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Abstract
We describe the utility of integral representations for sums of basic hypergeometric
functions. In particular we use these to derive an infinite sequence of transformations
for symmetrizations over certain variables which the functions possess. These inte-
gral representations were studied by Bailey, Slater, Askey, Roy, Gasper and Rahman
and were also used to facilitate the computation of certain outstanding problems in
the theory of basic hypergeometric orthogonal polynomials in the q-Askey scheme.
We also generalize and give consequences and transformation formulas for some fun-
damental integrals connected to nonterminating basic hypergeometric series and the
Askey–Wilson polynomials.We express a certain integral of a ratio of infinite q-shifted
factorials as a symmetric sumof two basic hypergeometric series with argument q. The
result is then expressed as a q-integral. Examples of integral representations applied
to the derivation of generating functions for the Askey–Wilson polynomials are given
and as well the computation of a missing generating function for the continuous dual
q-Hahn polynomials.
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1 Introduction

The main aim of this paper is to demonstrate the utility of revisiting the application
of integral representations for problems in basic hypergeometric functions and basic
hypergeometric orthogonal polynomials in the q-Askey scheme. We accomplish this
by proving a collection of identities which arise naturally through the utilization of
this powerful method. For a detailed history of the subject of integral representations
for basic hypergeometric functions, see [6] and [7, Chapter 4].

All of the results presented below are new but some rely heavily on identities
which have been proven elsewhere in the literature. For instance Theorem 2.1 is
essentially a restatement of [7, (4.10.5–6)], which in turn is closely connected to [20,
(5.2.4) and (5.2.20)]. However, our introduction of the useful t parameter in Theorem
2.1 (see for instance Lemma 2.16, Corollary 2.17 and Corollary 2.19) is new. Also,
our utilization of the powerful van de Bult–Rains notation for basic hypergeometric
series with vanishing numerator or denominator parameters (see (21), (22) below) in
Theorem 2.1 allows for a clear elucidation of structure which, in our opinion, is not as
such in previous incarnations of this or related results in the literature. Furthermore,
even though we believe that Theorem 2.4 is new in its full generality, the ideas which
went into it have been used many times in the literature, such as in derivations of
the Askey–Wilson integral (27), the Nassrallah–Rahman integral (28), the Rahman
integral (29), the Askey–Roy integral (31) and the Gasper integral (32), as well as in
fundamental results such as [7, Exercises 4.4, 4.5] which reappear in (46) and (68).

1.1 Preliminaries

Weadopt the following set notations:N0 := {0}∪N = {0, 1, 2, . . .}, andweuse the sets
Z,R,Cwhich represent the integers, real numbers and complex numbers respectively,
C

∗ := C \ {0}, and C
† := {z ∈ C

∗ : |z| < 1}. We also adopt the following notation
and conventions. Given a set a := {a1, . . . , aA}, for A ∈ N, define a[k] := a \ {ak},
1 ≤ k ≤ A, ba := {b a1, b a2, . . . , b aA}, a + b := {a1 + b, a2 + b, . . . , aA + b},
where b, a1, . . . , aA ∈ C.

We assume that the empty sum vanishes and the empty product is unity. We will
also adopt the following symmetric sum notation.

Definition 1.1 For some function f (a1, . . . , an;b), where b is some set of parameters.
Then

a1;a2,...,an

I f (a1, . . . , an;b) := f (a1, . . . , an;b) + idem(a1; a2, . . . , an), (1)
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where “ idem(a1; a2, . . . , an)” after an expression stands for the sum of the n − 1
expressions obtained from the preceding expression by interchanging a1 with each ak ,
k = 2, 3, . . . , n.

Definition 1.2 We adopt the following conventions for succinctly writing elements of
sets. To indicate sequential positive and negative elements, we write

±a := {a,−a}.

We also adopt an analogous notation

e±iθ := {eiθ , e−iθ }.

In the same vein, consider the numbers fs ∈ C with s ∈ S ⊂ N, with S finite.
Then, the notation { fs} represents the set of all complex numbers fs such that s ∈ S.
Furthermore, consider some p ∈ S, then the notation { fs}s �=p represents the set of all
complex numbers fs such that s ∈ S\{p}.

Consider q ∈ C
†, n ∈ N0. Define the sets Ωn

q := {q−k : k ∈ N0, 0 ≤ k ≤ n − 1},
Ωq := Ω∞

q = {q−k : k ∈ N0}. In order to obtain our derived identities, we rely on
properties of the q-shifted factorial (a; q)n . It has been pointed out by the referee that
Askey, partly for historical reasons and partly because he preferred descriptive names
to honorifics, referred to (a; q)n as a q-shifted factorial rather than the other common
nomenclature: q-Pochhammer symbol. For any n ∈ N0, a, b, q ∈ C, the q-shifted
factorial is defined as

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1). (2)

One may also define

(a; q)∞ :=
∞∏

n=0

(1 − aqn), (3)

ϑ(x; q) := (x, q/x; q)∞, (4)

where |q| < 1, x �= 0, and (4) defines the modified theta function of nome q [7,
(11.2.1)]. Note that ϑ(qn; q) = 0 for all n ∈ Z. Furthermore one has the following
identities:

(a2; q)∞ = (±a,±q
1
2 a; q)∞, (5)

(a, q/a; q)∞
(qa, 1/a; q)∞

= ϑ(a; q)

ϑ(qa; q)
= −a, (6)

where a �= 0. Moreover, define

(a; q)b := (a; q)∞
(aqb; q)∞

, (7)
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where aqb /∈ Ωq . We will also use the common notational product convention

(a1, . . . , ak; q)b := (a1; q)b · · · (ak; q)b.

The following properties for the q-shifted factorial can be found in Koekoek et
al. [13, (1.8.7), (1.8.10–11), (1.8.14), (1.8.19), (1.8.21–22)], namely for appropriate
values of q, a ∈ C

∗ and n, k ∈ N0:

(a; q−1)n = q−(n
2)(−a)n(a−1; q)n, (8)

(a; q)n+k = (a; q)k(aqk; q)n = (a; q)n(aqn; q)k, (9)

(a; q)n = q(n
2)(−a)n(q1−n/a; q)n, (10)

(aq−n; q)k = q−nk (q/a; q)n

(q1−k/a; q)n
(a; q)k, (11)

(a2; q2)n = (±a; q)n, (12)

(a; q)2n = (a, aq; q2)n = (±√
a,±√

qa; q)n . (13)

Observe that, by using (9) and (13), one obtains

(aqn; q)n = (±√
a,±√

qa; q)n

(a; q)n
, a /∈ Ωn

q . (14)

Define the Jackson q-integral as in [7, (1.11.2)]

∫ b

a
f (u; q)dqu = (1 − q)b

∞∑

n=0

qn f (qnb; q) − (1 − q)a
∞∑

n=0

qn f (qna; q) (15)

= (1 − q)ab

a − b

a;b

I
(
1 − a

b

) ∞∑

n=0

qn f (qna; q)

= b

a − b

a;b

I
(
1 − a

b

) ∫ a

0
f (u; q)dqu, (16)

where we have utilized (6) to write the q-integral as a symmetric sum.
The nonterminating basic hypergeometric series, whichwewill often use, is defined

for s ∈ N0, r ∈ N0 ∪ {−1}, b j /∈ Ωq , j = 1, . . . , s, as [13, (1.10.1)]

r+1φs

(
a1, . . . , ar+1

b1, . . . , bs
; q, z

)
:=

∞∑

k=0

(a1, . . . , ar+1; q)k

(q, b1, . . . , bs; q)k

(
(−1)kq(k

2)
)s−r

zk . (17)

For s > r , r+1φs is an entire function of z, for s = r then r+1φs is convergent for
|z| < 1, and for s < r the series is divergent.
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Remark 1.3 Sometimes we also use generalized hypergeometric series r+1Fs which is
the q ↑ 1 limit of basic hypergeometric series (see for instance [13, p. 15]). For their
properties, see [15, Chapter 16].

