extrapolating to unexplored regions of genotypic space.

interpretability | machine learning | genotype–phenotype landscape | epistasis

Genotype–phenotype landscapes (GPLs) characterize the relationship between a gene’s
mutations and its function. Driven by reduced sequencing costs and growing experimental
throughput, the scale of available GPL measurements has increased dramatically, with
recent measurements sampling as many as 104 to 107 distinct genotypes (1). These
measurements play an expanding role in understanding biological variation, with ap-
plications from engineering to epidemiology (2, 3). Despite their importance, however,
even the highest-throughput experimental measurements cannot overcome the massive
combinatorial size of GPLs. For example, meaningful changes in engineered function or
virulence are often the result of three or more mutations. For a typical protein, there are
approximately 1011 potential triple mutants, so a large-scale GPL measurement on the
order of 104 to 107 observations can only sample a tiny fraction of the relevant mutational
space around the native sequence. Since this makes complete experimental coverage of
GPLs unrealistic, a full understanding of landscape spaces can only come from estimates
of unmeasured genotype–phenotype combinations, using models and their predictions.

Predicting phenotypes for genotypes with multiple mutations is challenging because the
effect of each mutation depends on which other mutations are present. So, the phenotypic
change due to multiple mutations is not simply the sum of the changes from each
single mutation (4). This context dependence, referred to as epistasis, arises from many
biological mechanisms and has motivated diverse modeling approaches. For example,
specific pairs of protein residues can have strong nonadditive interactions due to their close
physical proximity in the folded protein structure, and GPL models can represent this
effect through pair-wise interaction coefficients (5). Alternatively, even when individual
mutations cause additive changes to an underlying biophysical parameter (e.g., folding
free energy), the measured phenotype can be a nonlinear function of that parameter
(6–8). GPL models that directly represent these epistatic mechanisms have the advantage
of being interpretable (9). Interpretability comes from the correspondence between model
components and biological mechanisms and can provide practitioners with an intuitive
understanding of each component of the larger model. Additionally, clear explanations of
how the model generates each prediction increases interpretability by aiding the diagnosis
of inaccurate predictions, increasing the reliability of decisions made from predictions,
and increasing trust in the model.

Existing interpretable GPL models often have limitations on their predictive accuracy
(10). So, recent efforts to model large-scale GPL measurements have, instead, relied on
deep neural network (DNN) architectures, due to their superior predictive performance
(11–15). DNNs make predictions through complicated cascades of nonlinear computa-
tion with large numbers of parameters that lack direct biological motivation, operating,
essentially, as a black box. To make DNNs more interpretable, post hoc explainability
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techniques estimate the relevant factors of DNN predictions (16).
By necessity, however, these methods only approximate the actual
important features, and incorrect conclusions can be drawn by
mischaracterization of the details in the explanation (17). Addi-
tionally, these techniques often apply to individual predictions
rather than generalizing the whole model (18). So, explaining
these black-box models does not straightforwardly scale to the
billions of predictions that may be of interest for GPL-dependent
research. Overall, DNNs provide a useful approach for maximiz-
ing predictive accuracy but force users to make compromises on
model interpretability.

Here, we address the conflict between predictive accuracy and
interpretability by developing a GPL modeling approach called
LANTERN (landscape interpretable nonparametric model).
LANTERN learns interpretable models of GPLs by finding a
latent, low-dimensional space where mutational effects combine
additively. LANTERN then captures the nonlinear effects of
epistasis through a multidimensional, nonparametric Gaussian
process (GP) model. This approach generalizes the modeling
of global epistatic relationships in two ways. First, we allow
for multiple different biophysical mechanisms to influence
biological function by modeling multiple latent dimensions
(19, 20). Second, we avoid any strong assumptions on the
shape of the nonlinear surface, instead learning it directly
from the data. In a benchmark across multiple protein GPLs,
LANTERN achieves predictive accuracy as good as or better
than existing models, including DNNs. Importantly, LANTERN
automatically provides interpretable explanations of these

predictions. LANTERN therefore remains highly interpretable
while maximizing predictive power, and can thus increase the
coverage of GPLs by orders of magnitude while simultaneously
distilling complex landscapes into their fundamental structure.

Results

Constructing Interpretable Models of GPLs. LANTERN takes,
as input data, a combination of genotypes and their measured
phenotypes (Fig. 1A). A LANTERN model of these data has
two key components. First, LANTERN decomposes genetic mu-
tations onto a latent mutational effect space, where individual
mutations are each represented by a vector (e.g.,⇀z(i) for mutation
i; Fig. 1C ). Vectors provide interpretable comparisons between
mutations, with two vectors in the same direction implying similar
function and vector magnitude representing strength of effect.
Importantly, we assume that individual mutations combine addi-
tively, represented as vector addition in the latent effect space. This
additive structure recapitulates many biophysical phenomena.
For example, individual mutations often additively impact the
thermodynamic stability of protein folding (21). GPL measure-
ments, however, frequently target a phenotype that is a nonlinear
function of these additive effects. For example, many protein
phenotypes remain robust to small decreases in folding stability
but rapidly diminish beyond a certain threshold (8). So, the
second component of LANTERN relates measured phenotypes to
the combination of latent mutational effects through a smooth,

Fig. 1. Interpretable modeling of GPLs.
(A) LANTERN takes, as input data, genotypes
with a corresponding measured phenotype.
(B) LANTERN converts the genotype of each
variant k into a one-hot encoded vector
xk ∈ {0, 1}p, where p is the total number of
mutations observed across all variants, and
xkl = 1 implies the presence of mutation l
in variant k (xkl = 0 otherwise). (C) LANTERN
predicts the position of variant k in the latent
mutational effect space as a linear combination
of mutation effect vectors with an unknown
matrix W that is learned from the data. This
formulation represents the assumption that
mutations combine additively in the latent
space. Additionally, individual mutations
have an interpretable representation in the
model in the form of their mutational effect
vector (�z(i), �z(j), etc.). Computing the location
of each variant k in the latent mutational
effect space then requires simply adding the
mutational effect vectors for mutations present
in the variant. (D) Phenotypes are a nonlinear
function, f(z), of the latent mutational effects, z.
This results in a nonlinear relationship between
genotype and phenotype. Additionally, the
observed phenotypes are assumed to be
measured with iid Gaussian noise with
unknown variance σ2

y . (E) Dimensionality of the
model is controlled through a hierarchical prior
on latent mutational effect dimensions. The
variance of individual dimensions in the latent
space (e.g., the rows of W) have a prior skewed
to small values. This results in the majority
of dimensions effectively shrinking toward
zero variance, and the smallest dimensionality
necessary to explain the data is recovered.
(F) Nonlinear surfaces f(z) are modeled with
GP priors. An example one-dimensional GP
posterior of f(z) is shown, fit to observations
(black dots, bars show observation 95% CI),
where the solid blue line is the posterior
predictive mean, and the shaded region is
the 95% credible region. Dashed lines show
example function draws from this posterior.
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nonlinear surface: f (z) (Fig. 1D). Phenotype measurements are
inherently noisy, so we assume f (z) is measured indirectly with
independent identically distributed (iid) Gaussian noise.

