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Abstract

John Daugman’s popular IrisCode algorithm extracts feature information using complex-
valued 2D Gabor wavelets, placing equal weight on all visible regions of the iris. Although
research has demonstrated that the algorithm is highly accurate [1–6], the match decisions
it makes are generally not well understood by the casual observer. Comparing irides using
prominent local features (e.g., iris crypts, freckles, and contraction furrows) more closely
aligns with the way humans naturally perform pattern recognition.

This paper presents statistical information on the distribution, distinctiveness, and per-
manence of visible features in the human iris. Such information can be used to develop a
robust and accurate approach to matching local features in the iris. Two feature extraction
algorithms are utilized to identify local features: 1) the scale-invariant feature transform
(SIFT), and 2) The University Notre Dame’s iris feature extractor. Preliminary results
suggest matching based on local features holds promise, particularly when matching iris
images acquired at visible wavelengths.

Comments and recommendations may be directed to gw@nist.gov.
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Glossary

Brushfield spots: White, gray, or pale yellow spots on the surface of the iris caused by an
aggregation of connective tissue [7]. These spots are usually evenly spaced around
the midperipheral or peripheral iris of many individuals with Down syndrome (though
not exclusively) and are composed of the same tissue as Wolfflin nodules.

Collarette: The thickest region of the iris separating the pupillary (i.e., inner) portion from
the ciliary (i.e., outer) portion [8].

Fuchs’ Crypts: Openings in the anterior border layer of the iris and to a variable degree
the iris stroma. Fuch’s Crypts are normally close to the collarette but can also be
found toward the periphery of the iris.

Exclusion: A decision in forensic science that a particular person is not the source of a
biometric sample.

Freckle: Brown, yellow, or gray spots on the surface of the iris caused by an aggregation
of melanin. There is no disturbance of the underlying stromal architecture and occur
in 77 percent of the population. (See Nevi).

Nevi: Similar to freckles, these spots on the iris are secondary to a buildup of melanin
pigment from clumps of melanocytes and can have a variety of colors. They tend to
be larger than freckles and always cause distortion of the underlying stromal archi-
tecture. They occur in 5 percent of the population and in greater than 80 percent of
the cases occur below the horizontal meridian of the iris.

Inclusion: A decision in forensic science that a particular person is the source of a bio-
metric sample.

Inconclusive: A decision in forensic science indicating that it cannot be determined whether
a particular person is the source of a biometric sample.

Iris: The colored, annular, part of the eye responsible for controlling the size of the pupil.

Iris2pi: A popular and widely utilized automated iris recognition algorithm developed by
John Daugman.

Mated Comparison: A comparison between two samples of the same biometric charac-
teristic.

Non-mated Comparison: A comparison between two samples that are not from the same
biometric characteristic.

SIFT: The scale-invarient feature transform (SIFT) is a feature detection algorithm geared
toward localizing, describing, and matching local features in images.
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Local Feature: A prominent and distinctive characteristic limited to a particular region
or neighborhood of an image.

Wölfflin nodules: Similar to Brushfield spots, aggregations of connective tissue on the
periphery of the iris [9]. Unlike Brushfield spots, they tend to be fewer in number,
located more peripherally and less distinct [10]. Often 10 - 20 are present in each
eye.
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1. Overview

Most state-of-the-art iris matchers generate comparison scores based on details of the iris
texture that are not easily characterized or understood by the casual, untrained human ob-
server. These algorithms also place equal weight on all visible portions of the iris. Yet
the human eye is naturally attracted to prominent features and objects as they often convey
the most useful information [11]. An iris recognition methodology based on such visible
features (e.g., crypts, freckles) would more closely align with the way our human brains
conduct pattern matching and may make explanations of matching to casual, untrained
human observers easier.

This report performs some of the preliminary steps required to establish a matching
approach using prominent local features. Some of the statistical properties of local features
investigated include the following:

• the number of such features per eye,

• the radial distribution of such features,

• the circumferential distribution of such features, and

• the size distribution of such features.

This information can be used to address concerns raised by the National Academy of Sci-
ences pertaining to the reliability and defensibility of biometric comparison decisions [12].