Note that we refer to a basic hypergeometric series as �-balanced if q�a1 · · · ar+1 =
b1 · · · bs , and balanced (Saalschützian) if � = 1 (see [1, Definition 3.3.1], [7, p. 5]).
The referee has pointed out that for the very important � = 1 case, the term balanced
was introduced by Askey, whereas the earlier term Saalschützian is due to Whipple
and was used by Bailey, but lost much of its force after Askey’s discovery in 1975
that Pfaff had Saalschütz’s identity 93 years earlier in 1797. A basic hypergeometric
series r+1φr is well-poised if the parameters satisfy the relations

qa1 = b1a2 = b2a3 = · · · = br ar+1.

It is very-well poised if in addition, {a2, a3} = ±q
√

a1. Define the very-well poised
basic hypergeometric series r+1Wr [7, (2.1.11)]

r+1Wr (b; a4, . . . , ar+1; q, z) := r+1φr

(
±q

√
b, b, a4, . . . , ar+1

±√
b,

qb
a4

, . . . ,
qb

ar+1

; q, z

)
, (18)

where
√

b,
qb
a4

, . . . ,
qb

ar+1
/∈ Ωq . When the very-well poised basic hypergeometric

series is terminating, one has

r+1Wr
(
b; q−n, a5, . . . , ar+1; q, z

) = r+1φr

(
q−n,±q

√
b, b, a5, . . . , ar+1

±√
b, qn+1b,

qb
a5

, . . . ,
qb

ar+1

; q, z

)
,

(19)

where
√

b,
qb
a5

, . . . ,
qb

ar+1
/∈ Ωn

q ∪ {0}. The Askey–Wilson polynomials are intimately
connected with the terminating very-well poised 8W7, which is given by

8W7(b; q−n, c, d, e, f ; q, z) = 8φ7

(
q−n,±q

√
b, b, c, d, e, f

±√
b, qn+1b,

qb
c ,

qb
d ,

qb
e ,

qb
f

; q, z

)
, (20)

where
√

b,
qb
c ,

qb
d ,

qb
e ,

qb
f /∈ Ωn

q ∪ {0}.
In the sequel, we will use the following notation r+1φ

m
s , m ∈ Z (originally due to

van de Bult & Rains [21, p. 4]), for basic hypergeometric series with zero parameter
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entries. Consider p ∈ N0. Then define

r+1φ
−p
s

(
a1, . . . , ar+1
b1, . . . , bs

; q, z

)
:= r+p+1φs

⎛

⎝ a1, a2, . . . , ar+1,

p︷ ︸︸ ︷
0, . . . , 0

b1, b2, . . . , bs

; q, z

⎞

⎠ ,

(21)

r+1φ
p

s

(
a1, . . . , ar+1
b1, . . . , bs

; q, z

)
:= r+1φs+p

⎛

⎝
a1, a2, . . . , ar+1

b1, b2, . . . , bs, 0, . . . , 0︸ ︷︷ ︸
p

; q, z

⎞

⎠ ,

(22)

where b1, . . . , bs /∈ Ωq ∪ {0}, and r+1φ
0
s := r+1φs . The nonterminating basic

hypergeometric series r+1φ
m
s (a;b; q, z), a := {a1, . . . , ar+1}, b := {b1, . . . , bs},

is well-defined for s − r + m ≥ 0. In particular r+1φ
m
s is an entire function of z for

s −r +m > 0, convergent for |z| < 1 for s −r +m = 0 and divergent if s −r +m < 0.
Note that we will move interchangeably between the van de Bult and Rains notation
and the alternative notation with vanishing numerator and denominator parameters
which are used on the right-hand sides of (21) and (22).

1.2 The Askey–Wilson polynomials and related fundamental integrals

Let n ∈ N0, q ∈ C
†. For the Askey–Wilson polynomials pn(x; a|q), which are

symmetric in four free parameters, we will switch interchangeably with the notation
a := {a1, a2, a3, a4} and a := {a, b, c, d}, a = a, a, b, c, d ∈ C

∗, and similarly for the
continuous dual q-Hahn polynomials which are symmetric in three free parameters.
Define a12 := a1a2, a13 := a1a3, a23 := a2a3, a123 := a1a2a3, a1234 := a1a2a3a4,
etc.

The Askey–Wilson polynomials can be defined in terms of the terminating basic
hypergeometric series [13, (14.1.1)]

pn(x; a|q) := a−n(ab, ac, ad; q)n 4φ3

(
q−n, qn−1abcd, ae±iθ

ab, ac, ad
; q, q

)
, (23)

where x = cos θ . The Askey–Wilson polynomials are orthogonal on (−1, 1) with
respect to the weight function

wq(cos θ; a) := (e±2iθ ; q)∞
(ae±iθ ; q)∞

= (±e±iθ ,±q
1
2 e±iθ ; q)∞

(ae±iθ ; q)∞
, (24)

where the second equality is due to (5). The orthogonality relation for Askey–Wilson
polynomials is [13, (14.1.2)]

∫ π

0
pm(x; a|q)pn(x; a|q)wq(x; a) dθ = hn(a; q)δm,n, (25)
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where

hn(a; q) := 2π(qn−1a1234; q)n(q2na1234; q)∞
(qn+1, qna12, qna13, qna14, qna23, qna24, qna34; q)∞

. (26)

We will also rely on several important generalized q-beta integrals. The first is the
Askey–Wilson integral [7, (6.1.1)] (the integral over the full domain of the Askey–
Wilson weight (24))

∫ π

0

(e±2iθ ; q)∞
(ae±iθ ; q)∞

dθ := 2π(a1234; q)∞
(q, a12, . . . , a34; q)∞

, (27)

where max(|a1|, . . . , |a4|) < 1. Note the Askey–Wilson norm for n = 0 is equal
to the evaluation of the Askey–Wilson integral (27). The second is the Nassrallah–
Rahman integral (in symmetrical form) [7, (6.3.9)] which generalizes the Askey–
Wilson integral, namely [17, (3.1)]. Let a := {a1, a2, a3, a4, a5}. Then
∫ π

0

(e±2iθ , λe±iθ ; q)∞
(ae±iθ ; q)∞

dθ = 2π(λa, λ−1a12345; q)∞
(q, a12, . . . , a45, λ2; q)∞

8W7

(
λ2

q
; λ

a
; q,

a12345
λ

)
,

(28)

where max(|a1|, ..., |a5|) < 1 and |a12345| < |λ|. The Nassrallah–Rahman integral
(28) becomes the Askey–Wilson integral (27) for λ = a5.

The third is the Rahman integral [7, Exercise 6.7] which generalizes theNassrallah–
Rahman integral. Let a := {a1, a2, a3, a4, a5, a6}. Then
∫ π

0

(e±2iθ , λe±iθ , μe±iθ ; q)∞
(ae±iθ ; q)∞

dθ = 2π

(q, a12, . . . , a56; q)∞

×
(

(λa, μ
a ; q)∞

(λ2, μ/λ; q)∞
10W9

(
λ2

q
; λμ

q
,
λ

a
; q, q

)

+ (μa, λ
a ; q)∞

(μ2, λ/μ; q)∞
10W9

(
μ2

q
; λμ

q
,
μ

a
; q, q

))
(29)

= 2π

(q, a12, . . . , a56; q)∞

λ;μ

I
(λa, μ

a ; q)∞
(λ2, μ/λ; q)∞

10W9

(
λ2

q
; λμ

q
,
λ

a
; q, q

)
, (30)

where λμ = a123456 and max(|a1|, . . . , |a6|) < 1. Given that λ �= 0, then if μ =
a6 → 0, then the Rahman integral (29) becomes the Nassrallah–Rahman integral
(28). See [18] for some other interesting limits of the Rahman integral (29).

