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ABSTRACT: Science is full of overlooked and undervalued
research waiting to be rediscovered. Proteomics is no exception.
In this perspective, we follow the ripples from a 1960 study of
Zuckerkandl, Jones, and Pauling comparing tryptic peptides across
animal species. This pioneering work directly led to the molecular
clock hypothesis and the ensuing explosion in molecular
phylogenetics. In the decades following, proteins continued to
provide essential clues on evolutionary history. While technology
has continued to improve, contemporary proteomics has strayed
from this larger biological context, rarely comparing species or
asking how protein structure, function, and interactions have
evolved. Here we recombine proteomics with molecular
phylogenetics, highlighting the value of framing proteomic results
in a larger biological context and how almost forgotten research, though technologically surpassed, can still generate new ideas and
illuminate our work from a different perspective. Though it is infeasible to read all research published on a large topic, looking up
older papers can be surprisingly rewarding when rediscovering a “gem” at the end of a long citation chain, aided by digital collections
and perpetually helpful librarians. Proper literature study reduces unnecessary repetition and allows research to be more insightful
and impactful by truly standing on the shoulders of giants. All data was uploaded to MassIVE (https://massive.ucsd.edu/) as dataset
MSV000087993.
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■ INTRODUCTION

Some 60 years ago, Zuckerkandl, Jones, and Pauling compared
hemoglobins across the animal kingdom by analyzing their
tryptic peptide patterns in two-dimensional paper chromatog-
raphy.1 This work initiated the field of molecular evolution,
which has revealed many of the details of the history of life on
Earth. Rapid and sensitive analysis of tryptic peptide patterns is
a cornerstone of mass spectrometry-based proteomics and
remains useful in molecular phylogenetics and species
identification. Sadly, however, the evolutionary perspective is
almost completely absent in proteomics. In this Perspective, we
revisit the pioneering work of Zuckerkandl, Jones, Pauling, and
contemporaries in the context of current proteomics methods,
highlighting how recent advancements combine molecular
phylogenetics and mass spectrometry-based proteomics. In
doing so, we place modern proteomics practices in a broader
historical context and illustrate the value in reading papers
published in the past century.

■ HUMBLE BEGINNINGS

In 1960, the understanding of genes and protein synthesis was
limited, with the first pieces of the genetic code only
deciphered the following year. Sequencing of proteins such

as hemoglobin was extremely laborious, but peptide mapping
or fingerprinting by electrophoresis and chromatography on
paper provided a far quicker way to compare related proteins2,3

and detect amino acid variants, such as E7V in hemoglobin
subunit beta in sickle cell anemia.4 In their 1960 paper,1

Zuckerkandl, Jones, and Pauling used this method to compare
hemoglobins across primates, artiodactyls, and marine
vertebrates. Fingerprints of hemoglobin orthologs revealed
differences in amino acid composition increasing with
evolutionary distance, leading to the molecular clock
hypothesis, later described (though not named) in a 1962
book chapter.5 Focusing on hemoglobin allowed Zuckerkandl
and Pauling to develop the molecular clock framework, though
other proteins, such as cytochrome c,6 fibrinogen,7 and
ferredoxin,8 were also used in early studies of molecular
phylogenetics. In 1963, Zuckerkandl discussed the bias
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introduced by only studying a single protein and wistfully
acknowledged that “we cannot hope to analyze the sequence of
all proteins to be found in a given organism” (ref 9, p. 259).
Now, 60 years later and with over 90% of the human proteome
blueprint recently completed,10 this hope is no longer
aspirational, though achieving this coverage in a single analysis
is difficult for any species, and how to best use such dense data
for molecular phylogenetics is far from straightforward.