These two components, the latent mutational effect space
z and nonlinear surface f (z), make LANTERN interpretable.
Both components clearly correspond to general biophysical
mechanisms often seen in GPL measurements, and therefore
have intuitive explanations for their role in the model.
Additionally, they explain the predictions made by LANTERN
straightforwardly: Each prediction results by first combining
the latent mutational effects and then transforming through
the surface f (z). Notably, LANTERN makes no assumptions
about the specific biophysical mechanisms driving the complexity
of GPLs in either the latent mutational space or the nonlinear
response surface. Instead, LANTERN learns these relationships
directly from the GPL data after assuming the general structure
outlined above. Therefore, while each component learned by
LANTERN may have a direct correspondence to the biophysical
mechanisms of the systems, these connections must be determined
through additional analysis.

For application to GPL data, we implemented LANTERN
as a hierarchical Bayesian model. As part of this hierarchy, we
employed an approach for determining the dimensionality of any
GPL directly from the data. Specifically, we learn a relative scale
between each dimension of the latent mutational effect space (z)
in the form of each dimension’s variance. Higher variance results
in larger mutational effects across the corresponding dimension,
while dimensions with variance close to zero are effectively re-
moved from the model. The variance of each dimension therefore
reflects its relative impact on the model, which we refer to as the
relevance of the dimension.

To ensure that LANTERN learns the minimal number of
dimensions necessary to explain the data, we adapted the prior
on variance from a Bayesian treatment of principal components
analysis (PCA; Fig. 1E) (22). With this prior, we enforce as-
sumptions similar to those used for PCA: The latent mutational
effect dimensions should be uncorrelated, and there should be de-
creasing variance (i.e., relevance) with each dimension. This prior
also has the added advantage of enforcing the assumption that
a relatively small number of latent dimensions will be necessary
to explain the data, ensuring that dimensions not supported by

the data are removed. LANTERN therefore learns the minimal
number of dimensions necessary to explain the data, which we
refer to as the dimensionality of the GPL.

To learn the nonlinear relationship between latent mutational
effects and measured phenotypes, we placed a GP prior on the
surface f (z) (Fig. 1F ) (23). GPs learn the distribution over
possible functions that best explain the data, rather than specifying
a parametric form to the underlying relationship between z and
the observed phenotypes governed by f (SI Appendix, Fig. S1).
This ensures that LANTERN can learn the surface f (z) of any
GPL automatically from the data rather than relying on expert
knowledge to choose an appropriate parametric form (6, 24). To
learn both components of LANTERN for different GPLs, we
apply stochastic variational methods that make inference tractable
and scalable to millions of observations (25).

LANTERN Learns Biophysical Mechanisms. To determine how
well LANTERN can discover true biophysical mechanisms from
GPL data, we evaluated its performance on simulated data from
an analytic model of protein allostery (26). Allosteric proteins
regulate cellular processes in response to changes in ligand con-
centration, and the analytic model describes this response as a
function of the underlying biophysical constants such as ligand–
protein binding constants and free-energy differences between
protein states. In the analytic model, the biophysical constants
determine three phenotypic parameters that characterize the al-
losteric dose–response curve: the basal and saturating transcrip-
tion levels (G0 and G∞, respectively), and the concentration
of ligand where transcription is halfway between minimum and
maximum (EC50).

Briefly, we constructed synthetic GPL measurements by sim-
ulating a set of mutations that additively shift the wild-type
biophysical constants (Fig. 2A and SI Appendix, section 1). We
then randomly combined these mutations to simulate individual
protein variants with a mean number of mutations matching that
of an existing allosteric landscape dataset (4.38 mutations per
variant, on average) (2). For each variant, the resulting perturbed
biophysical constants determined the allosteric dose–response
parameters via the analytic model. We trained LANTERN using
only the variant genotypes and resulting dose–response parame-

BA

DC

Fig. 2. Recovering biophysical landscapes and
dimensionality. (A) Simulated GPLs of varying
dimensionality. Three simulated datasets were
generated (datasets D1 to D3), with latent mu-
tation effects on one, two, or three underlying
biophysical constants. The biophysical con-
stants determine the allosteric dose–response
phenotypes EC50, G∞, and G0 based on a bio-
physical model of allosteric protein function
(see SI Appendix, section 1 for details). (B) Per-
centage of total mutational effect variance for
each dimension learned by LANTERN for D1
to D3. For each dataset, only variances up to
the dimensionality learned by LANTERN are
shown (SI Appendix, Fig. S2). (C) Learned two-
dimensional surface f(z) for EC50 from dataset
D2. Contours show the posterior mean of f(z),
shading shows the relative variance of f(z), and
scatter points are observations positioned by
their latent z value and colored by their ob-
served EC50 value Red cross marks the wild-
type origin (zwt = 0). (D) Rotation of the f(z)
surface shown in C to align with the underly-
ing biophysical constants ΔεAI and ΔεRA. The
color map shows the true EC50 surface, and the
contours show the posterior mean of f(z) from
LANTERN. The black vectors mark the rotation
of the z1 and z2 dimensions to the native bio-
physical space.
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ters, without access to the underlying biophysical constants or the
analytical model.

To test LANTERN’s ability to correctly identify GPL dimen-
sionality, we simulated three different GPL datasets. In these
datasets, we controlled the true dimensionality by varying the
number of perturbed biophysical constants from one to three
(datasets D1 to D3, respectively). To extract the dimensionality
learned by LANTERN, we quantified how much each dimension
increases the log-likelihood of the data (see Materials and Meth-
ods). If the log-likelihood increases when an additional dimension
is included in the model, then that dimension is important for
explaining the data. So, we count the total number of dimen-
sions where evidence increases, and call this the dimensionality
of the landscape learned by LANTERN. With this procedure,
we correctly recovered the true dimensionality of the simulated
biophysical landscapes as well as higher-dimensional simulated
datasets (Fig. 2B and SI Appendix, section 2 and Figs. S2 and S3).
So, LANTERN recovers the true GPL dimensionality automati-
cally from data.

To determine whether LANTERN also learns representations
of GPLs that agree with the underlying biophysical mechanisms,
we compared the model learned by LANTERN to the true
biophysical system. LANTERN learned latent mutational
effects that strongly correlated with true biophysical constants,
despite the fact that LANTERN had no access to this
information (SI Appendix, Fig. S4). Furthermore, LANTERN
learned smooth, interpretable surfaces that accurately predict
the allosteric phenotype of each simulated landscape (Fig. 2C
and SI Appendix, Fig. S5). Using the correlation between latent
mutational effects learned by LANTERN and the true biophysical
constants in the simulation, we rotated and rescaled the space of
latent mutational effects to directly compare f (z) to the true
biophysical surface (Fig. 2D and SI Appendix, Fig. S6). In regions
of latent mutational effect space with large sampling coverage, the
rotated and rescaled surface, f (z), matches the surface from the
analytical model exactly (Fig. 2D). As sampling density decreases,
the deviation between predicted and true surfaces increases
(SI Appendix, Fig. S6). LANTERN therefore approximates a
rotated and scaled version of the true biophysical model in
regions with high experimental coverage, but balances this against
uncertainty in more sparsely sampled regions of parameter
space. Overall, this demonstrates that LANTERN recovered
the underlying dimensionality and biophysical mechanisms of
our simulations de novo from data, without additional domain
specific knowledge.

LANTERN Outperforms Alternative Predictive Methods. To
compare LANTERN’s predictive accuracy to alternative models
with real GPL data, we analyzed three published large-scale GPL
datasets (SI Appendix, Table S1): the fluorescence brightness of
green fluorescent protein [avGFP (12)], the dose–response curves
of an allosteric transcription factor [LacI (2)], and the joint
phenotypes of ACE2 binding affinity and structural stability
for the receptor-binding domain (RBD) of the SARS-CoV-2
spike protein [SARS-CoV-2 (3)]. Each dataset samples a large
number of genotypes, between ∼50,000 and ∼170,000 distinct
genotypes and ∼1,800 to ∼4,000 unique mutations, making
them ideal candidates for evaluating predictive performance of
different GPL models. We evaluated GPL model performance
on each dataset through predictive accuracy (R2) cross-validated
over 10 random splits of the data into test and training sets.