Some other important integrals related to basic hypergeometric functions are the
q-beta integrals. The first one we mention is due to Askey–Roy [2, (2.8)]
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∫ π

−π

(
( f c, q

f d) σ
z , (

f
d ,

q
f c ) z

σ
; q

)
∞(

(c, d) σ
z , (a, b) z

σ
; q

)
∞

dψ = 2π
ϑ( f , f c

d ; q)(abcd; q)∞
(q, ac, ad, bc, bd; q)∞

, (31)

where z = eiψ , max(|q|, |a/σ |, |b/σ |, |σc|, |σd|) < 1 and cd f �= 0. The second
important q-beta integral is due to Gasper [6, (1.8)], namely

∫ π

−π

(( f c, q
f d) σ

z , (
f
d ,

q
f c , abcde) z

σ
; q)∞

((c, d) σ
z , (a, b, e) z

σ
; q)∞

dψ

= 2π
ϑ( f , f c

d ; q)(abcd, bcde, acde; q)∞
(q, ac, ad, bc, bd, ce, de; q)∞

, (32)

where z = eiψ , max(|q|, |a/σ |, |b/σ |, |σc|, |σd|, |e/σ |) < 1 and cd f �= 0. This
integral extends the Askey–Roy integral (31) and reduces to it when e is set to 0.
Note that (32) reduces to an expression equivalent to [6, (1.8)] by taking σ → 1 and
f 
→ f /c.

Remark 1.4 Note that it is the special choice of numerator parameter behavior in the
Askey–Roy andGasper integrals which allows one to obtain these closed-form infinite
product representations. We will return to this in Theorem 2.4.

2 Integral representations for basic hypergeometric functions

Herewe present a resultwhich follows by contour integration of products and quotients
of q-gamma functionsmultiplied by integer powers of a complex exponential.Much of
the derivations presented here follow the pioneering work of Bailey [4, Chapter 8], his
student Slater [20, Chapters 5 and 7] and especially from suchworks of Askey and Roy
[2], Nassrallah and Rahman [14], Rahman [16], Gasper [6], and Gasper and Rahman
who carefully reviewed early preliminary results as well as deriving fundamental
extensions in [7, Chapters 4 and 6]. The following theorem is a straightforward
generalization of Corollary 2.4 in [10], and essentially a restatement of [7, (4.10.5–6)]
using the van de Bult–Rains notation (21), (22) for basic hypergeometric series with
vanishing numerator or denominator parameters.

Theorem 2.1 Let q ∈ C
†, m ∈ Z, t ∈ C

∗, σ ∈ (0,∞), a := {a1, . . . , aA}, b :=
{b1, . . . , bB}, c := {c1, . . . , cC }, d := {d1, . . . , dD} be sets of complex numbers with
cardinality A, B, C, D ∈ N0 (not all zero) respectively with |ck | < σ/|t |, |dl | < 1/σ ,
for any ai , b j , ck, dl ∈ C elements of a,b, c,d, and z = eiψ . Define

Gm,t := Gm,t (a, b, c,d; σ, q) := (q; q)∞
2π

(√
t

σ

)m ∫ π

−π

(b σ
z , ta z

σ
; q)∞

(d σ
z , tc z

σ
; q)∞

eimψdψ,(33)

such that the integral exists. Then

Gm,t (a,b, c,d; σ, q) = G−m,t (b, a,d, c; σ, q), (34)
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if |ck |, |dl | < min{1/σ, σ/|t |}. Furthermore, let tdlck /∈ Ωq . If D ≥ B, dl/dl ′ /∈ Ωq ,
l �= l ′, then

Gm,t = t
m
2

D∑

k=1

(tdka,b/dk; q)∞dm
k

(tdkc,d[k]/dk; q)∞

× B+CφC−A
A+D−1

(
tdkc, qdk/b

tdka, qdk/d[k]
; q, qm(qdk)

D−B b1 · · · bB

d1 · · · dD

)
, (35)

and/or if C ≥ A, ck/ck′ /∈ Ωq , k �= k′, then

Gm,t = 1

t
m
2

C∑

k=1

( tckb, a/ck; q)∞c−m
k

(tckd, c[k]/ck; q)∞

× A+DφD−B
B+C−1

(
tckd, qck/a

tckb, qck/c[k]
; q, q−m(qck)

C−A a1 · · · aA

c1 · · · cC

)
, (36)

where the nonterminating basic hypergeometric series in (35) (resp. (36)) is entire if
D > B (resp. C > A), convergent for |qmb1 · · · bB | < |d1 · · · dD| if D = B (resp.
|q−ma1 · · · aA| < |c1 · · · cC | if C = A), and divergent otherwise.

Proof We obtain the integral expression for Gm,t (33) by starting with [7, (4.9.3)]
and replacing the sets of parameters a, b, c, d with at/σ , bσ , ct/σ , dσ . The relation
(34) follows by replacing ψ with −ψ in (33). To produce (35) and (36), in Gasper
& Rahman [7, (4.10.5–6)], make the above parameter replacements and use the van
de Bult–Rains notation (21), (22). Note that (35), (36) reduce to [7, (4.10.5–6)] when
t = σ = 1. As mentioned in [7, §4.9], these integrals were used in Slater [20, Chapter
5] with m = 0, 1. ��
Remark 2.2 Note that in the case where the arguments of the basic hypergeometric
functions in (35), (36) are greater than unity, the integral representations for Gm,t ,
when convergent, may provide an analytic continuation for these basic hypergeometric
functions. For the integrals in (33) with respect to the variable of integrationψ the line
of integration from −π to π in the ψ-plane would have to be replaced by a suitably
deformed line in the ψ-plane separating the sequences of poles that have infinitely
many poles in the upper half ψ-plane from those with infinitely many poles in the
lower half ψ-plane.

Remark 2.3 Observe that in the case where (33) can be written as (35) or (36) (e.g.,
m ∈ Z) then Gm,t does not depend on σ .

2.1 Argument q applications of Theorem 2.1

Note that when identifying integral representations for basic hypergeometric series,
Theorem 2.1 is extremely useful. However, in applications even though one may use it
to identify the parameters of a symmetric sum of basic hypergeometric functions, the
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restriction on the argument is often problematic. On the other hand, with the special
choice of parameters given in the following corollaries which leads to an argument
q, the ability to tie parameters to specific basic hypergeometric functions is greatly
enhanced. Here we present some generalized results which gives the symmetric sum
of two terms each containing a basic hypergeometric function with argument q.

Theorem 2.4 Let q ∈ C
†, a := {a1, . . . , aA}, c := {c1, . . . , cC }, be sets of complex

numbers with cardinality A, C ∈ N0 (not both zero) respectively, d := {d1, d2},
ckdl /∈ Ωq , z = eiψ , σ ∈ (0,∞), d1, d2 ∈ C

∗, such that |ck | < σ , |d1|, |d2| < 1/σ ,
for any ck ∈ c. Define

H(a, c,d; q) :=

d1;d2

I
(d1a; q)∞(
d2
d1

, d1c; q
)

∞
CφC−A−2

A+1

(
d1c

d1a, qd1/d2
; q, q

)
(37)

= (d1a; q)∞(
d2
d1

, d1c; q
)

∞
CφC−A−2

A+1

(
d1c

d1a, qd1/d2
; q, q

)

+ (d2a; q)∞(
d1
d2

, d2c; q
)

∞
CφC−A−2

A+1

(
d2c

d2a, qd2/d1
; q, q

)
, (38)

where dl/dl ′ /∈ Ωq , l �= l ′, and if C ≥ A + 2,

J (a, c,d; f , q) :=
C∑

k=1

ϑ( f ckd1,
f

ck d2
; q)(a/ck; q)∞

(ckd, c[k]/ck; q)∞

× A+2φC−1

(
ckd, qck/a

qck/c[k]
; q,

q(qck)
C−A−2a1 · · · aA

d1d2c1 · · · cC

)
,

(39)

where ck/ck′ /∈ Ωq , k �= k′, and A+2φC−1 is convergent for C = A + 2 if
|qa1 · · · aA| < |d1d2c1 · · · cC |, and is an entire function if C > A + 2. Then

∫ π

−π

(( f d1,
q
f d2)

σ
z , (

f
d2

,
q

f d1
, a) z

σ
; q)∞

((d1, d2)
σ
z , c z

σ
; q)∞

dψ = 2πϑ( f , f d1
d2

; q)

(q; q)∞
H(a, c,d; q) (40)

= 2π

(q; q)∞
J (a, c,d; f , q), (C ≥ A + 2), (41)

and none of the arguments of the modified theta functions are equal to some qm, m ∈ Z.

