
Admission Control and Scheduling of Isochronous Traffic in
IEEE 802.11ad MAC

Anirudha Sahoo, Weichao Gao, Tanguy Ropitault and Nada Golmie
Email:{anirudha.sahoo,weichao.gao,tanguy.ropitault,nada.golmie}@nist.gov

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

ABSTRACT
An upsurge of low latency and bandwidth hungry applications
such as virtual reality, augmented reality and availability of un-
licensed spectrum in the mmWave band at 60 GHz have led to
standardization of the next generation WiFi such as IEEE 802.11ad
and 802.11ay. Due to the stringent Quality of Service (QoS) require-
ment of those applications, 802.11ad/ay have introduced contention
free channel access called Service Period, which provides dedicated
channel access exclusively reserved for communication between a
pair of nodes. One type of user traffic supported by IEEE 802.11ad
is isochronous traffic, which is essentially periodic traffic that re-
quires certain channel time to be allocated before its period ends.
So, isochronous traffic needs guaranteed channel time allocation
with stringent deadlines. In this paper, we present three Admission
Control Algorithms (ACAs) which admit isochronous requests to
achieve the above goals while being fair. We also present an Earliest
Deadline First (EDF) based scheduling algorithm for isochronous
traffic. We evaluate the performance of the three ACAs in terms of
different performancemetrics. Our simulation results show that, out
of the three ACAs, the proportional fair allocation based algorithm
offers the best tradeoff across different performance metrics.

CCS CONCEPTS
• Networks → Wireless access points, base stations and in-
frastructure;Wireless local area networks; Mobile networks.

KEYWORDS
IEEE 802.11ad, MAC, admission control, scheduling
ACM Reference Format:
Anirudha Sahoo, Weichao Gao, Tanguy Ropitault and Nada Golmie. 2021.
Admission Control and Scheduling of Isochronous Traffic in IEEE 802.11ad
MAC. In Proceedings of the 24th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’21), No-
vember 22–26, 2021, Alicante, Spain. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3479239.3485698

1 INTRODUCTION
There has been an upsurge of networking applications that require
high throughput and low delay service. Applications such as Vir-
tual Reality (VR), Augmented Reality (AR), wireless backhaul, high
bandwidth connectivity with 8K TVs are some of the examples that

This paper is authored by an employee(s) of the United States Government and is in
the public domain. Non-exclusive copying or redistribution is allowed, provided that
the article citation is given and the authors and agency are clearly identified as its
source.
MSWiM ’21, November 22–26, 2021, Alicante, Spain
2021. ACM ISBN 978-1-4503-9077-4/21/11.
https://doi.org/10.1145/3479239.3485698

demand Quality of Service (QoS) in terms of delay and throughput.
A large amount of bandwidth availability in the unlicensed millime-
ter wave (mmWave) band at 60 GHz has led to the formulation of
next generation WiFi standards like IEEE 802.11ad and 802.11ay,
also known as Wireless Gigabit (WiGig). These standards make use
of large channel bandwidth (2.1 GHz), Multiple Input Multiple Out-
put (MIMO) and channel bonding techniques to provide very high
data rate of over 100 Gbps [6, 11]. Due to its probabilistic channel
access mechanism, stringent QoS requirement of the above said
applications cannot be met by contention based channel access tra-
ditionally used in older WiFi standards. Hence, in 802.11ad/ay, the
WiGig standard supports contention free channel access referred
to as service period (SP) which is suitable for QoS based applica-
tions. An SP is a dedicated channel duration exclusively reserved
for communication between a pair of nodes. However, the standard
does not specify how to schedule those SPs for user traffic.

In this paper, we present admission control and scheduling algo-
rithms for a particular type of user traffic called isochronous traffic
in a IEEE 802.11ad system. Isochronous traffic is essentially periodic
traffic and needs certain amount of channel time before its period
ends. The challenge for the admission control and scheduler is to be
able to guarantee SP duration to admitted user traffic (or requests)
before their respective deadlines, while admitting high number of
requests and achieving high channel utilization. The algorithms
also should be fair while allocating channel time to different users.
So, we propose three Admission Control Algorithms (ACAs) which
have the above properties. Since isochronous traffic has deadlines
to meet, our scheduling algorithm is based on Earliest Deadline
First (EDF) scheduling algorithm used in scheduling tasks in real
time systems [3]. We evaluate the three admission control algo-
rithms in terms of different performance metrics. Our simulation
results show that, among the three algorithms, the Proportional
Fair Admission Control (PFAAC), though computationally more
complex than the other two, performs best in terms of some metrics,
and slightly worse with resptect to other metrics. Hence, PFAAC is
an appropriate ACA for an IEEE 802.11ad system to get an overall
good performance in terms of all metrics. The main contributions
of this work are: i) we mapped a deadline driven Central Processing
Unit (CPU) task scheduling algorithm to IEEE 802.11ad Medium
Access Control (MAC) framework, ii) proposed three fair admission
control algorithms and iii) exploited static scheduling (in a beacon
interval) requirement of IEEE 802.11ad MAC to propose a simplified
EDF scheduler for isochronous traffic.