To provide the broadest comparison of LANTERN to alterna-
tives, we tested multiple modeling approaches with each dataset,
including interpretable linear and nonlinear models as well as

black-box DNNs. In all but one instance, LANTERN equaled
or outperformed all alternative approaches with respect to 10-
fold cross-validated prediction accuracy (Fig. 3A). For avGFP, all
of the tested models except for a simple linear approach have
comparable predictive accuracy. In this case, simpler models than
LANTERN are sufficient to make accurate predictions. Impor-
tantly, LANTERN achieves the same predictive accuracy as these
approaches, meaning that LANTERN does not overfit the data
despite its capacity to learn more complex models. For SARS-
CoV-2, LANTERN has higher predictive accuracy than all alter-
natives other than a dense feed-forward neural network, which
performed equally well. Additionally, LANTERN outperforms
all other approaches in predicting LacI effective concentration,
50% (EC50). In one case, the G∞ of LacI, a one-dimensional
DNN predicts out-of-sample phenotypes more accurately than
LANTERN. The G∞ phenotype poses unique challenges, due to
the complex relationship between observed G∞ and phenotype
uncertainty: Values of G∞ most distinct from the wild-type are
also the most uncertain (2). This may explain the slight decrease
in predictive accuracy for LANTERN in this case. Notably, when
adapting the variational loss to more robustly handle highly
uncertain measurements (27), we found a substantial increase in
LANTERN’s prediction accuracy for G∞ (SI Appendix, Fig. S7).
Finally, predictive performance did not increase with deeper DNN
models, suggesting we are evaluating the best possible perfor-
mance for our chosen DNN architecture (SI Appendix, Fig. S8).
Overall, LANTERN provides the most accurate predictions of
any single method across a broad benchmark of GPL datasets and
therefore achieves state of the art predictive accuracy.

To determine the impact of sample size on LANTERN per-
formance, we evaluated cross-validated accuracy as a function of
dataset size. As a Bayesian model, LANTERN straightforwardly
balances the complexity of the model against the available GPL
data. Consequently, the same training procedure for LANTERN
applies regardless of dataset size. So, LANTERN maintained
higher predictive accuracy compared to alternative approaches
regardless of the number of observations (SI Appendix, Fig. S9).
Importantly, LANTERN does not underperform the simpler
linear model with decreased data, reflecting LANTERN’s ability
to scale down to relatively small datasets without overfitting.
LANTERN even scales down to small-scale measurements with
only five to seven mutations (SI Appendix, Fig. S10). The im-
provement of LANTERN over simpler models also increases when
predicting larger combinations of mutations, which is critical for
many applications (SI Appendix, Fig. S11).

LANTERN Quantifies Predictive Uncertainty. As a Bayesian
modeling approach, LANTERN directly quantifies the un-
certainty of its predictions. In order for these uncertainties
to provide useful information, however, they must accurately
reflect the degree of certainty that should be placed in each
prediction when tested against real data (28). We therefore
compared the prediction uncertainties reported by LANTERN
to its actual prediction error. Prediction error typically increases
with increased mutational distance from the wild-type genotype
(Fig. 3B). This is due, at least in part, to the decrease in
measurement coverage for variants with more mutations. A
well-calibrated prediction uncertainty should similarly increase
with mutational distance to reflect the decrease in available data.
LANTERN’s predictions directly reflect this phenomenon, with
uncertainty growing proportional to the prediction error (Fig.
3C ). LANTERN does appear to underestimate the overall true
error rate, however, a known issue with variational methods
(29). The difference between observed and actual error appears
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C

Fig. 3. LANTERN equals or outperforms
alternative models in predictive accuracy.
(A) Ten-fold cross-validated predictive accuracy,
as determined by R2 for different models
across high-throughput GPL measurements.
Box plots summarize the distribution of R2

values: median (center line), interquartile range
(hinges), and farthest point within 1.5 of the
interquartile range of the each hinge (whiskers).
Scatter points mark the R2 value for individual
folds. (B) LANTERN root-mean-squared error
(RMSE) as a function of mutational distance
from the wild-type sequence. (C) RMSE versus
the average posterior predictive uncertainty
from LANTERN. Plotted points are for different
mutational distances from the wild type. In B
and C, each point is the bootstrapped mean
cross-validated RMSE, and error bars represent
the bootstrap estimate of the 95% CI.

linear, however, so a possible correction could be learned
independently for each dataset. Additionally, the posterior
predictive intervals are miscalibrated, further reflecting the
overconfidence of the model (SI Appendix, Fig. S12). Generally,
LANTERN provides a degree of confidence for each prediction,
but improvements to uncertainty quantification would benefit
downstream applications.

LANTERN Provides Interpretable Models of GPLs. While
LANTERN generates reliable predictions, it also straightfor-
wardly explains these predictions through its interpretable
components: an additive latent mutational effect space (z) and
nonlinear surface (f (z)). Here, we demonstrate how to leverage
this interpretability in the analysis of the three large-scale GPL
datasets: avGFP, LacI, and SARS-CoV-2. Across these datasets,
the latent dimensionality learned by LANTERN ranged from
three to five (Fig. 4A and SI Appendix, Fig. S13). We focus
our analysis on the two most relevant dimensions of each
dataset, because additional dimensions capture an exponentially
decreasing fraction of the total variation in the latent space of
mutational effects, and correspondingly represent more minor
details of each landscape (SI Appendix, Figs. S14–S18).
avGFP. For avGFP, the surface f (z) contains a sharp boundary
along the most relevant dimension, z1, that divides the latent
mutational effect space into two regions: one with near wild-type
fluorescent levels, and a second with complete loss of fluorescence
(Fig. 4B). Maximum brightness occurs in a region near (but not
centered on) the wild type (Fig. 4C ). Two additional local maxima
were identified in regions not centered on the wild type, but
these are potentially artifacts arising from irregularities in a small
number of variants (SI Appendix, Figs. S19 and S20). The major-
ity of mutations decrease fluorescence, because their mutational
effect vectors point toward a large region of decreased fluorescence

(Fig. 4D). Previous analysis found a single neural network neuron
accurately predicted avGFP brightness, with the neuron possibly
representing the effect of each mutation on structural stability
(12). However, discovery of this association depended on fixing
the dimensionality of the neural network. In contrast, LANTERN
learns this directly from data, finding a primary axis of decreased
fluorescence along z1.

To further understand how LANTERN models avGFP flu-
orescence, we analyzed mutations from engineered variants of
blue fluorescent protein (BFP) (30). LANTERN predicts the
foundational mutation of all BFP variants, Y66H, to decrease
brightness, as expected from an assay to detect green fluorescence
(Fig. 4E). However, improved variants of BFP include additional
mutations that increase the blue fluorescence, possibly through
increased folding stability (31). Interestingly, LANTERN pre-
dicts nearly all of these mutations to similarly increase wild-
type avGFP fluorescence, as they point toward the maximum
predicted brightness (Fig. 4C ). According to LANTERN, then,
these mutations may generally improve brightness independent of
fluorescent color, possibly through improved structural stability.
LacI. Tack et al. (2) measured over 47,000 LacI variants with
Hill equation–like dose–response curves. We modeled the
landscape of these response curves as a multivariate phenotype
of EC50 and G∞ for each variant. From LANTERN, the
LacI GPL has a dimensionality of three, and the majority
of mutational effects closely align with the z1 axis (Fig. 4 A
and F–H ).