We make use of automated computer vision algorithms to extract features from a large
set of iris images. The two feature extraction algorithms we explore are

• the scale invariant feature transformation (SIFT) keypoint detector described by Lowe
et. al. [13], and

• the crypt and dark spot detector proposed and implemented by Chen et. al. [14] at
Notre Dame University.

2. Rationale for Exploration of Visible Local Features

The following sections describe the rationale for the use of visible local features. In sum-
mary, the three primary drivers are

• the ability to explain matches to a non-technical audience,

• the ability to distinguish between identification, exclusion and inconclusive decisions
[15], and
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• the extraction of useful information from high-value images that cannot be processed
by conventional iris matching algorithms.

2.1 Explanation of matches

As noted, conventional iris matching algorithms utilize details of the iris that are not easily
interpretable by human examiners. Although studies have demonstrated the high accuracy
of such algorithms [16–19], there is a need in the forensics community for matching proto-
cols for the iris that are both explainable and have known error rates. Figure 1 demonstrates
the way two fingerprints are typically matched, by pairing local minutia points. Figure 2
illustrates how a similar procedure might be used to match local features in two images
of the same iris acquired six months apart. Although fingerprint examiner decisions are
generally regarded as reliable, research into statistical models that can objectively quantify
the distinctiveness of identification decisions is ongoing [20].

Fig. 1. Two images of a fingerprint illustrating corresponding minutiae (Figure 2 from Ross et.
al.[21] with permission).
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Fig. 2. Two images of an iris taken six months apart, illustrating corresponding visible local
features. From top to bottom, the annotated features are 1) a crypt, 2) a freckle, 3) another freckle,
and 4) a crypt.

2.2 Identifications, Exclusions, and Inconclusives

When a fingerprint examiner compares a fingerprint image from an unknown source (e.g.,
obtained from an object at a crime scene) with one from a known source (e.g., obtained
from a suspect) they typically come to one of three conclusions [15]:

1. Identification - a positive identification is made (i.e., the examiner is confident that
both fingerprints represent the same source).

2. Exclusion - a negative identification (i.e., the examiner is confident that the images
represent different sources).

3. Inconclusive - the examiner cannot definitively make an identification or exclusion
decision.

Fully automated methods of iris recognition are designed to make positive identifica-
tions and often do not distinguish between exclusions and inconclusives. Most deployed
iris systems treat identification failures as inconclusives by default. For example, a user
that was denied access on a first attempt usually has the opportunity to try again. Iris
matchers produce measures of dissimilarity between iris samples. A low dissimilarity
score is strong evidence that the images represent the same iris [17, 19, 22, 23]. DNA
has also demonstrated that a single quantitative metric computed from population statistics
can carry considerable weight in court, although iris recognition has not yet proved itself
to be as robust as DNA. A high dissimilarity score, however, typically does not provide
sufficient information to conclude whether an exclusion or inconclusive decision should
follow. Operationally, a high dissimilarity score can occur if the quality of one or both of
the iris images is low [18]. It can also occur if the images represent different irides.
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Matching strategies based on pairing prominent local features can provide strong evi-
dence for exclusion determinations. Most iris features are stable over time (e.g., Wölfflin
nodules [9], Brushfield spots [7]) and do not form or disappear over a person’s lifetime.
For example, the presence of a freckle in one iris image but not in another when comparing
the two images may conclude that the samples represent different persons.

That said, iris freckles can sometimes form or grow in prominence over a period of
years and exposure to excessive amounts of light can accelerate the process [24]. Other
health conditions (e.g., iritis, blunt trauma to the eye) can alter the appearance of the iris
over a short period of time. Crypts can be distinctive but also tend to disappear when the
pupil dilates. Circular contraction folds, on the other hand, often become more visible in
when the pupil dilates. Existing knowledge in the fields of ophthalmology and biological
anthropology should be leveraged when making a match decision, particularly when it
comes to characterizing the prevalence, permanence, distinctiveness, and nature of specific
local features.