2 DESIGN OF IEEE 802.11AD ADMISSION
CONTROL AND SCHEDULING

2.1 IEEE 802.11ad Medium Access
The medium access time in IEEE 802.11ad consists of an infinite
sequence of time durations called Beacon Intervals (BI). A BI is ex-
pressed in Time Units (TU), where 1𝑇𝑈 = 1024 `𝑠 . Each BI consists
of a Beacon Header Interval (BHI) followed by a Data Transmission
Interval (DTI). The DTI is used for data exchanges and beamform-
ing training among IEEE 802.11ad Stations (STAs) and Personal
Basic Service Set (PBSS) Control Point/Access Point (PCP/AP). Dur-
ing a DTI, channel access is specified in two ways. A Contention
Based Access Period (CBAP) duration implies STAs should access
the channel using contention based scheme called Enhanced Dis-
tributed Channel Access (EDCA) [1]. A SP type of channel access is
intended for communication between two STAs or between a STA
and PCP/AP without any contention. CBAP and SP schedules in a
DTI are announced by the PCP/AP in a Directional Multi Gigabit
(DMG) Beacon frame in the Beacon Transmission Interval (BTI) or
Announce frame in the Announcement Transmission Interval (ATI)
of BHI (before DTI period starts) [1].

2.2 IEEE802.11ad Traffic
IEEE 802.11ad has two types of user traffic: isochronous and asyn-
chronous. Isochronous traffic is suitable for applications that require
periodic data transmission with certain QoS requirements. Asyn-
chronous traffic, on the other hand, is a one time request, although
the requested durationmay be granted inmultiple allocations. Asyn-
chronous traffic may be best effort or may have certain QoS require-
ments. A station sends Add Traffic Stream (ADDTS) requests to its
PCP/AP to request resources for its isochronous or asynchronous
traffic. The Traffic Specification (TSpec) element in the ADDTS
request carries the traffic parameters for which resources need to
be allocated. Because of the periodic nature of isochronous traffic,
scheduling of this type of traffic is more challenging. Hence, in
this paper, we study scheduling of isochronous traffic. The most
important traffic parameters of isochronous traffic are [1]:

• Allocation Period (𝑃 ): Period over which allocation repeats.
It can only be an integer multiple or integer fraction of the
BI.

• MinimumAllocation (𝐶𝑚𝑖𝑛): Minimum acceptable allocation
in microseconds in each allocation period. If the request is
accepted, the PCP/AP must guarantee at least this duration
to the STA in every allocation period.

• Maximum Allocation (𝐶𝑚𝑎𝑥 ): Requested allocation in mi-
croseconds in each allocation period. This is the maximum
duration that can be allocated to the user in each allocation
period.

• Minimum Duration: Minimum duration in microseconds
in each allocation period. An allocation may be split into
multiple chunks. Each chunk must be larger than or equal to
this duration. The user can set this value to zero to indicate
that this parameter should not be considered. In this study,
we assume this parameter to be zero to keep the problem
simple.

In this paper, we study scheduling of isochronous traffic using SP
in the DTI period. Let𝐶𝑜𝑝

𝑖
be the duration allocated to isochronous

request 𝑇𝑖 whose traffic parameters are (𝐶𝑚𝑖𝑛
𝑖

, 𝐶𝑚𝑎𝑥
𝑖

, 𝑃𝑖 ). The al-
located duration 𝐶𝑜𝑝

𝑖
may change over the lifetime of the request,

but it must always satisfy 𝐶𝑚𝑖𝑛
𝑖

≤ 𝐶
𝑜𝑝

𝑖
≤ 𝐶𝑚𝑎𝑥

𝑖
. Since this is a

periodic request, 𝐶𝑜𝑝

𝑖
must be allocated in every 𝑃𝑖 interval. At the

beginning of every period, the request is ready to be served, i.e.,
SP duration can be allocated anytime after the beginning of the
period and the corresponding deadline is its period. We refer to
the beginning of every period as the release time of the request.
Denoting 𝑅𝑖𝑛 as the 𝑛𝑡ℎ release time of isochronous request 𝑇𝑖 , we
have 𝑅𝑖0 = 0, 𝑅𝑖1 = 𝑃𝑖 , 𝑅𝑖2 = 2𝑃𝑖 and so on. In IEEE 802.11ad, when
a request arrives, if admitted, it is scheduled in the next BI. Hence,
release time 𝑅𝑖0 = 0 of a request refers to the start of the next BI.
These periodic releases of a request contribute to the load on the
system and are captured as its demand. So, demand of a request 𝑇𝑖
is represented as a series of triples (𝐶𝑜𝑝

𝑖𝑛
, 𝑃𝑖 , 𝑅𝑖𝑛 ), 𝑛 = 0, 1, .., where

𝐶
𝑜𝑝

𝑖𝑛
is the duration to be allocated between 𝑅𝑖𝑛 and 𝑅𝑖𝑛+1 . Each

triple in a demand is referred to as a job of the request.

2.3 Central Processing Unit Scheduling of
Periodic Tasks

Scheduling of isochronous traffic is very similar to Central Process-
ing Unit (CPU) scheduling of periodic tasks. CPU scheduling of pe-
riodic task has been extensively studied in the literature [3, 5, 8, 13].
In this context, a periodic task 𝑇𝑖 is modeled with two parameters
(𝐶𝑖 , 𝑃𝑖 ), where 𝐶𝑖 is the duration of the task and 𝑃𝑖 is the period as
well as deadline of the task. So, the task must be allocated CPU time
𝐶𝑖 in every 𝑃𝑖 time duration. In [3], the authors present two pre-
emptive scheduling algorithms for periodic tasks: Rate Monotonic
Scheduling (RMS) and Earliest Deadline First (EDF) scheduling. Pri-
ority of a task in an RMS scheduler is static and a task with lower
period is assigned higher priority. The EDF scheduler sets higher
priority to a task with earlier deadline. The priority, in this case,
is dynamic. Although RMS is a simpler scheduler than EDF, the
maximum utilization that can be achieved while guaranteeing that
every task meets its deadline is approximately ln 2 ≈ 69% for a
large set of tasks [3]. EDF scheduler can achieve maximum utiliza-
tion of 100 % while guaranteeing the deadline of each task. Hence,
we choose EDF scheduler to schedule isochronous traffic.