To interpret the latent space learned by LANTERN, we com-
pared the effects of mutations in the two most relevant latent
dimensions (z1 and z2) with the expectations from an analytic
biophysical model for LacI dose–response (26). Increases in z1
correspond to a decreased EC50 and a slightly increased G∞.
Conversely, decreases in z1 correspond to an increased EC50 and
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Fig. 4. Interpretable models of avGFP brightness and LacI dose–response. (A) Percentage of total mutational effect variance for each dimension in each large-
scale GPL measurement. (B) Learned avGFP brightness surface f(z) along the two highest relevance dimensions learned by LANTERN (z1 and z2). Contours
show equal values of the posterior mean of f(z), scatter points show the learned posterior mean of observations colored by their observed brightness, and red
cross marks the wild-type origin (zwt = 0). (C) Focused region of the fluorescence surface, highlighting the region of maximal brightness off-center from the wild
type (red cross). (D) The distribution of latent, single-mutant directions learned by LANTERN across z1 and z2; 78% (1,476/1,879) of mutations increase along
z1. (E) Mutations in blue fluorescent variants of avGFP. BFP is created from avGFP by the Y66H mutation (black vector). Additional mutations that increase BFP
blue fluorescence are predicted to similarly increase avGFP green fluorescence (with one exception: S65T). These mutations may then have general structural
stabilizing effects independent of fluorescent color. (F and G) The learned joint surface of LacI EC50 (F) and G∞ (G). Contours show constant posterior mean
of f(z), scatter points are the posterior mean z value of variants in the dataset colored by their observed phenotype values, and red cross marks the wild-
type origin. (H) The distribution of latent, single-mutant effect directions across z1 and z2 learned by LANTERN for LacI. The majority of mutational effects
(1,374/2,510 mutations within � ≤ 25◦ of z1) lie near the positive (804 mutations) or negative (570) z1 axis. (I) Comparison of relationship between EC50 and G∞
when varying biophysical constants in an analytic model of allostery (Left) and over z1 and z2 (Right). G∞ is normalized by its maximum value, Gmax

∞ , because
that is the value reported from the analytic biophysical model. Each line represents the joint predicted value of EC50 and G∞ as the corresponding biophysical
constant or latent dimensional effect (z1 or z2) is varied. Plots for z1 and z2 show predicted mean as solid line and 95% credible interval as a shaded region. For
visual clarity, the lines for ΔεAI and ΔεRA are shifted above or below their true value, respectively, because they lie along the same values as the curve for KI.
(J–M) Association of latent mutational effects in z1 (J–L) and z2 (M) to different regions of the LacI protein. Highlighted regions are shown as connected surfaces
in each panel. Residues are colored by their average posterior mean for the corresponding latent effect dimension. Highlighted regions are the dimerization
interface (J), ligand binding pocket (K ), DNA-binding domain (L), and a mixture of ligand-binding and lower-dimerization interface (M). All structures represent
the active, DNA-bound state, with the exception of K, which shows the inactive, ligand-bound state. In each panel, two LacI proteins are shown as a dimer.
Surfaces in B, F, and G show the latent space centered on the central 99% of observations and at a cross-section through the z1–z2 plane. For additional views
of the surface, see SI Appendix, Figs. S14 and S18.

a sharply decreased G∞ (Fig. 4 F, G, and I ). This relationship
between EC50 and G∞ along z1 is consistent with changes
to three biophysical constants of the analytic model (which are
indistinguishable with respect to their effects on EC50 and G∞;
Fig. 4I ): the allosteric constant (ΔεAI), the DNA operator affinity
(ΔεRA), or the ligand binding affinity of the inactive (nonoper-
ator binding) state (KI ). So, we can interpret mutations caus-
ing changes in z1 as free-energy changes related to those three
biophysical constants. Changes along z2 have a different effect:
Increases in z2 correspond to a decreased G∞ at roughly constant
EC50 (Fig. 4 F, G, and I ), and decreases in z2 correspond to
EC50 and G∞ that remain near the wild-type values. This is
consistent with changes to a fourth biophysical constant of the
analytic model: the ligand binding affinity of the active (operator

binding) state (KA; Fig. 4I ). So, we can interpret mutations with
z2 effects as free-energy changes related to the active state ligand
affinity.

To further understand the connection between the latent mu-
tational effects and the biophysics of LacI, we analyzed the as-
sociation of mutational effects in the z1 and z2 dimensions
across the LacI protein structure. Mutations in the dimerization
region of LacI generally increase z1 (Fig. 4J ). Since mutations
in this region are unlikely to affect the DNA operator affinity or
ligand affinity, these shifts in z1 are likely due to changes in the
allosteric constant (ΔεAI). Conversely, mutations in the ligand-
binding region of LacI more often decrease z1, consistent with the
potential for mutations in this region to affect ligand affinity (KI ;
Fig. 4K ). However, mutations near the ligand-binding region can
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also affect the allosteric constant (32). Finally, mutations in the
DNA-binding domain of LacI generally increase z1 (Fig. 4L).
This is consistent with a decrease in the DNA operator affinity
(ΔεRA). Surprisingly, mutations that increase z2, corresponding
to an apparent decrease in the active-state ligand binding constant
(KA), are not typically found near the ligand-binding region.
Instead, they largely occur at the N-terminal half of the dimeriza-
tion interface (Fig. 4M ). This region of the protein undergoes a
conformational shift when the protein switches between the active
and inactive states (33). So, mutations here could affect KA via
changes in allosteric communication between the DNA-binding
and ligand-binding domains of the protein.
SARS-CoV-2 RBD. Starr et al. (3) measured the effect of over 3,800
distinct mutations in the SARS-CoV-2 spike protein RBD for
their binding affinity to ACE2 (logKd ) and structural stability
(measured as change in yeast display expression, Δ log MFI),
sampling more than 170,000 unique variants (3). LANTERN
learned five dimensions in this landscape measurement (Fig.
4A). The most common direction of mutational effects roughly
follows a gradient of steepest descent for structural stability
measured by Δ log MFI (Fig. 5 A–C ). We derived an axis
from this direction, which we refer to as the stability axis
(Fig. 5C ). The direction of latent effect for nearly 50% of
mutations (1,842/3,798) lies within 10◦ of this axis. We next
identified a second axis that lies along a constant ridge of RBD
structural stability, which we call the binding axis (Fig. 5C ).
ACE2 binding decreases along both axes, but structural stability

only changes along the stability axis (Fig. 5 D–F ). This suggests
that mutations along the stability axis, that is, most mutations of
the RBD, decrease structural stability. This decrease in structural
stability then disrupts RBD binding to the ACE2 receptor, since
the spike protein must fold correctly before it can bind to ACE2.
Conversely, mutations along the binding axis do not impact
structural stability and may be particularly important in forming
the RBD–ACE2 complex independent of structural stability. This
interpretation is supported by the location of mutations within the
different protein structure domains: The majority of mutations
with latent effects along the binding axis are near the RBD–ACE2
interface, while mutations along the stability axis are distributed
throughout the core RBD domain (Fig. 5G).