Guidance on the proper acquisition of high quality iris images can be found in the IREX
5 documents [25].
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3. Visible Feature Nomenclature

Table 1. A non-exhaustive compilation of visible iris feature definitions.

Name Description Prevalence Reference
1 Coloboma Missing pieces of tissue in structures that form the iris. 1 in 10 000 people [26]
2 Contraction Furrow Fold in the iris tissue that forms a partial ring around the outer

edge of the iris.
Common [27]

3 Crypt Typically diamond-shaped or oval-shaped holes in the iris tissue
produced as the pupil opens and closes in response to light

Common [28]

4 Ectopic Lentis et Pupillae Displacement of both the pupil and lens from the normal anatom-
ical position.

Uncommon [29]

5 Freckle A colored growth on or in the eye comprised of melanocytes. 77% of people [30]
6 Hypoplasia Any condition that causes an intact iris to erode or prevents an iris

from developing properly.
Uncommon [31]

7 Iridoplasty A laser surgery procedure in which iris tissue in the far periphery
is heated so that it will contract, causing a widening of the anterior
chamber angle. This procedure is used to decrease the risk of
angle closure glaucoma and occasionally is useful for treatment
of angle closure glaucoma.

Uncommon [32]

8 Iridectomy The surgical removal of part of the iris. Uncommon [33]
9 Pupillary Ruff The anterior continuation of the pigmented layer that lines the

back surface of the iris to cover the edge of the pupil and slightly
beyond. It is common to see a series of regular ridges in this area
but this is subject to change as a result of aging and disease.

Common [34]

10 Stroma A delicate interlacement of fibrous tissue located immediately be-
low the anterior border layer and comprises the bulk of the iris.

Common [35]
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4. Test Dataset

Testing in this report was performed using the Consolidated Multi-Spectral Iris Dataset
(CMID) [36]. The dataset was collected under the CMID program, sponsored by the Cen-
tral Intelligence Agency (CIA) and the Department of Defense Technical Support Working
Group (TSWG). Copies of the dataset were provided to NIST for use in U.S. government
iris recognition research under a data transfer agreement that restricts further distribution.

The dataset contains approximately 220 000 iris samples from more than 400 subjects
collected at two geographic regions. The capture environment was highly controlled. Dur-
ing each capture session, images of the left and right irides were acquired across a range of
wavelengths spanning from 400 nanometers to the infrared. Many subjects participated in
multiple capture sessions on different days.

The actual test dataset used in this investigation is a subset of CMID consisting of
19 245 iris images from 233 subjects. These images were acquired at 800 nm (within the
standard NIR range for iris cameras) and 620 nm (within the visible spectrum). Southern
Methodist University (SMU) staff inspected the images to ensure serious problems were
not present (e.g., the eye was not closed and there was adequate margin between the iris
and the image edges). The images were paired to construct a set of 10 168 681 mated1 and
57 17 334 nonmated2 comparisons.

5. SIFT Algorithm

SIFT is an approach to detecting and describing local features in an image. SIFT was
originally devised to recognize objects across different 3D views. It has since been applied
to a range of computer vision problems, including automated biometric recognition [37–
41]. Several studies have applied SIFT to iris recognition [42–47].

SIFT localizes stable points of interest referred to as feature points (a.k.a. keypoints).
Several criteria are used to determine stability. Location stability is assessed using principal
curvatures [48]. The ratio of the principal curvatures tends to be large along edges and lines,
where feature points are poorly localized. For this reason, candidate points are disregarded
when the ratio is greater than a preset value (10 in the original paper). Candidate points
where the overall curvature is low are also disregarded as they tend to correspond to areas
of low contrast, making them sensitive to noise

Figure 3 shows the locations of feature points found by SIFT in an iris using the param-

1A comparison is mated if the compared images represent the same iris
2A comparison is nonmated if the compared images represent different irides
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eters listed in Appendix A. The image has been contrast-enhanced to improve the visibility
of the texture. The feature points tend to be centered around dark spots (sometimes corre-
sponding to crypts [7]), light spots (sometimes corresponding to Wölfflin nodules [9]), and
areas where the stromal fibers branch and overlap.