An EDF scheduler can be preemptive or non-preemptive. The
feasibility or admissibility of a set of 𝑛 preemptive tasks for an EDF
scheduler is given by [3]

𝑛∑
𝑖=1

𝐶𝑖

𝑃𝑖
≤ 1. (1)

The feasibility of a set of 𝑛 non-preemptive tasks, in addition
to the condition in Eq. (1), needs another condition to be satisfied
as given in Theorem 4.1 in [8]. This second condition for non-
preemptive task involves finding least upper bound on the proces-
sor demand between periods of the tasks and is more complex than
the condition given in Eq. (1). Hence, the admission control for
non-preemptive EDF scheduler is more complex than its preemp-
tive counterpart. In the case of IEEE 802.11ad MAC, when a new
request arrives, it is scheduled in the next BI. Hence, in a given BI,



requests are scheduled as per their priority based on their deadline
(which is their period). This schedule is not perturbed (i.e., does not
change) by the arrival of a new request, unlike what happens in
CPU scheduling of periodic tasks. This property of IEEE 802.11ad
MAC leads to a static schedule in each BI (even though a EDF is a
dynamic scheduling algorithm), i.e., the schedule does not change
in a given BI due to arrival of a new request. So, we choose preemp-
tive EDF as our scheduler in IEEE 802.11ad MAC to take advantage
of simpler admission control and scheduling.

2.4 Admission Control
We borrow the basic principles of admission control from the feasi-
bility test of CPU scheduling of periodic tasks. However, the TSpec
of isochronous traffic has a range of duration from 𝐶𝑚𝑖𝑛 to 𝐶𝑚𝑎𝑥 ,
unlike the CPU scheduling of a task which has a single duration.
So, in our case, an admission control algorithm not only determines
whether a new request can be admitted or not, but also computes
𝐶𝑜𝑝 , 𝐶𝑚𝑖𝑛 ≤ 𝐶𝑜𝑝 ≤ 𝐶𝑚𝑎𝑥 , the exact operating allocation duration
of the newly admitted request. Let us assume that there are (𝑛 − 1)
requests already in the system. These requests were admitted at
their corresponding 𝐶𝑜𝑝s. Depending on the admission control al-
gorithm used, the duration to be allocated to the newly arriving 𝑛𝑡ℎ

request,𝑇𝑛 , is computed to be𝐶𝑜𝑝
𝑛 . The newly arriving isochronous

request is admitted if and only if

𝑈 + 𝐶
𝑜𝑝
𝑛

𝑃𝑛
≤ 1, (2)

where𝑈 =
∑(𝑛−1)
𝑖=1

𝐶
𝑜𝑝

𝑖

𝑃𝑖
is the utilization of the system due to already

admitted requests. Depending on the admission control algorithm
used, while admitting a new request, 𝐶𝑜𝑝 of existing requests may
or may not change during the life of the requests. If𝐶𝑜𝑝 of existing
requests may change, then utilization of the system due to existing
requests 𝑈 needs to be recalculated. In this case, the complexity
of the admission control algorithm depends on the complexity
of computing 𝑈 and 𝐶𝑜𝑝 . Also note that 𝐶𝑜𝑝 changes only when
a new request is admitted and when an existing request leaves
the system. To keep the notations simple, we do not make 𝐶𝑜𝑝 a
function of time. Hence, when we refer to 𝐶𝑜𝑝 , it refers to its value
at that instant. However, if 𝐶𝑜𝑝 of existing requests cannot change
throughout the life of the requests, then 𝑈 does not need to be
computed every time a new request needs to be admitted, but can
be updated and maintained in the system as and when new requests
are admitted or existing requests leave the system. The complexity
of the admission control algorithm, in this case, depends only on
complexity of computation of 𝐶𝑜𝑝 .

2.5 Our EDF Based Scheduler
As mentioned earlier, when admitting a request, the admission con-
trol algorithm computes the 𝐶𝑜𝑝 of the request. The responsibility
of the scheduler is to allocate 𝐶𝑜𝑝 duration to the request before
its deadline (which is equal to its period). The allocation may be
a contiguous duration or a set of non-contiguous fragments. The
flowchart of our preemptive EDF scheduler is shown in Figure 1.
The figure illustrates how the schedule is computed for a given
BI. The Algorithm starts with ordering the jobs of all the requests

Figure 1: Flowchart of the Proposed EDF Scheduler

in a non-decreasing order based on their deadlines and initializ-
ing some variables (Box A). It picks up the ordered jobs one at a
time, extracts release time (R), deadline (D) (which is same as the
period of the job), and the allocation duration (𝐶𝑜𝑝 ) as shown in
Box B. It then checks if the BI has unallocated contiguous duration
𝐶𝑜𝑝 available starting from its release time (Decision Box C). If so,
then that part of the BI is allocated to the job (Box D) and then
the Algorithm loops back to schedule the next job, if there is one
(Decision Box E). Otherwise, whatever duration (which is less than
𝐶𝑜𝑝 ) is available, is assigned to the request, 𝐶𝑜𝑝 is decremented to
determine the remaining duration to be allocated and the allocation
point is advanced to the next unallocated (or empty) location in the
BI (Box F). Note that if Box F is reached during scheduling of a job,
then that job is fragmented, which is akin to preemption in CPU
task scheduling parlance. If the next unallocated location is greater
than the deadline (Decision Box G), then the request has missed its
deadline (Box H). This is an error condition and should not happen
in a correct implementation. Otherwise, the Algorithm repeats the
process of finding unallocated contiguous duration for the reduced
𝐶𝑜𝑝 (Decision Box C). Each request will search for free locations in
a BI once (for all its jobs). Hence, the time complexity of our EDF
based scheduler is O(𝐵𝐼 · 𝑛), where 𝑛 is the number of requests in
the system.