To demonstrate what LANTERN can reveal about clinically
relevant mutations, we analyzed mutations that have been found
in recently identified SARS-CoV-2 variants of concern (Fig. 5H )
(34, 35). The latent mutational effects of these mutations all
point in distinct directions within the latent space learned by
LANTERN, and each direction corresponds to higher binding
affinity than the wild type. So, although each of these mutations
has a distinct impact on the protein’s function in terms of latent
mutational effect, each is predicted to increase ACE2 binding
affinity. One mutation in particular, N501Y, has a mutational
effect vector that points directly toward the predicted maximum
of RBD–ACE2 binding affinity. N501Y occurs in the alpha
(B.1.1.7), beta (B.1.351), and gamma (P.1) variants of SARS-
CoV-2 that increased in proportion worldwide throughout late

C

D

E
H

G

FA

B

Fig. 5. SARS-Cov2 joint RBD-ACE2 binding and RBD expression landscape. (A and B) Learned surface f(z) for SARS-Cov2 RBD–ACE2 binding (log Kd (A) and
RBD expression (Δ log MFI (B). Contours show posterior mean of f(z), scatter points are mean posterior z for individual variants colored by their observed
mean phenotype value, and red crosses mark the wild-type origin. Surfaces in A and B show the latent space centered on the central 99% of observations
and a cross-section through the z1–z2 plane. For additional views of the surface, see SI Appendix, Figs. S15–S18. (C) Distribution of latent, single-mutant effect
directions along the first two dimensions of z, with stability axis (green) and binding axis (pink). (D and E) Joint RBD–ACE2 binding and RBD expression surfaces
overlaid with identified axes. Contours are the mean of the variational posterior of f(z). (F) The predicted RBD–ACE2 binding and RBD expression as a function
of one-dimensional subspaces along both axes. Specifically, for each axis �vi , we plot the predicted surface along the subspace of z: f(c�vi) for c ∈ R. Solid line
shows the posterior mean of f(z), and the shaded area is the 95% credible interval. (G) Structural association of the stability and binding axes to the RBD. The
average mutation effect vector at each residue is represented in a new basis defined by the stability and binding axes (SI Appendix, Fig. S21 and section 3), and
the coordinates of the vector in the new basis are shown as a score. Higher score values mean that mutation effect vectors at the residue induce larger changes
in z along the direction of the corresponding axis. We highlight the components of the structure corresponding to the core RBD and receptor-binding motif
(RBM) of the SARS-CoV-2 spike protein RBD, as well as the region of ACE2 that contacts the RBD. (H) Mutations of interest associated with COVID-19 outbreaks.
Individual mutational effects are shown as vectors. Contours are the mean of the variational posterior of f(z). (I) Predicted binding along the mutational effect
direction of N501Y. The x axis corresponds to the scalar value when projecting each mutation effect vector onto N501Y’s mutation vector. Solid black line is the
posterior mean, and shaded regions are the 95% CI of f(z) along the axis defined by N501Y’s latent mutation effect vector. Solid red line is the wild-type origin.
Single-mutant variants that align with the virulence axis and have a positive projection value are shown with error bars representing a 95% CI of the single
mutant measurement.
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2020 and early 2021 (36, 37). Given the importance of this
mutation to the ongoing pandemic, we analyzed the 10 mutations
with the most similar latent effects, determined by the magnitude
of the projection score of each mutation’s latent effect vector onto
that of N501Y. Among these mutations, LANTERN predicts
increased RBD–ACE2 binding strength, and measurements gen-
erally confirm stronger ACE2 binding for single mutants with
these mutations (Fig. 5I ). The LANTERN analysis indicates that
these mutations involve mechanisms similar to N501Y, based on
the similarity their latent mutational effects. So, these mutations
may be particularly important for genomic surveillance of SARS-
CoV-2. Finally, we analyzed the L452R mutation, present in the
now prevalent delta (B.1.617.2) variant. The mutational effect
vector for L452R points toward a region of increased binding but
may also contribute to the spike protein’s stability. Specifically, the
vector points in the negative direction of the identified stability
axis (Fig. 5 C and H ).

LANTERN Quantifies Local Robustness and Additivity. Despite
the complexity of GPLs, quantitative metrics can summarize
their most important features and simplify their analysis. For
example, global metrics like landscape ruggedness can provide
insight into adaptive evolution and engineering potential (38).
With LANTERN, we define two metrics based on local properties
of the landscape: slope and curvature. The slope of the landscape
describes the rate of change of the surface at each position in latent
mutational effect space (Fig. 6A). With zero slope, the phenotype
remains constant in response to small latent mutational effects.
So, the (inverse) slope is associated with robustness. The curvature
of the landscape reflects the rate of change of the slope, and
zero curvature implies that mutations have a constant effect on
phenotype (Fig. 6B). In regions with zero curvature, mutations
have no epistasis. So, the (inverse) curvature is associated with
additivity.

To apply the concept of robustness to the multidimensional
mutational effect spaces learned by LANTERN, we generalized

the slope to multiple dimensions as the surface gradient ∇f (z).
The gradient represents the rate of change in each dimension as
a vector, and a gradient with values near zero represents multi-
dimensional robustness (Fig. 6C ). In the case of SARS-CoV-2,
LANTERN predicts high robustness near the predicted maxi-
mum of binding strength between the RBD and ACE2 (Fig. 6D).
This region of latent mutational effect space poses a potential clin-
ical threat, as it represents genetically stable SARS-CoV-2 infectiv-
ity through strong affinity between the RBD and ACE2. Variants
in this region may then have more mutational flexibility to evade
immune response while maintaining infectivity (35, 39, 40).

To similarly quantify additivity in multiple dimensions, we
computed the curvature in the form of the Laplacian (Δf (z); Fig.
6E). A value of zero for the Laplacian indicates a constant rate of
change in all dimensions and constitutes multidimensional addi-
tivity. As an evaluation of additivity as a useful metric, we analyzed
the additivity surface of LacI EC50 (Fig. 6F ). Previous analysis of
the LacI EC50 phenotype showed that mutational effects in single
and double mutants combine with very little epistasis (2). The
additivity surface quantitatively represents this phenomenon, with
theEC50 surface having high additivity around the wild type (Fig.
6F ). Notably, we draw this conclusion directly from the additivity
surface predicted by LANTERN, rather than through combina-
torial screening of epistatic effects in single and double mutants.

Both robustness and additivity are local properties of the
surface: They describe differential behaviors for infinitesimally
small changes in the latent space z. These local properties can
reveal useful insights into the general structure of each surface,
as shown above. However, the change in z from individual mu-
tations is nonnegligible, quantified by the magnitude of their
mutation effect vector. So, local robustness and additivity cannot
predict the impact of mutational effects with large magnitude
(SI Appendix, Fig. S22). The magnitude of most mutational effect
vectors is small, however, so robustness and additivity still provide
useful approximations to the effect of individual mutations in local
regions of the landscape.