Proof Starting with (33), (35) with m = 0, t = 1, and substituting the parameters as in
the integrand of (40), two of the numerator parameters cancel with two of the denom-
inator parameters and the argument of the basic hypergeometric function reduces to
q. Noting that the nonterminating basic hypergeometric series are either of the form
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CφC−1 or A+2φA+1, depending on whether C − A − 2 is negative or positive respec-
tively, the series is convergent for |q| < 1, and this produces the right-hand side of
(40). One produces (41) by starting with (33), (36) with m = 0, t = 1 and using the
convergence properties of the nonterminating basic hypergeometric series described
in Theorem 2.1. This completes the proof. ��
Corollary 2.5 Let q ∈ C

†, b := {b1, . . . , bB}, d := {d1, . . . , dD}, be sets of complex
numbers with cardinality B, D ∈ N0 (not both zero) respectively, c := {c1, c2},
z = eiψ , σ ∈ (0,∞), c1, c2 ∈ C

∗, f ∈ C
∗ \ {1}, such that |dl | < 1/σ , |c1|, |c2| < σ ,

for any dl ∈ d. Then

∫ π

−π

((
f

c2
,

q
f c1

,b) σ
z , ( f c1,

q
f c2)

z
σ
; q)∞

(d σ
z , (c1, c2)

z
σ
; q)∞

dψ = 2πϑ( f , f c1
c2

; q)

(q; q)∞
H(b,d, c; q) (42)

= 2π

(q; q)∞
J (b,d, c; f , q), (D ≥ B + 2), (43)

and B+2φD−1 in J is convergent for D = B +2 if |qb1 · · · bB | < |c1c2d1 · · · dD|, and
is an entire function if D > B + 2, and none of the arguments of the modified theta
functions are equal to some qm, m ∈ Z.

Proof As in the proof of Theorem 2.4, start with Theorem 2.1 with m = 0, t = 1. Use
(33), (36), and substitute the parameters as in the integrand of (42). Noting that the
nonterminating basic hypergeometric series are either of the form DφD−1 or B+2φB+1,
depending on whether D − B − 2 is negative or positive respectively, the series is
convergent for |q| < 1, and this produces the right-hand side of (42). One produces
(43) by starting with (42) with (33), (35) and using the convergence properties of
nonterminating basic hypergeometric series. This completes the proof. ��

Theorem 2.6 Let H, a, c, d, q be defined as in Theorem 2.4 and s ∈ C
∗, d2d1−1 �= qm,

m ∈ Z. Then

H(a, c,d; q) =
√

d2
d1

(1 − q)s(q; q)∞ϑ( d2
d1

; q)

×
∫ s

√
d1
d2

s
√

d2
d1

((q
√

d1/d2, q
√

d2/d1, a
√

d1d2)
u
s ; q)∞

(c
√

d1d2
u
s ; q)∞

dqu, (44)

which is symmetric in {d1, d2}, as in (16).

Proof Start with the q-integral on the right-hand side of (44) using the definition (15).
Replacing the q-shifted factorials using (7) identifies the argument q basic hypergeo-
metric series in question. Then identifying common factors using (6) and comparing
with (38) derives (44). The symmetry in {d1, d2} is clear from (38). This completes
the proof. ��

Note that fromTheorems 2.4 and 2.6, we arrive at an interesting relation of a definite
integral with a q-integral.
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Corollary 2.7 Let a, c, d, q, s, f , σ , z = eiψ be defined as in Theorems 2.4 and 2.6.
Then

∫ π

−π

(( f d1,
q
f d2)

σ
z , (

f
d2

,
q

f d1
, a) z

σ
; q)∞

((d1, d2)
σ
z , c z

σ
; q)∞

dψ =
2π

√
d2
d1

ϑ( f , f d1
d2

; q)

(1 − q)s(q, q; q)∞ϑ( d2
d1

; q)

×
∫ s

√
d1
d2

s
√

d2
d1

((q
√

d1/d2, q
√

d2/d1, a
√

d1d2)
u
s ; q)∞

(c
√

d1d2
u
s ; q)∞

dqu. (45)

Proof Comparing Theorem 2.4 with Theorem 2.6 completes the proof. ��
A useful consequence of this formula is given in [7, Exercise 4.4], which is an

application of (40) with C = 4, A = 2. It takes advantage of Bailey’s transformation
of a very-well-poised 8W7 [15, (17.9.16)] and is given as follows:

∫ π

−π

((c f ,
qd
f ) σ

z , (
f
d ,

q
f c , k,

abcdgh
k ) z

σ
; q)∞

((c, d) σ
z , (a, b, g, h) z

σ
; q)∞

dψ

= 2πϑ( f , f c
d ; q)(kc, kd, acdg, bcdg, cdgh, abcdh

k ; q)∞
(q, ac, ad, bc, bd, cg, dg, ch, dh, kcdg; q)∞

× 8W7

(
kcdg

q
; cg, dg,

k

a
,

k

b
,

k

h
; q,

abcdh

k

)
, (46)

where z = eiψ , max(|a|, |b|, |c|, |d|, |g|, |h|) < 1, and |abcdh| < |k|. Note that if
h = k and g 
→ e then (46) reduces to Gasper’s integral (32).

UsingTheorem2.1one canderive the followinggeneralizationofRahman’s integral
(29) which does not include the constraint λμ = a123456.

Theorem 2.8 Let a := {a1, . . . , a6}, a1, . . . , a6, λ, μ ∈ C
∗, q ∈ C

†. Then

∫ π

−π

(e±2iψ, λe±iψ,μe±iψ ; q)∞
(ae±iψ ; q)∞

dψ = 2π

(q; q)∞

a1;a2,...,a6

I
(

a−2
1 , a1λ, a1μ,

λ

a1
,

μ

a1
; q

)

∞(
a12, . . . , a16,

a2
a1

, . . . ,
a6
a1

; q

)

∞

× 10W9

(
a2
1; a12, . . . , a16,

qa1
λ

,
qa1
μ

; q,
qλμ

a123456

)
, (47)

where |qλμ| < |a123456|< 1 and max(|a1|, . . . , |a6|) < 1.

Proof Starting with the left-hand side of (47) and applying Theorem 2.1, noting

qa2
1/(±q

1
2 a1) = ±q

1
2 a1, completes the proof. ��

If we set λμ = a123456 then (47) specializes to Rahman’s integral (29). This results
in the following transformation law for the symmetrized sum of six 10W9’s with
argument q being equal to the symmetrized sum of two 10W9’s with argument q.
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Corollary 2.9 Let a := {a1, . . . , a6}, a1, . . . , a6, λ, μ ∈ C
∗, q ∈ C

†. Then

a1;a2,...,a6

I
(

a−2
1 , a1λ, a1μ,

λ

a1
,

μ

a1
; q

)

∞(
a12, . . . , a16,

a2
a1

, . . . ,
a6
a1

; q

)

∞

10W9

(
a2
1; a12, . . . , a16,

qa1
λ

,
qa1
μ

; q, q

)

= 2

λ;μ

I
(
λa,

μ

a
; q

)

∞
(a12, . . . , a56; q)∞

(
λ2,

μ

λ
; q

)

∞
10W9

(
λ2

q
; λ

a
,

a123456
q

; q, q

)
. (48)

Proof Comparing (47) to (29) and noting that the integrand is an even function of ψ ,

and that qa2
1/(±q

1
2 a1) = ±q

1
2 a1, completes the proof. ��

Using Theorem 2.1 we can find an alternative expression for the Nassrallah–
Rahman integral (28) as a symmetrized sum of five 8W7’s.