Figure 2 illustrates our EDF based scheduling algorithm using an
example. There are three requests, 𝑇1, 𝑇2 and 𝑇3, whose 𝐶𝑜𝑝 values
are shown in filled rectangles. The release times of the requests
are indicated by color-coded vertical arrows. Their periods, 𝑃1,
𝑃2 and 𝑃3 are also shown. These parameters define jobs of the
three requests in one BI duration. Request 𝑇1 has eight jobs, 𝑇2
has three jobs and 𝑇3 has two jobs in one BI. The job number
for each request is shown inside the rectangle representing the
job. These jobs are first ordered in non-decreasing order of their
respective deadlines. These allocation order numbers are shown
as integer numbers on top of each job. When the 𝐶𝑜𝑝 of a job
cannot be allocated contiguously, then the allocation is fragmented
and the fragment number is shown in parenthesis as a superscript



Figure 2: An Example Illustrating Our EDF Based Scheduler

to the order number. For example, the first three jobs of 𝑇1 come
first in the order, then the first job of 𝑇2 (order number 4), since
its deadline is before the fourth job of 𝑇1 (order number 5). The
first three jobs of 𝑇1 are allocated contiguous durations each equal
to 𝐶𝑜𝑝

1 . Then the first job of 𝑇2 is picked up for allocation. Since
first job of 𝑇1 has already been allocated 𝐶𝑜𝑝

1 from the beginning
of the BI, 𝑇2 is allocated SP duration immediately following that
allocation. However, the duration available is smaller than 𝐶

𝑜𝑝

2 .
Hence, 𝑇2’s allocation is fragmented. The first fragment (shown
with a superscript (1)) occupies the empty space in between the first
and second allocation of 𝑇1. The second fragment of first job of 𝑇2
is then allocated after the allocation of second job of 𝑇1. Following
the flowchart of Figure 1, we end up with the schedule as shown
in Figure 2. We want to reiterate that any new request arriving
in the middle of a BI is considered for scheduling in the next BI.
Hence, the schedule computed by our algorithm is not perturbed
by a newly arriving request and therefore, remains static (or does
not change) throughout the duration of the BI. In fact, this schedule
will continue in the subsequent BIs until a new request arrives or
an existing request leaves.

2.6 Choice of Admission Control Algorithms
The allocation duration in isochronous TSpec has two parameters,
𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 . Hence, it provides flexibility to the ACAs in terms
of choosing the operating allocation amount 𝐶𝑜𝑝 . The strategy
depends on the goal of the ACA. An ACA may aim to maximize
the number of requests admitted into the system and hence would
allocate minimum possible duration, i.e., it would set 𝐶𝑜𝑝 = 𝐶𝑚𝑖𝑛

for all requests. Another ACA may have the goal to maximize
allocation duration to all its requests, i.e., set 𝐶𝑜𝑝 = 𝐶𝑚𝑎𝑥 . But this
ACA would take a performance hit in terms of number of requests
admitted. But regardless of goal of an ACA, it should be fair to all
its requests. For example, an ACA should not admit one request
with 𝐶𝑚𝑖𝑛 and another with 𝐶𝑚𝑎𝑥 . Hence, we discuss fairness of
an ACA in the next section and present three ACAs which are fair.

2.7 Fairness of Admission Control Algorithm
We use Jain’s fairness index for each ACA. Let

𝑥𝑖 =
𝐶
𝑜𝑝

𝑖
−𝐶𝑚𝑖𝑛

𝑖

𝐶𝑚𝑎𝑥
𝑖

−𝐶𝑚𝑖𝑛
𝑖

. (3)

Then Jain’s Fairness Index (JFI) for our ACA is defined as

JFI =


1, if 𝑥𝑖 = 0, ∀𝑖 .
(∑𝑛

𝑖=1 𝑥𝑖 )2
𝑛 ·∑𝑛

𝑖=1 𝑥
2
𝑖

, otherwise.
(4)

The ACA decides the 𝐶𝑜𝑝 of the requests admitted into the sys-
tem. We propose three admission control algorithms which are
absolutely fair, i.e., JFI = 1.

• Minimum Allocation Admission Control (MnAAC): Every
request is allocated its𝐶𝑚𝑖𝑛 , i.e.,𝐶𝑜𝑝

𝑖
= 𝐶𝑚𝑖𝑛

𝑖
for 𝑖 = 1, . . . , 𝑛.

While this allocation is compliant with the IEEE 802.11ad re-
quirement, it is not efficient in terms of allocation especially
when the system is lightly loaded. However, this algorithm
will have the best performance in terms of number of re-
quests admitted. For this ACA, 𝐶𝑜𝑝 of a request does not
change throughout its lifetime. Hence utilization of the sys-
tem can be updated in constant time as a new request is
admitted or when an existing request leaves the system. In
addition, computation of 𝐶𝑜𝑝 is also constant time. Hence,
time complexity of this ACA is O(1).

• Maximum Allocation Admission Control (MxAAC): Every
request is allocated its𝐶𝑚𝑎𝑥 , i.e.,𝐶𝑜𝑝

𝑖
= 𝐶𝑚𝑎𝑥

𝑖
for 𝑖 = 1, . . . , 𝑛.

This allocation does not change throughout the life of the
requests. This allocation is advantageous for the admitted
requests, since they always get the maximum allocation.
However, in general, it would admit lesser number of re-
quests compared to MnAAC scheduler, especially at high
load condition. Following similar argument as in the case of
MnAAC, the time complexity of this ACA is also O(1).