Fig. 6. Local robustness and additivity of GPLs. (A) LacI EC50 surface and slope along z1. Posterior of f(z) is shown in blue, and slope ([∂/∂z1] f(z)) is shown
in green. When the slope is zero, the surface is locally robust (purple box). (B) LacI EC50 surface and curvature along z1. Posterior of f(z) is shown in blue,
and curvature ([∂2/∂z2

1] f(z)) is shown in orange. When the curvature is zero, the surface is locally additive (red box). A curvature of zero also implies the
slope is constant, although it may be nonzero (A, red box). In both A and B, solid lines are posterior mean, and shaded regions are 95% credible intervals of
f(z). (C) The gradient of SARS-CoV-2 binding. Arrows show the posterior mean of the gradient (∇f(z)), and the contours mark the posterior mean of f(z).
The multidimensional equivalent of robustness is when ∇f(z) = 0. (D) The robustness of SARS-CoV-2 binding. Values near one indicate near-zero gradient.
(E) The curvature of LacI EC50 in multiple dimensions, calculated as the Laplacian (Δf(z)). The multidimensional equivalent of additivity is when Δf(z) = 0.
(F) The additivity of LacI EC50. Values near one indicate Δf(z) is close to zero. In C–F, red cross marks the wild-type origin (zwt = 0).
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Discussion

LANTERN addresses the need for GPL models that make
accurate predictions while remaining interpretable. We show
that, in a benchmark across multiple GPLs, LANTERN achieves
equal or better predictive accuracy compared with state-of-the-
art DNN models (Fig. 3). However, beyond our analysis of
varying DNN depth (SI Appendix, Fig. S8), our comparison
to DNN models may remain incomplete, because changes in
network architecture or training hyperparameters can marginally
improve predictive accuracy (41–43). This further highlights
the advantages of LANTERN, however, because LANTERN
provides a single modeling interface for any GPL measurement,
with no additional tuning necessary. Additionally, DNNs
typically require large-scale measurements to ensure satisfactory
performance but provide no clear cutoff for how many data
are sufficient. In contrast, LANTERN scales to any dataset size
(SI Appendix, Figs. S9 and S10). Overall, we expect LANTERN
will provide accurate predictions in a broad class of GPLs and
impact engineering and research endeavors that depend on
extrapolation to new genotypes.

With black-box models, improvements to predictive accuracy
come at the expense of model interpretability. This trade-off
is also widely assumed to be unavoidable (9). In the case of
GPLs, LANTERN shows that this is not the case: LANTERN
makes state-of-the-art predictions (i.e., equal to or better than
alternative approaches) while remaining fully interpretable. So,
LANTERN automatically explains every prediction it makes
through its construction from easily understandable components.
So, LANTERN achieves state-of-the-art prediction without any
trade-off in interpretability.

The dimensionality of a GPL, determined by the number of
biophysical parameters influenced by mutations, contributes to
landscape ruggedness and the distribution of epistatic interactions
(44). LANTERN automatically determines the dimensionality,
which we validated with simulations (SI Appendix, Figs. S2 and
S3). However, along with simply detecting the number of la-
tent dimensions, LANTERN provides guidance on the degree
of importance for each latent dimension in the form of their
relevance, similar to the decreasing variance explained in PCA
(22). Additionally, the dimensionality learned by LANTERN is
empirical: LANTERN learns the number of latent dimensions
sufficient to explain the data. As new measurements become
available, the dimensionality may increase—reflecting the discov-
ery of new structure in the landscape. LANTERN also bene-
fits from a rich history of research in dimensionality reduction
(22, 45, 46), in some cases, recovering latent spaces similar to
alternative approaches (SI Appendix, section 4 and Fig. S23). But,
LANTERN is unique for jointly learning a nonlinear surface and
low-dimensional latent space.

Beyond dimensionality, LANTERN learns latent mutational
effect spaces that reflect the underlying biophysical process, pos-
sibly up to a rotation (Fig. 2D). But, in cases where the effect
of mutations on multiple biophysical parameters are correlated,
LANTERN will struggle to separate these effects into different
dimensions. For example, multiple biophysical parameters (or
a combination of them) may explain the z1 axis of the LacI
landscape (Fig. 4I ). Without additional prior information, like
the plausibility of correlation between the biophysical parameters
in response to mutations, no data-driven approach can resolve
this ambiguity. This further emphasizes the value of LANTERN,
however, because this issue is only made apparent through the
interpretability of LANTERN.

LANTERN also presents straightforward explanations of the
effects of individual mutations through their latent effect vector.
These vectors facilitate clear understanding of how each mutation
contributes to an observed phenotype (Figs. 4E and 5H ) and how
these mutations are tied to structural biophysics (Figs. 4 J–M and
5G). LANTERN also quantifies the uncertainty about the effect
of each mutation, with uncertainty decreasing the more times
a mutation is observed in the dataset (SI Appendix, Fig. S24).
From this uncertainty, we can determine which mutations have
effects that are statistically different from zero. For the large-
scale GPL datasets considered here, the majority of mutations
(ranging from 55 to 93% of all mutations) have a significant
effect (SI Appendix, Fig. S25). This agrees with the expectation
that most genes and proteins have been optimized via natural
selection, so that mutations will disrupt or otherwise impact
the protein’s function (47). So, modeling approaches that in-
clude an assumption of sparsity (i.e., that most mutations have
no effect on function) would not be appropriate for analyzing
GPL data.

LANTERN quantifies the metrics of local robustness and
additivity, which provide perspectives for understanding large-
scale GPL measurements (Fig. 6). Rather than describing behavior
with regards to any one genotype, they represent the expected
effects of underlying parameters on a global phenotype in one
small evolutionary region.

LANTERN models GPLs as a nonlinear surface over a low-
dimensional latent mutational effect space, a form of epistasis
where nonadditivity arises from global structure (6, 8). Certain
theoretical models of GPLs, which, until recently, could not be
verified, due to the lack of sufficient experimental data, similarly
concentrated on the existence of low-dimensional manifolds that
explain the complexity of GPLs (48, 49). These models suggest
that GPLs will commonly involve low-dimensional structure, due
to the benefits in adaptive evolution (20, 50). LANTERN will
therefore likely have broad applicability across GPL measurements
of diverse biological systems (1).

LANTERN also extends beyond existing global epistasis
modeling approaches that employ stronger assumptions, for
example, a predetermined dimensionality or a fixed family of
nonlinear functions (6, 24). LANTERN, instead, learns these
details directly from the data. In some cases, the model learned
by LANTERN agrees strongly with these existing approaches
(SI Appendix, Fig. S26).

One example is avGFP, where the 95% posterior credible
interval of the surface f (z) along z1 largely overlaps with the
result from a one-dimensional monotonic I-spline model (6),
and there is strong correlation between the mutational effects
learned by both approaches (SI Appendix, Fig. S26). Given that
z1 constitutes the vast majority of mutational effect variance for
avGFP (96.7% for z1 versus 3.0% and 0.3% for z2 and z3; Fig.
4A), LANTERN has largely verified that, for avGFP, the most
important dimension (and nonlinearity across it) is captured by
the monotonic I-spline approach. This also explains the similar
predictive accuracy between these two models for avGFP (Fig. 3):
It can be difficult to resolve the predictive advantage of including
these second and third dimensions, since so much predictive
power is realized just by identifying z1. The two additional
dimensions identified by LANTERN should then be regarded
as additional potential mechanisms involved in the brightness
phenotype that should receive additional exploration in future
studies.

LANTERN also assumes global epistasis is the primary fac-
tor in GPL data. Clearly, if this assumption is incorrect, then
alternative models may be preferable. In particular, if specific
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epistatic interactions are dominant, then models designed to
capture those interactions might be necessary (5), and future
extensions of LANTERN could potentially include those ef-
fects. However, when assessing the predictive accuracy of specific-
epistasis models on the large-scale datasets considered here, these
models performed poorly (SI Appendix, Fig. S27). So, at least for
these datasets, LANTERN appears to be the better modeling
approach.