Theorem 2.10 Let a := {a1, . . . , a5}, a1, . . . , a5, λ, μ ∈ C
∗, q ∈ C

†. Then

∫ π

−π

(e±2iψ, λe±iψ ; q)∞
(ae±iψ ; q)∞

dψ = 2π

(q; q)∞

a1;a2,...,a5

I
(

a−2
1 , a1λ,

λ

a1
; q

)

∞(
a12, . . . , a15,

a2
a1

, . . . ,
a5
a1

; q

)

∞

× 8W7

(
a2
1; a12, . . . , a15,

qa1
λ

; q,
qλ

a12345

)
, (49)

where |qλ| < |a12345|< 1 and max(|a1|, . . . , |a5|) < 1.

Proof Starting with the left-hand side of (49) and applying Theorem 2.1 completes
the proof. ��

By comparing the above expression for the Nassrallah–Rahman integral to (49),
one can obtain the following transformation of a symmetrized sum of five 8W7’s is
equal to a symmetric 8W7.

Corollary 2.11 Let a := {a1, . . . , a5}, a1, . . . , a5, λ ∈ C
∗, q ∈ C

†. Then

a1;a2,...,a5

I
(

λa1, a−2
1 ,

λ

a1
; q

)

∞(
a12, . . . , a15,

a2
a1

, . . . ,
a5
a1

; q

)

∞

8W7

(
a2
1; a12, . . . , a15,

qa1
λ

; q,
qλ

a12345

)

=
2

(
λa,

a12345
λ

; q
)

∞
(a12, . . . , a45, λ2; q)∞

8W7

(
λ2

q
; λ

a
; q,

a12345
λ

)
, (50)
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where |q| <

∣∣∣
a12345

λ

∣∣∣ < 1.

Proof Comparing (49) to (28) and noting that the integrand is an even function of ψ

completes the proof. ��
By taking λ = a5 one reduces the Nassrallah–Rahman integrals (28), (49) to the

Askey–Wilson integral (27) (the 8W7 becomes unity). Comparing these limit expres-
sions produces the following nonterminating summation formula which relates a
symmetric sum of four 6W5’s to an infinite product that we now give.

Corollary 2.12 Let a1, . . . , a4 ∈ C
∗, q ∈ C

† and none of the arguments of the modified
theta functions are equal to some qm, m ∈ Z, and none of infinite q-shifted factorials
vanish. Then

a1;a2,a3,a4

I
(a−2

1 ; q)∞(
a12, a13, a14,

a2
a1

,
a3
a1

,
a4
a1

; q

)

∞

6W5

(
a2
1; a12, a13, a14; q,

q

a1234

)

= (a1234; q)∞
(a12, a13, a14, a23, a24, a34; q)∞

a1;a2,a3,a4

I
ϑ(a−2

1 , a23, a24, a34; q)

ϑ(a1234,
a2
a1

, a3
a1

, a4
a1

; q)

= 2(a1234; q)∞
(a12, a13, a14, a23, a24, a34; q)∞

, (51)

where |q| < |a1234| < 1.

Proof Setting λ = a5 in (49), and comparing with (27) completes the proof. ��
Remark 2.13 Note that for the 8W7(a; b, c, d, e, f ; q, z)’s which appear in this sub-
section, instead of the argument being q2a2/(bcde f ) it is −q2a2/(bcde f ). Compare
with Bailey’s transformation of a very-well poised 8W7 [15, (17.9.16)]. So these 8W7’s
cannot be written as a sum of two balanced 4φ3’s.

Some other applications of Theorem 2.4 arise when one encounters a sum of two
basic hypergeometric functions with argument q. In this case, you are almost cer-
tainly guaranteed to be able to find a corresponding integral representation. Below
we present some examples of this. First we present two integral representations of a
nonterminating 2φ1. Note that other integral representations for the arbitrary 2φ1 have
been presented such as Watson’s contour integral (see [7, (4.2.2)] for more details)

2φ1

(
a, b

c
; q, z

)
= − 1

2i

(a, b; q)∞
(q, c; q)∞

∫ i∞

−i∞
((q, c)qs; q)∞
((a, b)qs; q)∞

(−z)s

sin(πs)
ds, (52)

where ±i∞ := ± limx↑∞ i x , where x ∈ (0,∞).
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Corollary 2.14 Let a, b, c, z ∈ C
∗, such that |z| < 1, q ∈ C

†, τ ∈ (0, 1), w = eiη.
Then

2φ1

(
a, b

c
; q, z

)

= (q, a, c
b , abz

c ; q)∞
2πϑ( f , f c

bz ; q)(c; q)∞

∫ π

−π

(( f
√

c
bz ,

q
f

√
bz
c ,

√
bcz) τ

w
, ( f

√
c

bz ,
q
f

√
bz
c )w

τ
; q)∞

((
√

cz
b ,

√
bz
c a) τ

w
, (

√
bz
c ,

√
c

bz )
w
τ
; q)∞

dη

(53)

= (q, a, b, c
a , c

b , abz
c ; q)∞

2πϑ( f , f ab
c ; q)(c; q)∞

∫ π

−π

(( f
√

ab
c ,

q
f

√
c

ab ) τ
w

, ( f
√

ab
c ,

q
f

√
c

ab )w
τ
; q)∞

((

√
ab
c ,

√
c

ab ) τ
w

, (
√

ac
b ,

√
bc
a ,

√
ab
c z)w

τ
; q)∞

dη,

(54)

and none of the arguments of the modified theta functions are equal to some qm, m ∈ Z.

Proof For (53) start with cf. [15, (17.9.3)]

(c; q)∞
(a, c

b , abz
c ; q)∞

2φ1

(
a, b

c
; q, z

)
= (c; q)∞

(a, c
b , bz

c ; q)∞
2φ

−1
2

(
a, c

b

c, qc
bz

; q, q

)

+ (bz; q)∞
(z, c

bz ,
abz

c ; q)∞
2φ

−1
2

(
z, abz

c

bz, qbz
c

; q, q

)
,

(55)

then apply (40) with

a := {√bcz}, c :=
{√

bz

c
a,

√
cz

b

}
, d :=

{√
c

bz
,

√
bz

c

}
, (56)

and therefore C − A − 2 = −1. For (54) start with cf. [15, (17.9.3_5)]

(c; q)∞
(a, b, c

a , c
b , abz

c ; q)∞
2φ1

(
a, b

c
; q, z

)
= 1

(a, c
b , bz

c ; q)∞
3φ

1
1

(
a, b, abz

c
qab

c

; q, q

)

+ 1

(z, c, c
a , c

b ; q)∞
3φ

1
1

(
c
a , c

b , z
qc
ab

; q, q

)
, (57)

then apply (40) with

a := ∅, c :=
{√

ac

b
,

√
bc

a
,

√
ab

c

}
, d :=

{√
ab

c
,

√
c

ab

}
, (58)

and therefore C − A − 2 = 1. This completes the proof. ��

123



664 H. S. Cohl, R. S. Costas-Santos

Another examplewhere an integral representation for a nonterminating basic hyper-
geometric function may be found is for a well-poised 3φ2.

Corollary 2.15 Let a, b, c, x ∈ C
∗, such that |qax | < |bc|, q ∈ C

†, τ ∈ (0, 1),
w = eiη, f , f x �= qm, m ∈ Z. Then

3φ2

(
a, b, c
qa
b ,

qa
c

; q,
qax

bc

)
= (q, a,

qa
bc ; q)∞

2πϑ( f , f x; q)(
qa
b ,

qa
c ; q)∞

×
∫ π

−π

(( f
√

x,
q

f
√

x
) τ
w

, ( f
√

x,
q

f
√

x
,

qa
√

x
b ,

qa
√

x
c , ax

3
2 )w

τ
; q)∞

((
√

x, 1√
x
) τ
w

, (±√
ax,±√

qax,
qa

√
x

bc )w
τ
; q)∞

dη.