Fig. 3. Feature points located by SIFT in an iris image (contrast enhanced). The line segment
indicate the gradient direction at the point. The color indicates the sign of the Laplacian at the
feature point. Red will tend to correspond to light features while yellow will tend to correspond to
dark features.

SIFT computes a descriptor for each feature point, represented as a 128-element feature
vector. The values in the feature vector are computed using gradient orientations and mag-
nitudes at locations in the immediate vicinity of the feature point. This gradient information
is reduced into a 128-element feature vector in a way that ensures a degree of robustness to
shape distortions and illumination changes. Lowe et al.’s approach is loosely based upon a
model of biological vision [49] that is believed to mimic the way complex neurons in the
primary visual cortex respond to gradients at particular orientations and spatial frequencies.

The dissimilarity between feature points is measured as the Euclidean distance between
their descriptors. Lowe et al. state that the raw dissimilarity between feature points does not
perform well because some descriptors are much more discriminative than others. They as-
sert that a more effective metric is the ratio of the closest neighbor (among all of the feature
points found in an image) and the second-closest neighbor. For object recognition, they rec-
ommend a threshold of 0.8, whereby a pairing is recognized as mated with high confidence
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if the dissimilarity ratio is less than or equal to this threshold. SIFT only describes how to
find the best pairing between images; it does not define an approach to quantifying the de-
gree of similarity between images. That said, some papers have suggested that the number
of successfully paired feature points between images is an effective metric [50, 51]. This
approach closely parallels the way forensic fingerprint matching is performed in which an
examiner attempts to pair minutia between samples and sometimes presents the number of
paired minutia as a measure of the strength of a match.

5.1 Locations of SIFT Features
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Fig. 4. Basic statistical information on SIFT feature points.

Figure 4 presents basic statistics on SIFT feature points found in iris images. SIFT finds
an average of 241 (σ = 72) feature points per iris image with 90% of images containing
between 122 and 360 feature points. That said, SIFT has a number of sensitivity parameters
that can be adjusted to increase or decrease these numbers (see Appendix A).

Fewer feature points are found in the upper portion of the iris, largely because of upper
eyelid occlusion. The lower quadrant of the iris (angle 225◦ to 315◦) contains 60% more
feature points than the upper quadrant (angle 45◦ to 135◦) on average. Fewer features are
also found in the outer periphery compared to the central region near the sphincter muscle.

The distribution of feature point sizes is highly skewed toward smaller radii. The aver-
age feature point radius is 5.5 pixels, with 90 percent of feature points having radii between
2.6 and 12.1 pixels. Assuming a limbus radius of 10 mm and a common dilation ratio of
0.5, the average feature point radius would be 0.43 mm, with 90 percent of feature points
having radii between 0.20 mm and 0.95 mm.
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5.2 Stability of SIFT Features

5.2.1 Impact of Location
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Fig. 5. Stability of SIFT Features by location in the iris. The dissimilarity measure is the Euclidean
distance between the feature vectors associated with each feature point. It is not a Hamming
distance.

A stable feature should change little across different captures of the same iris, thereby
producing low measures of dissimilarity when compared. The dissimilarity measure is the
Euclidean distance between the two feature vectors, not a Hamming distance. Figure 5a
plots mean dissimilarity for mated feature point comparisons in each region of the iris.
Feature points in the upper portion of the iris appear to lack the stability of those in the
lower portion. This is largely due to upper eyelid and eyelash interference. This may also
explain why features in the inner portion of the iris seem to be more stable than those in
the outer portion. Figure 5b shows that feature points tend to be the most stable roughly a
quarter of the way out (corresponding to a radial distance of 0.25) from the pupil boundary.
In summary, the most reliable feature points appear to be in the lower portion of the iris
and closer to the pupil than the limbus.
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5.2.2 Impact of Pupil Dilation
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Fig. 6. Effect of dilation change on mean dissimilarity for different types of mated feature points.
Dilation change was computed over the raw iris images; no image manipulation to simulate
varying amounts of dilation was performed.