We placed a symmetric Gaussian prior on the latent mutational
effect space, reflecting the assumption that the effect of mutations
will be equally distributed in both directions (Eq. 4). In the case
of avGFP and SARS-CoV-2, the distribution of effects appears
nonsymmetric in some dimensions (Figs. 4D and 5C ). Asymme-
try may be a common feature of mutational effects, in particular
when evaluating the effect of mutations on a sequence that has
undergone heavy selection (48). In this case, most mutations
will be deleterious, and mutational effects will be asymmetri-
cally biased in one direction. Therefore, future extensions to
LANTERN may benefit from updating the prior on mutational
effects to account for the potential presence of asymmetry. But, as
seen for avGFP and SARS-CoV-2, the detection of asymmetrical
mutational effects is not prevented by our choice of symmetric
priors.

We also model the nonlinear surface with a GP, ensuring a
balance between model complexity and data fit (23). So, while
an unconstrained nonlinear surface could exactly interpolate
between data points, LANTERN’s surfaces remain smooth,
finding parsimonious explanations of the data (Figs. 4 and
5). These learned surfaces are also reproducible, with surfaces
remaining constant in response to multiple perturbations
(SI Appendix, section 5 and Figs. S28 and S29). Finally, these
surfaces reveal GPL structure not supported by previous
parametric models, including nonmonotonic effects of mutations
on phenotype (SI Appendix, Fig. S30).

But, care should be taken when drawing conclusions on the
overall structure of the nonlinear surface f (z), in particular when
evaluating regions of the latent space with sparse experimental
coverage. In these regions, the posterior on f (z) will be uncertain,
and the posterior mean will revert to the overall mean of the
observed phenotype. In cases where stronger assumptions are
justified for f (z), for example, monotonicity, those assumptions
could be incorporated into the model. The posterior mean of
f (z) is also not a complete representation of the distribution
over possible nonlinear surfaces, so, even when the mean of f (z)
departs from stronger assumptions (like monotonicity), a certain
proportion of samples from the posterior of f (z) may still exhibit
these properties.

Large-scale GPL measurements will increasingly influence bio-
science initiatives of the future. Despite increases in experimental
throughput, the full genotypic space will always remain undersam-
pled. To overcome this fundamental limitation, LANTERN facil-
itates progress through reduction of landscapes to their minimal
complexity. In this way, LANTERN transforms the intractable
challenge of exhaustive genotypic sampling to a manageable ex-
ploration of a low-dimensional space. GPL-enabled investigations
can then explore this space in an efficient manner, relying on
LANTERN’s guidance toward uncharted regions of phenotypic
diversity.

Materials and Methods

GPL Datasets. We aggregated GPL measurements from published sources (2,
3, 12). In the case of LacI, we filtered observations to variants with Hill equation–
like dose–response curves to avoid inference on inaccurate Hill equation param-

eter estimates. We combined the two libraries of SARS-Cov-2 for each of the
binding and expression measurements to make a single, aggregate dataset for
both measurements, including variants that were present in both binding and
expression datasets.

We prepared all training datasets in a similar fashion. Within each dataset,
we one-hot encoded all mutations (51). Specifically, for p total mutations in a
dataset, each variant I was represented as the one-hot encoded vector xi ∈ [0, 1]p.
For each corresponding phenotype yi ∈ R

D with phenotype dimensionality D,
we standardized each phenotype dimension separately to a mean of zero and SD
of one. Each final dataset for training was then D =

[
{xi, yi}|1 ≤ i ≤ N

]
for N

total variants.

LANTERN. We constructed LANTERN with two key components: a latent sur-
face f(z) and a set of latent mutational effects, represented by a matrix W =

[
⇀
z((1)),

⇀
z((2)), . . . ,

⇀
z(p)] ∈ R

K×p, where
⇀
z(k) represents the mutational effect

vector of mutation k (Fig. 1A). First, we placed a GP prior on the surface f(z),

f(z)∼ GP
(
μf (z),κf (z, z′)

)
, [1]

with mean and kernel functionsμf andκf , respectively. We set the mean function
μf as an unknown constant value, μf (z) = f̂ . The kernel function κf describes
the covariance between different observations of f: cov

(
f(z), f(z′)

)
= κf (z, z′).

We used the rational quadratic covariance function,

κf (z, z′) = σ2
κ

[
1 +

‖z − z′‖2

2η

]−η

, [2]

where σκ is an unknown scale parameter, and η controls the overall distribution
between smooth and rugged regions of f. We did not include a length-scale
parameter for the norm ‖z − z′‖ because we already learn the relative scale
between dimensions through the hierarchical prior on dimension variance (52).
So, even though the kernel function is isotropic, the nonlinear surfaces learned
by LANTERN are not constrained to isotropic functions (SI Appendix, section 6).

Next, we specified the hierarchical prior for the unknown mutation effects
W ∈ R

K×p for K latent mutational effect dimensions and p mutations. In all
cases, we set K = 8 (SI Appendix, section 7). For a variant i with mutation vector
xi, the latent mutational effect vector zi (conditional on W) is

zi = Wxi. [3]

Note that zi, representing the combination of latent mutational effects for each
mutation in variant i, is distinct from a dimension of the latent mutational effect
space (e.g., z1).

For each row k of W, wk , we defined a Gaussian prior for each element of wk ,

wk,j ∼ N(0, α−1
k ), [4]

whereαk is the precision (or inverse variance) of dimension k. We place a Gamma
distribution prior on each αk (22),

αk ∼ Gamma(γ0, β0), [5]

where γ0 and β0 are model hyperparameters. We set γ0 = β0 = 10−3 in all
experiments here, which generally leads to models that minimize the number
of dimensions (22). We rank the importance of each dimension by its variance,
which we refer to as its relevance.

To combine these components when modeling a GPL dataset D, we assume
that each phenotype yi is conditionally independent given the unknown vari-
ables,

p(D|f , W , α) =
N∏

i=1

p(yi|f , W , α, xi), [6]

with likelihood of each phenotype yi as a normal distribution

p(yi|f , W , α, xi) = N(yi|fi, σ
2
y + σ2

i ), [7]

where fi = f(zi) = f(Wxi), σ2
y is an unknown variance parameter estimated

from the data, and σ2
i is any additional measurement uncertainty provided for

each variant in the dataset.
We treat the kernel parameters σκ and η, mean surface value f̂ , and the

global phenotype noise σ2
y as unknown variational parameters constrained to

be positive and learned for each dataset.
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Variational Inference. Given the specified model, inference involves the re-
covery of the posterior distribution,

p(f , W ,α|D) =
p(D|f , W , α)p(f)p(W|α)p(α)

p(D)
. [8]

The exact posterior is analytically intractable, and we, instead, relied on an
approximation through variational inference (VI) (29). VI recasts the inference
procedure as an optimization problem to minimize the Kullback-Leibler diver-
gence between an approximate posterior q(f , W , α) and the true posterior
p(f , W , α|D) (SI Appendix, section 8).

Implemenation. We implemented LANTERN with the automatic differentiation
library pytorch (53), with GP components of the model relying on gpytorch
(54). We trained on computers with GPUs with ≥12 GB of memory and 5,120
CUDA cores. We trained LANTERN models with minibatch size 4,096 or 8,192,
depending on GPU capacity, learning rate of 10−2 using the Adam optimizer
(55), and for 5,000 epochs. We set the maximum number of latent mutational
effect dimensions to eight. A total of 800 inducing points were learned for
each model, with initial positions uniform randomly sampled over the range
[−10, 10].