• Proportional Fair Allocation Admission Control (PFAAC):
Requests are allocated operational duration (𝐶𝑜𝑝 ) such that
surplus allocation over 𝐶𝑚𝑖𝑛 expressed as a fraction of the
requested allocation range (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛) is same for all
the requests, i.e., 𝑥1 = 𝑥2 = . . . = 𝑥𝑛 , where 𝑥𝑖 is given
by Eq. (3). Note that allocation durations of admitted requests
can change during their lifetimes when this algorithm is used.
This algorithm tries to allocate as much duration as possible
while maximizing the number of admitted requests.

2.8 Allocation in PFAAC
Allocation of 𝐶𝑜𝑝 in MnAAC and MxAAC is very straightforward.
However, when PFAAC is used, the operational allocation durations
(𝐶𝑜𝑝 ) of existing requests may change. Hence, the PFAAC algorithm
computes new allocation duration (𝐶𝑜𝑝 ) of existing requests as well
as the new request when a new request is admitted and when an
existing request leaves the system. Pseudocode for this algorithm
is presented in Algorithm 1. The algorithm rejects the new request
if the utilization of the system, assuming all the existing requests
and the new request are allocated their respective minimum alloca-
tion (𝐶𝑚𝑖𝑛), exceeds 1 (Line 4). Otherwise, it computes the surplus
utilization based on this minimum allocation (Line 5). This surplus
utilization (𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠 ) is then distributed to each individual request
in proportion to its difference of utilization between maximum and
minimum to the total (over all requests) difference of utilization.
Hence, the operating utilization of request 𝑇𝑖 is given by



Algorithm 1 Admission_Control_PFAAC

1: input: 𝐶𝑚𝑖𝑛 , 𝐶𝑚𝑎𝑥 and 𝑃 of all existing (𝑛 − 1) requests and
the new request.

2: output:Accept or Reject;𝐶𝑜𝑝 of each request if the new request
is accepted.

3: 𝑈𝑚𝑖𝑛
𝑛 =

∑𝑛
𝑖=1

𝐶𝑚𝑖𝑛
𝑖

𝑃𝑖

4: if 𝑈𝑚𝑖𝑛
𝑛 > 1 then return Reject

5: 𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠 = 1 −𝑈𝑚𝑖𝑛
𝑛

6: Δ𝑢𝑡𝑜𝑡 = 0
7: for i=1 to n do
8: Δ𝑢𝑡𝑜𝑡 = Δ𝑢𝑡𝑜𝑡 +

𝐶𝑚𝑎𝑥
𝑖

−𝐶𝑚𝑖𝑛
𝑖

𝑃𝑖

9: for i=1 to n do
10: 𝐶

𝑜𝑝

𝑖
= 𝐶𝑚𝑖𝑛

𝑖
+min (1, 𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠

Δ𝑢𝑡𝑜𝑡
) · (𝐶𝑚𝑎𝑥

𝑖
−𝐶𝑚𝑖𝑛

𝑖
)

11: return Accept

𝑢
𝑜𝑝

𝑖
= 𝑢𝑚𝑖𝑛

𝑖 + Δ𝑢𝑖
Δ𝑢𝑡𝑜𝑡

·𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠 , (5)

where 𝑢𝑜𝑝
𝑖

=
𝐶
𝑜𝑝

𝑖

𝑃𝑖
, Δ𝑢𝑖 =

𝐶𝑚𝑎𝑥
𝑖

𝑃𝑖
− 𝐶𝑚𝑖𝑛

𝑖

𝑃𝑖
and Δ𝑢𝑡𝑜𝑡 =

∑𝑛
𝑖=1 Δ𝑢𝑖 .

Multiplying both sides of Eq. (5) by 𝑃𝑖 and inserting the term
min (1, 𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠

Δ𝑢𝑡𝑜𝑡
) to take care of the fact that 𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠

Δ𝑢𝑡𝑜𝑡
could be

greater than 1, we get

𝐶
𝑜𝑝

𝑖
= 𝐶𝑚𝑖𝑛

𝑖 +min (1,
𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠

Δ𝑢𝑡𝑜𝑡
) · (𝐶𝑚𝑎𝑥

𝑖 −𝐶𝑚𝑖𝑛
𝑖 ), (6)

which is the expression in Line 10. Note that when 𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠

Δ𝑢𝑡𝑜𝑡
is greater

than 1, it implies that there is enough surplus for every request,
so that every request can be allocated its 𝐶𝑚𝑎𝑥 . In this case, it can
be verified from Eq. (6) that 𝐶𝑜𝑝

𝑖
= 𝐶𝑚𝑎𝑥

𝑖
. This also explains why

the term min (1, 𝑈𝑠𝑢𝑟𝑝𝑙𝑢𝑠

Δ𝑢𝑡𝑜𝑡
) should be used in Eq. (6) to prevent 𝐶𝑜𝑝

𝑖

going above 𝐶𝑚𝑎𝑥
𝑖

. Noting the for loops in Line 7 and Line 9 of
Algorithm 1, each of which iterates 𝑛 times, it is obvious that the
time complexity of this ACA is O(𝑛).

3 PERFORMANCE RESULTS
3.1 Performance Metrics
In this section, we define the performance metrics used to evaluate
our admission control algorithms.

• Acceptance Ratio (AR) : This is the fraction of total requests
that are admitted by the ACA. Higher AR implies that an
IEEE 802.11ad MAC can support a greater number of flows
or applications.

• Allocation Efficiency (AE): This metric represents efficiency
of an ACA in terms of allocation of SP duration. For a re-
quest 𝑇𝑖 , it is defined as 𝐶

𝑜𝑝

𝑖
−𝐶𝑚𝑖𝑛

𝑖

𝐶𝑚𝑎𝑥
𝑖

−𝐶𝑚𝑖𝑛
𝑖

. Note that AE is a value

between 0 and 1. AE is 0 when the ACA allocates𝐶𝑚𝑖𝑛
𝑖

to 𝑇𝑖
and is 1 when it allocates 𝐶𝑚𝑎𝑥

𝑖
. An ACA with higher AE is

preferable to an application since that translates to higher
throughput for the application.