The SIFT algorithm was designed to be robust to shape distortions, although the develop-
ers focused on compensating for distortions caused by variations in viewing angle. Pupil
dilation and constriction are difficult to compensate for, as crypts open and close, and fi-
brous tissue alters in orientation and shape. Figure 6a plots the average dissimilarity for
mated feature points as a function of dilation change. The dilation change metric was first
proposed in [17] and measures the degree to which the iris texture in one image must be
radially stretched to match the iris in another image. The more one iris annulus has to be
stretched to fit the thickness of the other iris annulus, the higher the dilation change value.
Formally, dilation change is defined as

∆D = 1−
(

R2
i

R1
i

)(
R1

i −R1
p

R2
i −R2

p

)
= 1−1−D1

1−D2 (1)

where Rp and Ri are estimates of the pupil and limbus radii respectively, D = Rp/Ri, and
D1 > D2 is assumed without loss of generality. Dilation change is similar to, but not iden-
tical to, the difference in dilation ratios (i.e., |D1−D2|) between the two iris images.

Figure 6a demonstrates that feature points in general have a tendency to be less recog-
nizable as dilation change increases. Feature points in the vicinity of the collarette appear
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slightly less recognizable than feature points in the pupillary and ciliary zone when the
change in dilation is low. However, this does not appear to hold at higher amounts of di-
lation change. Figure 6b also demonstrates that dilation change detrimentally impacts the
recognizability of feature points, but the effect is not appreciably different for ”light” fea-
tures compared to ”dark” features. Generally speaking, the type and location of the feature
point does not appear to have a significant impact on how it is affected by variations in
pupil dilation.

5.2.3 Impact of Image Focus

Some of the images in the test dataset were acquired out-of-focus in which the finer details
of the image are washed out and not visible. For these images, SIFT tends to only find the
larger features of the iris. This is demonstrated in Figure 7, where the left image is in-focus
and the right image is intentionally blurred to simulate defocus. Many more feature points
are found in the in-focus image, 368 compared to just 79 in the blurred image. Additionally,
only three of the feature points found in the blurred image have a radius smaller than three
pixels compared to 93 in the in-focus image.

(a) In-focus (b) Out-of-focus

Fig. 7. An in-focus (left) and blurred (right) image with circles showing the locations of SIFT
features. The color indicates whether the Laplacian at the feature is positive (yellow) or negative
(red). Yellow tends to correspond to darker features while red tends to correspond to lighter
features.

Figure 8 demonstrates that these observations hold true in general, with SIFT tending
to find fewer feature points in out-of-focus images. Figure 9 further demonstrates that
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differences in image sharpness reduce the similarity between mated feature points3 feature
points. Thus, not only are fewer feature point found in out-of-focus images, but those
features that are found tend to be less distinctive. Image blur was measured using the
standard S3 metric [52].
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Fig. 8. The difference in the number of features found in blurry images (blur) compared to in-focus
images (tan).
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Fig. 9. The mean dissimilarity score between mated features as a function of the difference in
sharpness (according to the S3 metric) between the compared images.

5.3 Matching Accuracy

Several studies have explored the potential for using SIFT as well as related algorithms such
as speeded up robust features (SURF) [53], and oriented FAST and rotated BRIEF (ORB)
[54] to compare iris images. Results have been mixed, with some suggesting SURF is more

3Two feature points are mated if they represent the same feature in different images of the same iris.
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accurate than SIFT [55, 56], others suggesting the reverse [57], and still others proposing a
fusion of the two [58]. The primary goal of this paper is to explore the distinctiveness and
permanence of local features, not to find the optimal feature-based approach to matching
iris images. Nevertheless, one of the reasons SIFT was chosen over SURF is because its
feature descriptors are designed to imitate the way a person’s primary visual cortex is used
to compare features of interest. Thus, it may be easier to integrate humans into the matching
process when the SIFT algorithm is utilized.

5.3.1 Near-infrared Wavelengths

The similarity between iris images can be measured by the number of matched feature
points between images (see Section 5). Figure 10 plots Detection Error Trade-off (DET)
accuracy over the CMID dataset when using this metric. The figure demonstrates that about
one in five nonmated comparisons still (erroneously) match at least two feature points.
About 3 in 10 000 nonmated comparisons match 7 feature points. Fewer than one in a
million nonmated comparisons match 13 or more feature points.
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Fig. 10. DET accuracy of SIFT matcher, generated from 107 144 mated and 41 309 096 nonmated
comparisons. The number printed alongside each point is the score, which represents the number
of feature points could be paired between the compared iris images.