Determining Dimensionality. For each dimension with learned precision αk ,
we sort the dimensions such that σ2

k = 1/αk decreases with k (i.e., σ2
1 >

σ2
2 > . . . ). Then, we calculate the expected log-likelihood of each observation

with an increasing number of dimensions included in the model,

�ik = Eq[log p(yi|f , W(k))], [9]

where W(k) is the subspace of the full latent space defined by W up to dimension
k (i.e., the first k rows of W). We assess the impact of including dimension k in the
model, by testing whether the evidence for the data (�ik ) has increased compared
to a model with k − 1 dimensions. Specifically, we apply a one-sided, two-sample
Kolmogorov–Smirnov test to compare the empirical distributions of �ik and �ik−1,
and consider the dimension k necessary for the model if those distributions are
significantly different, that is, p ≤ 0.05 (SI Appendix, Figs. S2, S3, and S13). We
then define the dimensionality as the maximum dimension k where this is true.

Computing Additivity and Robustness. Additivity and robustness were de-
rived from the Laplacian (Δf(z )) and gradient (∇f(z )) posterior predictive
distributions, respectively (SI Appendix, section 9). For a location zk in the latent
mutational effect space, we calculate the analytic posterior distribution of the gra-
dient, q(∇f(zk))≈ N(μ∇, Σ∇), and Laplacian, q(Δf(zk))≈ N(μΔ, σ2

Δ).
Both robustness and additivity were quantified from the unnormalized density, or
kernel, of their respective differential operator’s posterior predictive distribution
at a value of zero for the corresponding differential operator,

robustness = exp
(
−μT

∇Σ−1
∇ μ∇/2

)
[10]

and

additivity = exp
(
−‖μΔ‖2/2σ2

Δ

)
, [11]

Values of additivity and robustness close to one then imply near-zero values for
the underlying differential operators Δf(z) and ∇f(z).

Models Used in Comparison with LANTERN.
Linear. A linear GPL model [implemented in pytorch (53)]

yi = βT xi, [12]

assuming βk is the average effect of mutation k.
I-spline. We used the monotonic I-spline model of ref. 6 via the python
library dms variants (https://github.com/jbloomlab/dms variants), using default
parameters and a Gaussian likelihood for all datasets.
DNN. We adapted DNN architectures from recent publications performing
regression on GPL measurements (11, 12). These architectures follow a feed-
forward structure,

yi = fθ(xi) = W(2)
θ σ(W(1)

θ σ(W(0)
θ σ(z) + b(0)) + b(1)) + b(2), [13]

with weights W(k), biases b(k), and nonlinearityσ. These models generally have
a low-dimensional initial hidden layer, for example, W(0) ∈ R

L×K and b(0) ∈
R

L with L ≪ K. The primary hidden layer has width w: W(1) ∈ R
w×L and

b(0) ∈ R
w . A final linear layer transforms the hidden neurons to the output di-

mension: W(2) ∈ R
D×w and b(2) ∈ R

D. For this study, models were constructed
with an initial hidden layer width L of either one or eight, ReLU nonlinearity
σ, and a hidden width of w = 32. We trained neural networks with the Adam
optimizer, with a minibatch size of 128, learning rate of 10−3, for 100 epochs. We
chose the epoch length to minimize the held-out validation prediction error. We
minimized the mean-squared error, with losses weighted inversely proportional
to measurement uncertainty. To evaluate increased depth of DNN architectures
(SI Appendix, Fig. S8), new layers were added matching the architecture of the
first hidden layer.

Cross-Validation. We evaluated all models with 10-fold cross-validation. We
quantified predictive accuracy across folds with the weighted coefficient of deter-
mination,

R2
η = 1 −

∑n
i=1 ηi(yi − ŷi)

2∑n
i=1 ηi(yi − ȳη)2

, [14]

for model predictions ŷi, ȳη = (
∑

ηiyi)/(
∑

ηi), and individual predictions
weighted inversely proportionally to their measurement certainty (σ2

i for each ob-
servation i): η = {1/σ2

1 , 1/σ2
2 , . . . }. Predictions from models approximated

via variational methods were made with the posterior mean of all unknown
random variables. To determine the relationship between predictive accuracy and
dataset size, we trained models from data subsampled at 5,000 increments of the
full training set size for each cross-validation fold, and evaluated performance on
the held-out test data for all resulting models.

Uncertainty Quantification. We quantified predictive uncertainty of
LANTERN with Monte Carlo draws from the approximate variational posterior.
Specifically, a Monte Carlo sample of the unknown mutation effects was taken
from the variational posterior: W̃ ∼ q(W). This sample was then used to
calculated the latent position of every variant: z̃i = W̃xi. Then, the approximate
posterior predictive distribution of the surface f was used to sample a predictive
phenotype for the variant: f̃i ∼ q(f |zi). This two-stage sampling process was
repeated 50 times to estimate the overall uncertainty of fi for each variant.

Predictive intervals for evaluating uncertainty calibration were calculated
from the approximate posterior predictive distribution of fi. From the Monte
Carlo samples, we approximate the posterior predictive distribution for yi as
N(μ̂i, σ̂2

i + σ2
y ), where μ̂i and σ̂2

i are the mean and variance of the posterior
predictive distribution, respectively, for fi. From each distribution, we define the
cumulative distribution function Fi(yi) and the corresponding quantile function
F−1

i (p) = inf{y : y ≤ Fi(y)} for p ∈ [0, 1]. Then, for all p, we say a model is
calibrated if

Cp =

∑N
i=1 I(yi ≤ F−1

i (p))
N

= p, [15]

where I is an indicator function and is equal to one if the inequality is satisfied,
and is zero otherwise (56). Model calibration was determined by comparing
the observed coverage of the interval (Cp) versus the expected coverage for a
calibrated model (p) (SI Appendix, Fig. S12). We also corrected for biases in the
density of observations to more accurately assess the calibration when predicting
phenotypes different from the wild type (SI Appendix, section 10).

Simulated Biophysical Allosteric Model. Simulated data were generated
using a biophysical model for allosteric transcriptional regulation (26). The model
relates the dose–response curve of an allosteric transcription factor to biophysi-
cal parameters such as binding constants and free-energy differences between
protein states. These parameters determine the baseline dose–response (G0), the
saturated dose–response (G∞), and the sensitivity (EC50). Simulated datasets
were generated assuming a protein with 300 amino acid positions and six
possible amino acid substitutions at each position. In each dataset, the number
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of biophysical parameters influenced by these substitutions varied from one to
three (D1 to D3, respectively).

For each simulated dataset, 100,000 simulated variants were generated by
first assigning the number of amino acid substitutions for each variant based
on an empirical distribution from an experimental dataset (2). The positions and
identities of simulated substitutions were then randomly chosen as uniform ran-
dom draws from possible positions (without replacement), and possible substitu-
tions (with replacement). Shifts in biophysical parameters were then determined
for each simulated variant by summing the effects of each substitution, and the
resulting biophysical parameter values were used to calculate G0, G∞, and EC50

for each simulated variant. For more details, see SI Appendix, section 1.

Code Availability. Source code of the LANTERN library is available at https://
github.com/usnistgov/lantern. Analysis code of the manuscript is available at
https://github.com/usnistgov/lantern/tree/master/manuscript.

Data Availability. Code and processed data are available in the GitHub
repository, https://github.com/usnistgov/lantern. The GPL data that sup-
port the findings of this study are available at Figshare for avGFP (DOI:
10.6084/m9.figshare.3102154), the National Institute of Standards and
Technology (NIST) Public Data Repository for LacI (DOI: 10.18434/M32259), and
GitHub for SARS-CoV-2 (https://github.com/jbloomlab/SARS-CoV-2-RBD DMS).
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