• BI Utilization (BU): This metric is the fraction of a BI duration
that has been allocated to requests for SP channel access by
the corresponding STAs.

• Degree of Fragmentation (DoF): When 𝐶
𝑜𝑝

𝑖
of a request 𝑇𝑖

cannot be allocated in one chunk, then the allocation is said
to be fragmented. 𝐷𝑜𝐹𝑖 of a request 𝑇𝑖 in a given duration
is given by 𝑁𝑐ℎ𝑢𝑛𝑘−𝑁 𝑗𝑜𝑏

𝑁 𝑗𝑜𝑏
, where 𝑁𝑐ℎ𝑢𝑛𝑘 is the number of

chunks allocated to the request (during scheduling) and𝑁 𝑗𝑜𝑏

is the number of jobs of the request in that duration. Thus, if
there is no fragmentation of a request𝑇𝑖 , then 𝑁chunk = 𝑁job,
and DoF𝑖 = 0. In IEEE 802.11ad, a guard time is inserted
between two consecutive allocations which is an overhead
for the system. Hence, DoF is an indicator of guard time
overhead of the system.

• Normalized Delay: The delay of a job of a request is the
difference of time instance of end of allocation of the job and
the release time of the job. Note that if the job is fragmented,
the end of allocation of the job is the end of allocation of its
last fragment. This metric essentially measures the time it
would take to finish transmitting a job after it is available
(released) at the MAC and is an indicator of packet level
delay. Normalized delay is the delay normalized with respect
to the period of the request, i.e., it is the ratio of delay of a
job to the period of the request.

• Normalized Jitter: Jitter is the absolute difference of delay of
two consecutive jobs of a request. In another words, it is the
variation in two successive delays of two consecutive jobs
of a request. This is normalized with respect to the period of
the request to represent normalized jitter. Hence, normalized
jitter is the ratio of jitter to the period of the request.

3.2 Simulation Experiment Design
To evaluate performance of our admission control and scheduling
algorithms we design our simulation experiments as follows. AD-
DTS requests arrive with a Poisson distribution having mean arrival
rate _, which is varied from 5 to 50 requests per BI in steps of 5. BI
duration is set at 102 400 `s. The maximum allocation duration of a
request (𝐶𝑚𝑎𝑥 ) is uniformly distributed between 10 `s and 100 `s
and is considered a per BI value. Thus, if the request period is an
integer fraction of BI, then the randomly generated 𝐶𝑚𝑎𝑥 value is
scaled down by that fraction. If the request period, on the other
hand, is an integer multiple of BI, then 𝐶𝑚𝑎𝑥 value is scaled up by
that integer multiple. The allocation interval ratio, 𝐶𝑚𝑖𝑛/𝐶𝑚𝑎𝑥 , is
uniformly distributed between 0.5 and 1.0. The lifetime of each re-
quest follows normal distribution with the average duration of 100
BIs and standard deviation of 10 BIs. Thus, about 95 % of lifetimes
are between 80 BIs to 120 BIs. Lifetime of a request is rounded down
to its nearest period. The integer 𝑛 that defines the integer fraction
or integer multiple of period of a request is uniformly distributed
between 1 to 5. The experiments are carried out in three scenarios:
i) when all the requests have periods which are an integer multiple
of BI (Scenario 1), ii) when all the requests have periods which are
an integer fraction of BI (Scenario 2) and iii) when 30 % requests
have periods which are integer multiple of BI and 70 % requests
have periods which are integer fraction of BI (Scenario 3). The
experiments are run for a duration equal to 1000 BIs. For a given



random parameter, the same sequence of random numbers are used
to represent the values of the parameter across the three scenarios,
i.e., same seed is used across the three scenarios to generate the
random parameter. This ensures that all the scenarios are fed with
the same values of input parameters which makes the comparison
across scenarios fair. Scenario 1 simulates applications requiring
low bandwidth (e.g., IoT applications), whereas Scenario 2 repre-
sents applications requiring high bandwidth and low delay (e.g.,
streaming video). Scenario 3 is appropriate for a mix of these two
types of applications.

3.3 Experiment Results
Before we present our results, we explain the box and whisker
plots used in some of the performance metrics. The central mark
of each box is the median, the edges of the box are the 25𝑡ℎ and
75𝑡ℎ percentiles. The upper (lower) whisker represents the largest
(smallest) data point that is within 1.5 times the interquartile range
(distance between the upper and lower quartiles) above (below)
the upper (lower) box edge. Outliers beyond the whiskers are not
shown.

Figures 3(a), 3(b), and 3(c) show how acceptance ratio (AR)
changes as the mean request arrival rate _ increases for the three
scenarios. At low _, the AR is 100 %, since the system has low uti-
lization. But as _ increases, load on the system increases and more
requests are rejected. Hence, AR starts to fall. AR for MxAAC is
lower than MnAAC at high _. Since MxAAC admits requests with
their 𝐶𝑜𝑝 = 𝐶𝑚𝑎𝑥 , utilization of the system reaches 100 % with
fewer requests and hence it admits less number of requests (see
admission criterion Eq. (2)). AR of MnAAC and PFAAC are identical,
since PFAAC admits connection based on 𝐶𝑚𝑖𝑛 and distributes any
surplus utilization to all the requests in a proportional manner (see
Line 4 in Algorithm 1). Each ACA’s performance is nearly identical
across the three scenarios. This is because the utilization of the
three scenarios at any given _ is almost the same, since the same
sequence of random numbers represent the values of the parame-
ters across the scenarios. In Scenario 1, for some requests, lifetime
is rounded down to their respective periods. This contributes to the
small discrepancies across the scenarios.