■ AMINO ACID SEQUENCING

Before DNA sequencing came to dominate in molecular
phylogenetics, comparative studies relying on protein
sequences were driving the field. Already in 1949, Sanger
had compared protein orthologs from cow and sheep with
respect to amino acid composition,11 showing that the pig
insulin A chain includes a threonine absent in cow and sheep.
Building off this work with more species and more complete
sequencing12,13 highlighted that amino acid sequence differ-
ences between species may say something about evolutionary

trends. This concept was formalized by Tuppy in 1959, stating
that if assuming that differences in protein structure between
species are caused by gene mutations, “proteins should differ
from each other in such a way that the more places in which
the polypeptide chains differ, through an exchange of amino
acid residues, the further the organisms producing them are
separated from each other in evolution”.14 As more proteins
were studied, their sequences and orthologs across the tree of
life were collected, beginning in 1965 in the Atlas of Protein
Sequence and Structure,15 which allowed systematic analysis of
these sequences.16 Punch cards17 and eventually computers18

were used to piece together protein sequences from short
peptide fragments, first addressing the protein inference
problem still challenging bottom-up proteomics. This work
ultimately resulted in the MASSPEC software for reconstruct-
ing complete protein sequences from mass spectra of a single
hydrolysate19a problem similar to deciphering the complex
mass spectra acquired in top-down proteomics. In 1966,
Dayhoff and Eck aligned ferredoxin sequences to reconstruct
their phylogenetic relationships,8 and the first actual

Figure 1. Comparison of the technology used in 1960 by Zuckerkandl, Jones, and Pauling1 with contemporary proteomics and genomics. Left:
tryptic peptide fingerprints by electrophoresis and chromatography on paper of hemoglobin from chimpanzee, human, cow, and pig, redrawn from
the original1 and matched with tandem mass spectra from two hemoglobin beta chain (HBB) peptides: in red VHLTPEEK from chimpanzee and
human and VHLSAEEK from pig (dotted), and in yellow LLVVYPWTQR common to all four species. Top: MUSCLE alignment of the HBB
orthologs with the region coding for the shared peptide. Right: phylogenetic trees constructed from tandem mass spectra (green) and the HBB
gene sequences (blue). Note that the non-identical DNA sequences coding for the identical peptide contain more phylogenetic information than
the peptide sequence alone. Details on how the figure was generated are available as Supporting Information, and data used to generate the figure
are available in MassIVE (dataset MSV000087993) and with more details on https://osf.io/hm8dq.
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phylogenetic trees derived from amino acid sequencesthose
of cytochrome cwere published by Fitch and Margoliash in
1967.20

■ PROTEOMICS

Mass spectrometry had already been used to sequence short
peptides the year before Zuckerkandl’s, Jones’s, and Pauling’s
1960 chromatography-based paper,21 showing promise due to
its inherent speed and sensitivity. Large-scale peptide analysis
by mass spectrometry proved extraordinarily challenging, and
it took three decades of hard work and the advent of new
ionization techniques22 to realize this promise and pave the
way for proteomics. For most of this intervening period, the
Edman method23,24 was used to determine amino acid
sequences and contributed most of the amino acid sequence
data for molecular phylogenetics as well as protein
biochemistry. Unlike Edman sequencing, but similar to the
peptide fingerprinting of the 1950s and 1960s, mass
spectrometry-based bottom-up or “shotgun” proteomics
primarily analyzes tryptic peptides. The technology is
obviously different, typically using a combination of liquid
chromatography with tandem mass spectrometry, where
tryptic peptides behave predictably and fragmentation patterns
in the latter are used to identify peptides through comparison
with predicted25 or previously acquired spectra,26 or
constructed de novo, e.g., using graph theory.27 The analyzed
tryptic peptides however remain the same (Figure 1).
Building in part from these early studies of hemoglobin, the

clinical relevance and availability have made blood and its
components one of the most analyzed biological substances in
proteomics. In 1977, Anderson and Anderson (father and son)
used a two-dimensional gel electrophoresis method developed
by O’Farrell28 to separate and identify 30 intact proteins in
human plasma,29 explicitly suggesting that genetic variants
altering protein charge or size “should be routinely detectable
in at least 20 proteins at once, facilitating studies of human
mutation rates”. This emphasis on detecting genetic variants in
proteins made sense at the time, since nucleic acid sequencing
was still slow and cumbersome, with the first tiny RNA phage
genome just completed the year before (bacteriophage MS2)30

and the first DNA genome (bacteriophage ϕX174) published
just nine months earlier.31 Since then, the plasma proteome
has been extensively studied for single amino acid variants,32

disease biomarkers,33 heritability of expression,34−36 and post-
translational modifications (PTMs),37 though searching
proteomics data for a large number of rare variants and
PTMs remains a statistical challenge. While the new PEFF
format (PSI Extended Fasta Format)38 captures some of this
existing knowledge, pairwise matching of tandem mass spectra,
e.g., from blood sera, can find shared variants without prior
assumptions.39 Such direct comparisons of mass spectra are
independent of gene predictions or knowledge on genetic
variation, thus equally applicable to species with complete
reference proteomes as to unsequenced non-human non-
model systems. This type of comparison of mass spectra is the
contemporary analog of Zuckerkandl’s multi-species peptide
fingerprints.