(59)

Proof Start with cf. [7, (III.35)], then

(
qa
b ,

qa
c ; q)∞

(a,
qa
bc ; q)∞

3φ2

(
a, b, c
qa
b ,

qa
c

; q,
qax

bc

)

= (
qax

b ,
qax

c ; q)∞
(1/x,

qax
bc ; q)∞

5φ4

(
±x

√
a,±x

√
qa,

qax
bc

qx,
qax

b ,
qax

c , ax2
; q, q

)

+ (
qa
b ,

qa
c , ax; q)∞

(a,
qa
bc , x; q)∞

5φ4

(
±√

a,±√
qa,

qa
bc

q/x,
qa
b ,

qa
c , ax

; q, q

)
. (60)

Applying (40) with

a :=
{

qa
√

x

b
,

qa
√

x

c
, ax

3
2

}
, c :=

{
±√

ax,±√
qax,

qa
√

x

bc

}
,

d :=
{√

x,
1√
x

}
, (61)

and therefore C − A − 2 = 0, completes the proof. ��

2.2 Unbalanced symmetrization transformations for basic hypergeometric
functions and some of their specializations and limits

A direct consequence of Theorem 2.4 is the following integral.

Lemma 2.16 Let a := {a1, . . . , aA}, b := {b1, . . . , bB}, c := {c1, . . . , cC },
d := {d1, . . . , dD} be sets of complex numbers with cardinality A, B, C, D ∈ N0
(not all zero) respectively, z = eiψ , w = eiη. Let σ, τ ∈ (0,∞), t ∈ C

∗, so that
|b j | < |dl | < min{τ/|t |, 1/σ }, |dlai | < 1/|t |, and |ai | < |ck | < min{σ/|t |, 1/τ } for
any ai , b j , ck, dl elements of a,b, c,d respectively. Then

∫ π

−π

(bσ
z , t a z

σ
; q)∞

(d σ
z , t c z

σ
; q)∞

dψ =
∫ π

−π

(a τ
w

, t bw
τ
; q)∞

(c τ
w

, t dw
τ
; q)∞

dη = 2π

(q; q)∞
G0,t . (62)
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Proof Setting m = 0 in (33), it is straightforward to check the identity by comparing
the first summation expression of (33) to the second summation expression of (33).
Hence the result holds. ��
Therefore taking into account the definition ofGm,t (see expression (33)) the following
identity holds.

Corollary 2.17 Let a, b, c, d, and the other variables be as defined as in Lemma 2.16.
Then one has the following (in general non-balanced) transformation of symmetriza-
tion over variables for basic hypergeometric functions:

D∑

k=1

(tdka, d−1
k b; q)∞

(tdkc, d−1
k d[k]; q)∞

B+CφA−C
A+D−1

(
tdkc, qdkb−1

tdka, qdkd
−1
[k]

; q,
b1 · · · bB

d1 · · · dD

)

=
C∑

k=1

(tbkc, b−1
k a; q)∞

(tckd, c−1
k c[k]; q)∞

A+DφB−D
B+C−1

(
tckd, qcka−1

tckb, qckc
−1
[k]

; q,
a1 · · · aA

c1 · · · cC

)
. (63)

Proof The identity follows by using Theorem 2.1 with m = 0. ��
Now we treat the t = 1 case which has an extra degree of symmetry that can be

exploited.

Lemma 2.18 Let a := {a1, . . . , aA}, b := {b1, . . . , bB}, c := {c1, . . . , cC },
d := {d1, . . . , dD} be sets of complex numbers with cardinality A, B, C, D ∈ N0
(not all zero) respectively, z = eiψ , w = eiη. Let σ, τ ∈ (0,∞). so that |b j | < |dl | <

min{τ, 1/σ }, |dlai | < 1, and |ai | < |ck | < min{σ, 1/τ } for any ai , b j , ck, dl elements
of a,b, c,d respectively. Then

∫ π

−π

(bσ
z , a z

σ
; q)∞

(d σ
z , c z

σ
; q)∞

dψ =
∫ π

−π

(a τ
w

,bw
τ
; q)∞

(c τ
w

,dw
τ
; q)∞

dη. (64)

The A = B = C = D = 2 case of Corollary 2.17 is quite interesting. It is only
one example of an infinite sequence of such results with arbitrary values of A, B, C ,
D ∈ N in Corollary 2.17—it relates the sum of two 4φ3’s to a different sum of two
4φ3’s and provides a generalization of Corollary 2.4 in Ismail and Stanton [9] (see
also Ismail [10, Corollary 15.8.3]).

Corollary 2.19 Let t, a, b, c, d, e, f , g, h ∈ C
∗, |ab| < |e f |, |cd| < |gh|. Then

e; f

I
(etc, etd, a

e , b
e ; q)∞

(etg, eth,
f
e ; q)∞

4φ3

(
etg, eth,

qe
a ,

qe
b

etc, etd,
qe
f

; q,
ab

e f

)

=

g;h

I
(gta, gtb, c

g , d
g ; q)∞

(gte, gt f , h
g ; q)∞

4φ3

(
gte, gt f ,

qg
c ,

qg
d

gta, gtb,
qg
h

; q,
cd

gh

)
. (65)
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The t = 1 case is interesting.

Corollary 2.20 Let a, b, c, d, e, f , g, h ∈ C
∗, |ab| < |e f |, |cd| < |gh|. Then

e; f

I
(ec, ed, a

e , b
e ; q)∞

(eg, eh,
f
e ; q)∞

4φ3

(
eg, eh,

qe
a ,

qe
b

ec, ed,
qe
f

; q,
ab

e f

)

=

g;h

I
(ga, gb, c

g , d
g ; q)∞

(ge, g f , h
g ; q)∞

4φ3

(
ge, g f ,

qg
c ,

qg
d

ga, gb,
qg
h

; q,
cd

gh

)
. (66)

This exploits the trick adopted in [7, Exercise 4.4] which converts those basic
hypergeometric functionswith specific argument to thosewith argument q and reduces
the number of numerator parameters and denominator parameters by two. Bymapping

(e, f , a, b, c, d) 
→ (e, f , κe, q f /κ, q/(κe), κ/ f ),

one converts the left-hand side of Corollary 2.20 to thatwith an argument q and reduces
the 4φ3’s to 2φ1’s. Furthermore, by mapping (g, h) 
→ (1/(μe), μ/ f ), this converts
the right-hand side of the above Corollary to that with an argument q. The resulting
relation can be easily verified using the q-Gauss sum [7, (II.8)].

3 Generating functions and integral representations

One powerful application of integral representations for basic hypergeometric func-
tions is the determination of generating functions for basic hypergeometric orthogonal
polynomials in the q-Askey scheme.

3.1 The Askey–Wilson polynomials

In this section we study integral representations for the Askey–Wilson polynomials
and some useful applications of these.

3.1.1 Integral representations of the Askey–Wilson polynomials

A key formula which allows for this is given in [7, Exercise 4.5] that is equivalent to
the following.
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Theorem 3.1 Let a, b, c, d, f ∈ C
∗, σ ∈ (0, 1), max(|a|, |b|, |c|, |d|) < 1, q ∈ C

†,
x = cos θ ∈ [−1, 1], z = eiψ, f , f e2iθ �= qm, m ∈ Z. Then

pn(x; a|q) = (q, ae±iθ , be±iθ , ce±iθ ; q)∞(ab, ac, bc; q)n

2πϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞
Dn(x; a, f , σ |q),

(67)

where

Dn(x; a, f , σ |q)

=
∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b, c) z

σ
; q)∞

(d σ
z ; q)n

(abc z
σ
; q)n

( z

σ

)n
dψ

(68)

=
∫ π

−π

(( f abc eiθ ,
q
f abc e−iθ ) σ

z , ( f 1
abc e

iθ ,
q
f

1
abc e

−iθ , 1) z
σ
; q)∞

(abc e±iθ σ
z , ( 1

ab , 1
ac , 1

bc ) z
σ
; q)∞

× (abcd σ
z ; q)n

( z
σ
; q)n

(
1

abc

z

σ

)n

dψ. (69)

Proof The integral representation (68) is Exercise 4.5 in [7]. The integral representa-
tion (69) is derived as follows. Startwith [5, (30)] then apply [7, (III.23)]. This produces
the following nonterminating representation of the Askey–Wilson polynomials:

4φ3

(
q−n, qn−1abcd, ae±iθ

ab, ac, ad
; q, q

)
= (a2cd, cd; q)n(

qa
b ,

q
ab , acd e±iθ ; q)∞

(acd e±iθ ; q)n(
q
b e

±iθ , a2cd, cd; q)∞

× 8W7

(
qn−1a2cd; qnac, qnad, qn−1abcd, ae±iθ ; q,

q1−n

ab

)
, (70)

where |q1−n| < |ab|. Using this nonterminating representation, comparing it with
(46), and simplifying completes the proof. ��

3.1.2 Generating functions for the Askey–Wilson polynomials

Many researchers have investigated series and q-integral (15) representations for
Askey–Wilson polynomials. On the other hand, it seems that regular integral rep-
resentations for the Askey–Wilson polynomials have been largely disregarded. In the
following we will demonstrate how these representations for the Askey–Wilson poly-
nomials allow for simple and straightforward evaluations of some of their fundamental
properties, particularly their generating functions. We begin with the Rahman gener-
ating function for the Askey–Wilson polynomials, which is the q-analogue of the
following generating function for the Wilson polynomials [12, (6.2)].
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ForWilsonpolynomials there is the followinggenerating function.Leta, b, c, d, t ∈
C

∗, max(|a|, |b|, |c|, |d|, |t |) < 1, x = cos θ ∈ [−1, 1], 4|t | < |1 − t |2,
∞∑

n=0

(a + b + c + d − 1)n

n!(a + b, a + c, a + d)n
Wn(x2; a)tn = (1 − t)1−a−b−c−d

× 4F3

(
1
2 (a + b + c + d − 1), 1

2 (a + b + c + d), a ± i x

a + b, a + c, a + d
; −4t

(1 − t)2

)
.

(71)

Rahman computed a q-analogue of (71) in [19, (4.9)] by using a q-integral representa-
tion of Askey–Wilson polynomials. We will prove the same generating function using
the above integral representation (68).

Theorem 3.2 (Rahman [19]) Let k, p ∈ {1, 2, 3, 4}, a := {a1, a2, a3, a4}, t, ak ∈ C
∗,

x = cos θ ∈ [−1, 1], q ∈ C
†, |tap| < 1. Then

∞∑

n=0

tn (q−1a1234; q)n pn(x; a|q)

(q, {apas }s �=p; q)n
= (ta1234(qap)−1; q)∞

(ta−1
p ; q)∞

6φ5

(
±(q−1a1234)

1
2 ,±(a1234)

1
2 , ape±iθ

{apas }s �=p, ta1234(qap)−1, qapt−1
; q, q

)

+ ({tas }s �=p, q−1a1234, ape±iθ ; q)∞
({apas }s �=p, apt−1, te±iθ ; q)∞

6φ5

⎛

⎝±ta−1
p (q−1a1234)

1
2 ,±ta−1

p (a1234)
1
2 , te±iθ

{tas }s �=p, q−1a1234(ta
−1
p )2, qta−1

p
; q, q

⎞

⎠ . (72)

Proof Start with the left-hand side of (72) and insert (68). This produces

∞∑

n=0

(abcd/q; q)ntn pn(x; a|q)

(q, ab, ac, ad; q)n
= (q, ae±iθ , be±iθ , ce±iθ ; q)∞

2πϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞

×
∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b, c) z

σ
; q)∞

3φ2

(
d σ

z , abcd/q, bc

abc z
σ
, ad

; q,
t z

σ

)
dψ.

(73)

The 3φ2 can be written as a sum of two 5φ4(q, q) using [7, (3.4.1)], since it is well-
poised. Comparing this sum using (40) (see also Corollary 2.15) produces

3φ2

(
d σ

z , abcd/q, bc

abc z
σ
, ad

; q,
t z

σ

)
= (q, abcd/q, az

σ
; q)∞

2πϑ(h, h a
t ; q)(abc z

σ
, ad; q)∞

×
∫ π

−π

((h
√

a
t ,

q
h

√
t
a ) τ

w
, (h

√
a
t ,

q
h

√
t
a , d

√
ta, bcdt3/2

q
√

a
, bc

√
ta z

σ
)w

τ
; q)∞

((
√

a
t ,

√
t
a ) τ

w
, (±

√
tbcd

q ,±√
tbcd,

√
ta z

σ
)w

τ
; q)∞

dη,

(74)

where w = eiη. Inserting the above integral representation, rearranging the integrals
and evaluating the outer integral using Gasper’s integral (32) completes the proof. ��

123



Utility of integral representations for basic hypergeometric… 669

We can also derive an integral representation for a product of two 2φ1’s by using
the other generating function which is known for Askey–Wilson polynomials [13,
(14.1.15)]. Integral representations for products of basic hypergeometric functions is
an interesting direction of research.

Theorem 3.3 Let a, b, c, d, t, f ∈ C
∗, q ∈ C

†, σ ∈ (0, 1), |t | < σ , z = eiψ,

f , f e2iθ �= qm, m ∈ Z. Then

∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b, c) z

σ
; q)∞

3φ2

(
d σ

z , ab, ac

abc z
σ
, ad

; q,
t z

σ

)
dψ

= 2π
ϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞
(q, ae±iθ , be±iθ , ce±iθ ; q)∞

2φ1

(
aeiθ , deiθ

ad
; q, te−iθ

)
2φ1

(
be−iθ , ce−iθ

bc
; q, teiθ

)
.

(75)

Proof Startwith the generating function for theAskey–Wilson polynomials [11, (1.9)],
[13, (14.1.15)],

∞∑

n=0

tn pn(x; a|q)

(q, ad, bc; q)n
= 2φ1

(
aeiθ , deiθ

ad
; q, te−iθ

)
2φ1

(
be−iθ , ce−iθ

bc
; q, teiθ

)
.

(76)

Inserting the integral representation (68) into the left-hand side of (76) produces the
following integral representation for (76), namely:

∞∑

n=0

tn pn(x; a|q)

(q, ad, bc; q)n
= (q, ae±iθ , be±iθ , ce±iθ ; q)∞

2πϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞

×
∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b, c) z

σ
; q)∞

3φ2

(
d σ

z , ab, ac

abc z
σ
, ad

; q,
t z

σ

)
dψ.

(77)

Comparing (76) with (77) completes the proof. ��

3.2 Continuous dual q-Hahn polynomials

If you let a4 → 0 (d → 0) in the Askey–Wilson polynomials you obtain the three
parameter symmetric continuous dual q-Hahn polynomials [13, Section 14.3]. In this
case theAskey–Wilson polynomials pn(x; a|q)with a = {a1, a2, a3, a4} reduce to the
continuous dual q-Hahn polynomials pn(x; a|q)with a := {a1, a2, a3}, a := {a, b, c},
a = a.

3.2.1 Integral representations for the continuous dual q-Hahn polynomials

One can obtain several integral representations for the continuous dual q-Hahn poly-
nomials by starting with (68).
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Corollary 3.4 Let a, b, c, f ∈ C
∗, max(|a|, |b|, |c|) < 1, σ ∈ (0, 1), q ∈ C

†, x =
cos θ ∈ [−1, 1], z = eiψ , f , f e2iθ �= qm, m ∈ Z. Then

pn(x; a|q) = (q, ae±iθ , be±iθ ; q)∞(ab; q)n

2πϑ( f , f e2iθ ; q)(ab; q)∞
En(a; f , σ |q) (78)

= (q, ae±iθ , be±iθ , ce±iθ ; q)∞(ab, ac, bc; q)n

2πϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞
Fn(a; f , σ |q),

(79)

where

En(a; f , σ |q) =
∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b) z

σ
; q)∞

× (
c
σ

z
; q

)
n

( z

σ

)n
dψ, (80)

Fn(a; f , σ |q) =
∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b, c) z

σ
; q)∞(abc z

σ
; q)n

( z

σ

)n
dψ

(81)

=
∫ π

−π

(( f abc eiθ ,
q
f abc e−iθ ) σ

z , ( f 1
abc e

iθ ,
q
f

1
abc e

−iθ , 1) z
σ
; q)∞

(abc e±iθ σ
z , ( 1

ab , 1
ac , 1

bc ) z
σ
; q)∞( z

σ
; q)n

×
(

1

abc

z

σ

)n

dψ. (82)

Proof Starting with (68), letting d 
→ 0 produces (81), and taking c 
→ 0 followed by
d 
→ c produces (80). Starting with (69), letting d 
→ 0 produces (82). This completes
the proof. ��
Remark 3.5 The continuous dual q-Hahn polynomials are symmetric in the three
parameters a, b, and c. The symmetry in the parameters is evident in the integral
representation (82).