Performance graphs of average BI utilization versus mean re-
quest arrival rate are presented in Figures 4(a), 4(b), and 4(c). Once
the system reaches steady state (after a few BIs), BI utilization is
averaged over all the BIs until the end of the experiment duration to
obtain average BI utilization. As expected, BI utilization increases
as _ increases for all the scenarios and ACAs. However, beyond a
certain _ value, the BI utilization remains almost at 100 %. At that
_ value, the admitted requests use up all the BI duration. Any new
incoming request is rejected until an existing request leaves the
system. Thus, around the same _ value, AR starts to drop from 100 %
(see Figures 3(a), 3(b), and 3(c)). MnAAC reaches 100 % BI utiliza-
tion at a higher _ value than MxAAC and PFAAC since it allocates
smaller duration (𝐶𝑚𝑖𝑛) for a given request compared to MxAAC
and PFAAC. Performance of MxAAC and PFAAC are almost equal
since PFAAC tries to allocate 𝐶𝑜𝑝 = 𝐶𝑚𝑎𝑥 whenever possible, but
as BI utilization approaches 100 % (at around _ = 20 to 25 requests
per BI), it tries to admit more requests at lower 𝐶𝑜𝑝 . This leads to
slight difference between MxAAC and PFAAC at that _ value. The

performance of the three ACAs is almost identical across the three
scenarios, because the requests in all the three ACAs are admitted
based on utilization. Therefore, for a given ACA, the same requests
are admitted across the scenarios which leads to almost the same
BI utilization. As mentioned before, the slight discrepancy across
the scenarios is the result of rounding down lifetime of some of the
requests in Scenario 1.

Figures 5(a), 5(b), and 5(c) show the performance of ACAs in
terms of average AE of the requests as mean arrival rate of requests
(_) increases. To compute the average AE of a given request, AE
is computed in every period and averaged over its lifetime. Then
average AEs of all the requests are plotted as a box and whisker plot.
As expected, average AE of MnAAC and MxAAC remain constant
at 0 and 1 respectively. Initially AE of PFAAC remains at 1.0, but
between _ = 20 requests per BI and _ = 25 requests per BI, it falls
below 1.0 and becomes 0.0 beyond _ = 25 requests per BI for all
the three scenarios. Recall that at around _ = 20 to 25 requests per
BI, the BI utilization reaches 100 % and hence PFAAC sacrifices on
allocation efficiency to admit more requests.

Performance in terms of average DoF of the system (ADoFS) for
the three scenarios is captured in Figures 6(a), 6(b), and 6(c). For
every request, DoF is computed in every period and then average
DoF is computed over its lifetime. Another averaging is done over
average DoF of all the requests to obtain ADoFS. For MnAAC and
MxAAC, ADoFS is higher in Scenario 2 than in Scenario 1. In Sce-
nario 2, requests have periods equal to an integer fraction of the
BI, i.e., they have multiple jobs in a BI and have multiple deadlines
to meet. Hence, allocations are more likely to be fragmented. For
Scenario 1, since deadlines of requests are integer multiple of BI,
there is no fragmentation until the BI utilization approaches 100 %
(at _ = 20 requests per BI). At high _ (_ ≥ 40 requests per BI),
ADoFS becomes almost flat in all the scenarios. At those _ values,
the system accepts very few new requests (see AR performance
for these _ values). Hence, the scheduling of jobs of the requests
changes very little leading to very little change in ADoFS. In Sce-
nario 1, PFAAC performance is the worst. Since request periods are
multiple of BI in this scenario, when a request leaves the system,
surplus utilization is created which is added proportionally to the
𝐶𝑜𝑝 of all the existing requests. So, in the next BI some of these
requests may get additional fragment of allocation due to this in-
crease in 𝐶𝑜𝑝 . ADoFS performance in Scenario 3 is almost similar
to that of Scenario 2 since the majority of requests in Scenario 3,
as do requests in Scenario 2, have periods equal to integer fraction
of a BI. But at _ value of 20 to 25 requests per BI, where ADoFS of
PFAAC goes up slightly (note the log scale of these plots) compared
to Scenario 2. Around those _ values, utilization of the system goes
towards 100% (see Figure 4) and the requests, having periods of
integer multiple of BI, exhibit high fragmentation under PFAAC
(similar to what was seen in Scenario 1).

Figures 7(a), 7(b), and 7(c) show average normalized delay (AvND)
of requests in the three scenarios as _ increases. To compute the
AvND of a given request, normalized delay is computed in every
period and averaged over its lifetime. Then AvND of all the requests
are plotted as a box and whisker plot. At low _ (_ ≤ 15 requests per
BI), median AvND of MxAAC and PFAAC are almost equal to each
other, but MnAAC has lower AvND in all the scenarios. At low _,
PFAAC is able to allocate 𝐶𝑚𝑎𝑥 and hence, its AvND performance



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 3: Acceptance Ratio vs. Mean Request Arrival Rate

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 4: Average BI Utilization vs. Mean Request Arrival Rate

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5: Average Allocation Efficiency vs. Mean Request Arrival Rate

is similar to that of MxAAC. Since PFAAC and MxAAC get more
allocation than MnAAC, the end of allocation of a job in those two
ACAs is later than in MnAAC which leads to longer delay. At high
_ (_ ≥ 35 requests per BI), there is very little difference in the me-
dian AvND among the AACs in all the scenarios. At these _ values,
the system runs at 100 % utilization and MnAAC and PFAAC have
more requests running at 𝐶𝑚𝑖𝑛 (each request has shorter delay),

whereas MxAAC has less requests, but they are running at 𝐶𝑚𝑎𝑥

(each request has longer delay). Hence, the median AvND for those
ACAs become almost equal at high _. At _ value of 20 to 25 requests
per BI, PFAAC has higher median AvND than the other two ACAs
in Scenario 1. Since requests have periods that are integer multiples
of BI, when a request leaves, the 𝐶𝑜𝑝 values of existing requests
proportionally increases. Therefore, a request may get additional