The accuracy of this DET cruve still lags behind the current state-of-the-art. In the
NIST-administered IREX IX evaluation [59] (circa 2018), Decatur’s matcher achieved a
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False Non-match Rate (FNMR) of 0.0005 at an FMR of 10−4 over the same dataset com-
pared to 0.038 for the current SIFT matcher.
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5.3.2 Visible Wavelengths
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Fig. 11. DET accuracy for the SIFT matcher and other IREX 10 matchers operating over visible
wavelength (620 nm) images. The number next to each point indicates the number of matched
feature points.

Conventional iris recognition is performed over images acquired in the near infrared spec-
trum band (roughly 700 nm to 900 nm), but sometimes the images may have been acquired
at visible wavelengths (400 nm to 700 nm). This is likely to be the case for many forensic
applications. Figure 11 shows DET accuracy for images captured at 620 nm (corresponding
to the color orange-red). The comparison score is the number of feature points that could
be matched between the iris images (as in Section 5.3). Accuracy is poorer compared
to images acquired at 800 nm, in large part because the melanin in the iris absorbs most
light at visible wavelengths. At an FMR of 10−5, the SIFT matcher achieves an FNMR of
0.20. In contrast, the most accurate IREX 9 matcher at visible wavelengths (submitted by
NeuroTechnology) achieves an FNMR of 0.10 at the same FMR. The SIFT matcher never-
theless performs better than several of the commercial matchers submitted to IREX 9. This
suggests local feature-based methods of matching may hold more promise than traditional
methods at visible wavelengths. Further research is recommended.
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5.4 Human-assisted Matching

One of the benefits of matching human-interpretable features is the potential to incorporate
humans into the matching process. This can improve the robustness of matching decisions
as well as make decisions more explainable. Automated matchers act naively at times,
treating surface reflections, eyelashes, eyelid shadows, and specular highlights as though
they are legitimate iris features. Despite the algorithms’ difficulty, these false features are
easily identifiable by human examiners.

Figure 12 shows a situation where the SIFT matcher fails to recognize that two of the
four matched feature points are not, in fact, true iris features. The purple circles surround
specular highlights that were falsely matched to one another. The yellow circles show an-
other false match that occurs because the eyelash patterns create similar-appearing features.
The red arrows show reflections off the cornea (a.k.a. Purkinji images) that appear similar
in both images. Despite advancements in computer vision and object recognition, machine
intelligence still lags behind human perception in many respects.

Fig. 12. Feature points paired between two different irides. The blue circles show pairings due to
coincidental similarities. The purple and yellow circles show erroneous pairings introduced by
specular highlights and eyelashes respectively.
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5.5 Future Work

Matching visible features using algorithms other than SIFT should be investigated. SIFT
was designed to perform 3D object recognition, a different problem than iris recognition.
For this reason, some of the design decisions of SIFT do not carry over well. Feature point
descriptors are scale invariant, but once the iris is localized its size is known, obviating the
need for scale invariance. SIFT’s approach to pairing features is also overly generalized for
iris matching. SIFT searches for pairings across all locations, orientations, and scales, but
the only significant degree of freedom when comparing iris images is rotation, which can
often be determined manually with little effort. Similar logic holds for related approaches
to 3D object recognition such as the speeded-up robust features (SURF) [60] algorithm.
Convolutional Neural Networks have recently been applied to face recognition to great
effect and may hold promise for iris matching.
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6. Notre Dame Algorithm

Researchers at the University of Notre Dame developed an iris recognition algorithm that
localizes and matches iris crypts and dark spots [14]. Their motivation was to devise a more
visually interpretable approach to iris matching based on human perception and which they
believed would likely be more defensible in law enforcement applications.