Note that starting with (69) and taking either a, b or c 
→ 0 does not yield a finite
result.

3.2.2 Generating functions for the continuous dual q-Hahn polynomials

There are several generating functions known for the continuous dual q-Hahn poly-
nomials. Some of them follow by taking the a4 → 0 limit for generating functions of
the Askey–Wilson polynomials. One such example which hasn’t appeared frequently
in the literature is the a4 → 0 limit of the Rahman generating function (72). This is
given as follows.
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Corollary 3.6 Let k, p ∈ {1, 2, 3}, a := {a1, a2, a3}, ak, t ∈ C
∗, x = cos θ ∈ [−1, 1],

q ∈ C
†, |t | < 1. Then

∞∑

n=0

pn(x; a|q)

(q, {apas}s �=p; q)n
tn = 1

(ta−1
p ; q)∞

4φ3

(
ape±iθ , 0, 0

{apas}s �=p, qapt−1
; q, q

)

+ ({tas}s �=p, ape±iθ ; q)∞
({apas}s �=p, apt−1, te±iθ ; q)∞

4φ3

(
te±iθ , 0, 0

{tas}s �=p, qta−1
p

; q, q

)
. (83)

A non-standard generating function for continuous dual q-Hahn polynomials was
presented in [3, (3.5)]. We will show how integral representations for continuous dual
q-Hahn polynomials lead to an easy proof of this formula.

Theorem 3.7 (Atakishiyeva and Atakishiyev [3]) Let a, b, c ∈ C
∗, q ∈ C

†, t ∈ C,
such that |t | < 1. Then

∞∑

n=0

tn pn(x; a|q)

(q, tabc; q)n
= (ta, tb, tc; q)∞

(tabc, te±iθ ; q)∞
. (84)

Proof Starting with the left-hand side of (84) and inserting (81), one obtains

∞∑

n=0

tn pn(x; a|q)

(q, tabc; q)n
= (q, ae±iθ , be±iθ , ce±iθ ; q)∞

ϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞

×
∫ π

−π

(( f eiθ ,
q
f e

−iθ ) σ
z , ( f eiθ ,

q
f e

−iθ , abc) z
σ
; q)∞

(e±iθ σ
z , (a, b, c) z

σ
; q)∞

× 3φ2

(
ab, ac, bc

abc z
σ
, tabc

; q,
t z

σ

)
dψ, (85)

where z = eiψ . Using [7, (III.34)], we canwrite the 3φ2 in the integrand as a sumof two
3φ2’s with argument q. Then using (40) we can express it as an integral representation,
namely

3φ2

(
ab, ac, bc

abc z
σ
, tabc

; q,
t z

σ

)
= (q, tb, tc, ab, ac, az

σ
; q)∞

2πϑ( f , f a
t ; q)(tabc, abc z

σ
; q)∞

∫ π

−π

(( f
√

a
t ,

q
f

√
t
a ) τ

w
, ( f

√
a
t ,

q
f

√
t
a ,

√
ta bc z

σ
)w

τ
; q)∞

((
√

a
t ,

√
t
a ) τ

w
, (

√
ta b,

√
ta c,

√
ta z

σ
)w

τ
; q)∞

dη,

(86)

where w = eiη, and none of the arguments of the modified theta functions are equal
to some qm , m ∈ Z. Inserting the integral representation (86) into the right-hand side
of (85) and using Gasper’s integral (32) completes the proof. ��
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For continuous dual Hahn polynomials [13, Section 9.3] Sn(x2; a), there is a gen-
erating function which until recently there has been no known q-analogue for. This is
the generating function [13, (9.3.16)]

∞∑

n=0

(γ )n Sn(x2; a)
n!(a + b, a + c)n

tn = (1 − t)−γ
3F2

(
γ, a ± i x

a + b, a + c
; t

t − 1

)
, (87)

where γ is a free parameter, |t | < 1, |t | < |1 − t |. Using the integral representation
method we may readily compute the following q-analogue which we present now.

Theorem 3.8 Let q ∈ C
†, γ ∈ C, t, a, b, c ∈ C

∗, |t | < 1. Then one has the following
generating function for continuous dual q-Hahn polynomials:

∞∑

n=0

(γ ; q)n pn(x; a|q)

(q, ab, ac; q)n
tn = (ae±iθ ; q)∞

(ab, ac; q)∞

×
(

(ab, ac, γ t/a; q)∞
(ae±iθ , t/a; q)∞

4φ3

(
γ, ae±iθ , 0

ab, ac, qa/t
; q, q

)

+ (tb, tc, γ ; q)∞
(te±iθ , a/t; q)∞

4φ3

(
γ t/a, te±iθ , 0

tb, tc, qt/a
; q, q

))
.

(88)

Proof Start with the left-hand side of (88) and insert (82). This produces

∞∑

n=0

(γ ; q)ntn pn(x; a|q)

(q, ab, ac; q)n
= (q, ae±iθ , be±iθ , ce±iθ ; q)∞

2πϑ( f , f e2iθ ; q)(ab, ac, bc; q)∞

×
∫ π

−π

(( f abc eiθ ,
q
f abc e−iθ ) σ

z , ( f 1
abc e

iθ ,
q
f

1
abc e

−iθ , 1) z
σ
; q)∞

(abc e±iθ σ
z , ( 1

ab , 1
ac , 1

bc ) z
σ
; q)∞

× 2φ1

(
γ, bc

z
σ

; q,
t z

abcσ

)
dψ. (89)

The 2φ1 can be written either as a sum of two 2φ
−1
2 ’s [15, (17.9.3)] or as a sum of

two 3φ
1
1’s [15, (17.9.3_5)]. We use (53) which corresponds to the expansion of a 2φ1

with a 3φ2 with one vanishing numerator parameter. Comparing this sum using (40)
produces

2φ1

(
γ, bc

z
σ

; q,
t z

abcσ

)
= (q, γ, γ t

a , z
bcσ ; q)∞

2πϑ(h, h a
t ; q)( z

σ
; q)∞

×
∫ π

−π

((h
√

a
t ,

q
h

√
t
a ) τ

w
, (h

√
a
t ,

q
h

√
t
a ,

√
t
a

z
σ
)w

τ
; q)∞

((
√

a
t ,

√
t
a ) τ

w
, (γ

√
t
a ,

√
t
a

z
bcσ )w

τ
; q)∞

dη,

(90)
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wherew = eiη, and none of the arguments of the modified theta functions are equal to
some qm , m ∈ Z. Inserting the above integral representation, rearranging the integrals
and evaluating the outer integral using Gasper’s integral (32) completes the proof. ��

If one lets γ → 0 in (88) then one obtains (83). Furthermore, if you let a3 → 0
you produce the following well-known generating function for Al-Salam–Chihara
polynomials [13, (14.8.16)]:

∞∑

n=0

(γ ; q)ntn pn(x; a|q)

(q, ab; q)n
= (ae±iθ ; q)∞

(ab; q)∞

×
(

(ab, γ t/a; q)∞
(ae±iθ , t/a; q)∞

3φ2

(
γ, ae±iθ

ab, qa/t
; q, q

)

+ (tb, γ ; q)∞
(te±iθ , a/t; q)∞

3φ2

(
γ t/a, te±iθ

tb, qt/a
; q, q

))

= (γ teiθ ; q)∞
(teiθ ; q)∞

3φ2

(
γ, aeiθ , beiθ

ab, γ teiθ
; q, te−iθ

)
, (91)

where the second equality is obtained by using the nonterminating basic hypergeo-
metric series transformation [7, (III.34)].
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