■ MOLECULAR PHYLOGENETICS

Phylogenetics benefited greatly from the discovery and analysis
of DNA, RNA, and proteins. The study by Fitch and
Margoliash frequently credited with the advent of molecular

phylogenetics compared amino acid sequences of cytochrome c
across 20 species,20 work which was largely inspired by the
Zuckerkandl, Jones, and Pauling hemoglobin peptide finger-
printing.1 Large-scale molecular phylogenetics in its modern
form is probably best exemplified by DNA “barcoding” (e.g.,
The Barcode of Life40,41), which for animals utilizes a 650 base
pair sequence from the 5′ region of mitochondrial cytochrome
c oxidase 1. Though useful, critical discoveries have relied on
more than a single gene barcode. For instance, the amino acid
sequences of αA-crystallin (CRYAA), aquaporin-2 (AQP2),
and interphotoreceptor retinol-binding protein (IRBP) led to
the delineation of Afrotheria clade of mammals in 2001.42 The
original molecular clock hypothesis is elegantly and visually
integrated in a broader phylochronology by tools such as
TimeTree,43 which combine molecular information with fossil
evidence, climate change, and impact events in a holistic
evolutionary timeline. Contemporary molecular phylogenetics
includes constructing trees using whole genomes,44 though this
overabundance of data and overchoice of clustering methods
has also increased the complexity and computational cost of
the analysis, without always providing clearer answers.
Especially in non-humans, analysis of tryptic peptide patterns
generated by two-dimensional electrophoresis and chromatog-
raphy on paper or mass spectrometry is arguably less laborious
than current genomic or transcriptomic analyses.

■ A RETURN TO PEPTIDE-INFORMED PHYLOGENY
VIA MASS SPECTROMETRY

Though molecular phylogenetics is dominated by DNA-based
identification and barcoding of species, alternative peptide and
protein-based methods never completely exited the stage
following Zuckerkandl’s, Jones’s, and Pauling’s pioneering use
of tryptic peptides. Yates et al.45 compared cytochrome c
peptide mass maps from 12 species across the animal kingdom,
demonstrating the power of mass spectrometry to distinguish
between peptides and that closely related species share more
peptide masses, e.g., chimpanzee sharing most tryptic peptides
with human, mouse with rat, ostrich with emu, and dog with
the other carnivoran (southern elephant seal). Proteomics is
currently seeing increasing application in non-model organ-
isms.46 The near universal applicability of mass spectrometry,
the relative stability of proteins, and the ability to compare
related species allow analysis of virtually any sample, including
hair,47,48 artifacts,49,50 or even fossils. A famousor possibly
infamousphylogenetic example is the analysis of proteins
from fossils from the Cretaceous period.51,52 Proteomic data
from extinct species are typically matched against sequences
from living relatives53 or sequenced de novo and aligned with
known sequences. Genome-independent methods such as
compareMS239 and DISMS254 compare tandem mass spectra
directly against each other, thereby deriving a similarity (or
distance) between two datasets based on the peptide
sequences, abundances, and post-translational modifications.
The same metric can be applied between one dataset from an
“unknown” and several previously acquired datasets placed in
spectral libraries,55,56 thereby predicting the unknown
phylogeny. Molecular phylogenetics can be used to infer the
origin of a sample by finding the closest protein sequence or
mass spectrum in a reference library.57,58 Targeted and
untargeted proteomic methods have been developed for
food59,60 and feed analysis61 and shown to be able to detect
and quantify mixtures and contamination at or below 1%.
Another genome-independent application is the rapid bacterial
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identification, routinely performed in thousands of clinical
laboratories by MALDI-TOF mass spectrometry and compar-
ison of spectra dominated by ribosomal proteins.62 In these
examples, the information is biased toward highly abundant
proteins, which tend to be more conserved than less abundant
proteins (and even more so than non-coding regions of the
genome). Proteomics methods now routinely achieve a depth
of coverage of several thousand proteins for most biological
samples, capturing information from many low-abundance
proteins and allowing de novo sequencing of thousands of
peptides. More recent data-independent acquisition methods
avoid some of the stochastic nature and undersampling of data-
dependent acquisition of tandem mass spectra and may prove
more robust in generating data for phylogenetics or species
identification applications, though possibly at the cost of
increased dependency on chromatographic reproducibility.
Overall, contemporary mass spectrometry-based methods are
effective tools for molecular phylogenetics, and continued
advancements will improve existing capabilities and create new
applications.