The Notre Dame feature extractor outputs a binarized representation of the original
iris image. The core image processing operation is a top-hat transformation that retains
smaller shapes that are darker than their surroundings. Shapes outside of a particular size
range are disregarded, as are shapes covering areas where the variance in pixel intensity is
too high for it to be a reliable representation of the iris texture at that location. Although
the shapes found by the Notre Dame feature extractor algorithm often correspond to iris
crypts, the matcher does not distinguish between crypts and other dark regions in the iris.
Figure 13 shows the results of applying the Notre Dame feature extractor to a pseudo-polar
representation of an iris image.

Fig. 13. An unwrapped pseudo-polar representation of an iris image (top image) along with
corresponding shapes detected by Notre Dame’s feature extractor (bottom image). The white
shapes in the bottom image generally correspond to dark regions in the iris.
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Fig. 14. Basic statistical information for The University of Notre Dame’s features.

6.1 Statistical Properties of Localized Features

Figure 14 presents basic statistics on the shapes localized by Notre Dame’s feature extrac-
tor. Most iris images contain between roughly 50 and 100 detected features. The distri-
bution of feature sizes skews toward smaller sizes, with half of the features having a pixel
area between 15 and 50. About one in ten features have a size greater than 200 pixels. The
feature extractor finds far more features in the pupillary ruff than in the outer ciliary zone.
A light break appears at zero degrees in Figure 14c because the feature extractor does not
properly handle the way pseudo-polar coordinates wrap around at zero degrees.
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Fig. 15. Dissimilarity score for the ND Matcher
when the pupil and iris centers for one of the
compared images is horizontally shifted.

Notre Dame’s matcher appears sen-
sitive to variations in the specified lo-
cations of pupil and limbus boundaries.
Figure 15 demonstrates this sensitivity
for a particular comparison. Horizon-
tally shifting the locations of the pupil
and limbus centers by only 4 pixels in-
creases the distance score from ≈0.4 to
≈0.7. The Notre Dame matcher requires
accurate boundary localizations for opti-
mal recognition accuracy. The manually
specified boundary coordinates for the
test dataset were sometimes a few pix-
els off, which would detrimentally im-
pact accuracy for Notre Dame’s matcher.
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6.2 Future Work

The Notre Dame feature detector is a good starting point. It searches for dark spots such as
crypts, but not all irides have crypts and other types of features exist. The feature detector
could be expanded to detect other distinctive features such as localized small diameter
pigmented lesions that can be freckles, nevi, or other lesions. The current implementation
could be modified to properly handle wrap-arounds at zero degrees in the pseudo-polar
images. The matcher could be made more robust to inaccuracies in boundary localization
or manual tweaking of their locations could be performed.
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[55] A. Ignat and I. Păvăloi, “Occluded iris recognition using surf features,” in 16th Inter-
national Conference on Computer Vision Theory and Applications, 2021.

[56] H. Mehrotra, P. K. Sa, and B. Majhi, “Fast segmentation and adaptive SURF de-
scriptor for iris recognition,” Mathematical and Computer Modelling, vol. 58, no. 1,
pp. 132–146, 2013. Financial IT and Security and 2010 International Symposium on
Computational Electronics.

[57] M. Kamal Majeed, “Surf and sift descriptors using wavelet transforms for iris recog-
nition,” Surf and Sift Descriptors Using Wavelet Transforms for Iris Recognition,
vol. 13, no. 4, pp. 2361–2373, 2020.

[58] S. Bakshi, S. Das, H. Mehrotra, and P. K. Sa, “Score level fusion of sift and surf for
iris,” in 2012 International Conference on Devices, Circuits and Systems (ICDCS),
pp. 527–531, 2012.

[59] G. W. Quinn, P. Grother, and J. Matey, “IREX IX Part II: Multispectral Iris Recogni-
tion.” https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8252.pdf, 2019.

[60] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (surf),”
Computer vision and image understanding, vol. 110, no. 3, pp. 346–359, 2008.

24

https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8252.pdf


A. SIFT Parameters

The parameters in the table below were used to extract SIFT feature points in the iris images
used in this study.

Number of Octal Layers 3
Peak Threshold 0.04
Edge Threshold 10
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