■ FROM THE PAST VIA THE PRESENT TO THE
FUTURE

Based on the history of molecular phylogenetics it is obvious
that information from the proteome over time became less
valued than that from DNA or RNA. Sequencing proteins in
the 1950s and 1960s was extremely laborious, which is why
peptide mapping or fingerprinting by electrophoresis and
chromatography on paper was used to compare related
proteins. Not even state-of-the-art mass spectrometry can
compete with the data generated by next-generation DNA
sequencing. Even if massively parallel protein sequencing is
realized,63 amino acid sequences still miss information from
non-coding regions. However, current technological advance-
ments present opportunities for proteomics to be used in ways
that nucleic acid sequencing cannot, including analysis of
samples with little or no DNA, degraded RNA, differentiating
tissues or cell types, and function or environmental inferences
in microbial communities, all driving new applications and
discovery. The development of miniature mass spectrometers64

capable of using paper spray ionization of blots on paper, fast
tryptic digestion,65 and separations enable rapid peptide
fingerprinting of biological specimens in the field on a time-
scale of seconds to minutes. Potential use cases are
innumerable but would include the rapid identification of
species and composition of unknown food and feed samples,
detection of contaminants and adulterants,56,59,61,66 and more
mundane quality control applications. In many of these, the
data analysis would involve comparisons between peptide
fingerprints similar to how they were used in molecular
phylogenetics over 60 years ago. Species not previously
analyzed can still be identified by their similarity to analyzed
ones, and phylogenetic trees can be constructed directly from
the data. Furthermore, nothing rules out combining these very
broad analyses with targeted selected-reaction monitoring
(SRM) methods for known species (e.g., porcine60) or known
contaminants, even in the same analysis. Though mass
spectrometry technology continues to evolve, fundamental
ideas published many decades ago can remain relevant and still
suggest new and potentially rewarding avenues of research.

■ CONCLUSIONS
We hope that our experience connecting peptides, phyloge-
netics, and mass spectrometry by taking inspiration from a
study published 60 years ago can stimulate others to follow
literature trails back in time, reading the papers to rediscover
ideas and abandoned branches of investigation and seeing
these in a new light. Accessing these papers has never been
easier. But more specifically, we want to impel students to learn
about the history of our fieldor any field they studyas well
as the evolutionary history of biological molecules and
organisms. The first appearance of a term rarely equals the
first description of the connoted concept. For less researched
topics, there are often gaps in the literature, even if gaps in our
field are not as extreme as the 160-year delay between Gauss’s
original derivation of the fast Fourier transform in 1805 and its
rediscovery by Cooley and Tukey in 1965. Even more
importantly, proteomics should not be limited to tallying up
protein “parts list”an exercise akin to stamp collecting.
Proteomics should be about the proteins in a biological
context. And this context always includes the evolutionary
history of the proteins, protein complexes, biochemical
mechanisms, and biological systems studied. How conserved
are the protein sequences, post-translational modifications,
structures, and interactions? What does this all mean for the
suitability of model systems and the reusability of biomolecular
sequences, structures, spectral libraries, annotations, and
pathways across the tree of life? These are important questions,
far too rarely asked of proteomics data. As Dobzhansky
famously titled his 1973 essay: “Nothing in Biology Makes
Sense Except in the Light of Evolution”.67
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