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 6: Average Degree of Fragmentation of the System (ADoFS) vs. Mean Request Arrival Rate

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 7: Average Normalized Delay (AvND) vs. Mean Request Arrival Rate

allocation across BIs and its end of allocation is delayed leading
to higher delay. Comparing AvND performance across scenarios,
generally Scenario 2 has higher median AvND compared to Sce-
nario 1 for all three ACAs. Since the request periods are a fraction
of BI in Scenario 2, they have tighter deadlines compared to Sce-
nario 1. This leads to shuffling of relative allocation positions (in a
BI) of jobs when new requests are admitted. In addition, there is
more fragmentation in Scenario 2. These two factors lead to higher
delay. Relative performance of the ACAs at different _ values in
Scenario 3 is very similar to Scenario 2, but influence of requests
having periods equal to multiple BI (same as requests in Scenario 1)
is visible. In Scenario 1, the interquartile range (i.e., the height of the
box) remains almost the same for all three ACAs at high _ and the
median value is smaller than in Scenario 2. So, in Scenario 3, at high
_, the heights of the boxes (for all three ACAs) remains almost the
same, but they are smaller than Scenario 2 and the median values
are also smaller than those in Scenario 2.

Figures 8(a), 8(b), and 8(c) capture performance in terms of av-
erage normalized jitter (AvNJ). To compute the AvNJ of a given
request, normalized jitter is computed in every period and averaged
over its lifetime. Then AvNJ of all the requests are plotted as a box
and whisker plot. In Scenario 1, MnAAC and MxAAC have very
negligible AvNJ regardless of value of _. At low _, BI utilization is
low and and hence, the schedule of existing requests do not change

due to new requests. Therefore, AvNJ remains close to zero. At
high _, very few new requests are admitted and hence, schedule of
existing requests does not change much which leads to low AvNJ.
PFAAC also has very low AvNJ except for _ from 20 to 30 requests
per BI (when BI utilization starts to rise to 100 %). At these _ values,
PFAAC keeps adjusting𝐶𝑜𝑝 values of existing requests which leads
to high jitter. In Scenario 2, as _ increases, median AvNJ increases
for all the ACAs. This, as has been pointed out in AvND perfor-
mance, is due to the shuffling of relative position of allocation and
fragmentation of jobs. However, median AvNJ remains almost flat
beyond _ = 25 requests per BI when BI utilization reaches 100 %,
because the schedule of existing requests does not change much be-
yond this value. Comparing AvNJ performance between Scenario 1
and Scenario 2, median values in Scenario‘2 are generally higher
than in Scenario 1 for the three ACAs. In Scenario 3, the median
AvNJ of MnAAC andMxAAC are almost the same as Scenario 1, but
there is more variance due to the mix of requests with periods equal
to fraction of BI. For PFAAC in Scenario 3, median AvNJ initially
increases, but unlike Scenario 2, after _ = 25 requests per BI it
does not stay constant, but goes down. However, the interquartile
range (i.e., box height) remains constant after _ = 25 requests per
BI. This is the effect of existence of requests having periods equal
to multiple BIs in Scenario 3. In Scenario 1, for PFAAC, box height
decreases at high _, but the median AvNJ remains close to zero. In



(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 8: Average Normalized Jitter (AvNJ) vs. Mean Request Arrival Rate

Scenario 2, box height and median AvNJ remain constant at high _.
So, if these two effects are combined, then the box height remains
constant, but the median decreases, as is seen in Scenario 3.

The experiments were run for a long duration equal to 1000 BIs
due to which the run time of the experiments were very high. So,
it was not possible to get the uncertainty measurements of AR for
every _ value. We measured standard deviation of AR for _ = 5, 25
and 50 requests per BI for all the three scenarios to get some sample
values. The minimum and maximum standard deviation were 0 %
and 0.7 % of the mean respectively. Based on these sample values
of standard deviation and the fact that our experiments were run
for a long duration of 1000 BIs, we expect the standard deviation of
AR and average BI utilization for all _ values to be very small.

4 RELATEDWORK
There have been few analytical studies done on IEEE 802.11ad
channel access. A 3D Markov chain based analytical model for
performance analysis of SP and CBAP mode of channel access is
presented in [4]. In [12], authors present a Markov chain based ana-
lytical model for CBAP allocation. The model accounts for presence
of SPs and deafness and hidden node problems associated with di-
rectional antennas during CBAP. An analytical model for SP access
is proposed in [7], in which the authors study the worst case delay
of SP packets using the model. They also discuss a way to optimally
allocate a channel between SP and CBAP access. [9] proposes a
scheduling method based on analytical model for a multimedia flow
using SP channel access in the presence of channel errors.

There has been very little work reported in the literature in ex-
perimental study of admission control and scheduling of SP and
CBAP allocations. In [10], the authors present two algorithms for
joint admission control and scheduling of periodic traffic streams
using SP allocation. However, the authors only consider very simple
application scenarios. In one scenario, all the applications are as-
sumed to have the same traffic parameters. In the other case, there
are only two sets of traffic parameters and an application chooses
one from the two sets. Also, this study only considers periods which
are integer fraction of the BI. This algorithm can become too expen-
sive if it is to be implemented in a real IEEE 802.11ad system to be
able to schedule applications with many different traffic parameters.
Finally, in [2], the authors present a reinforcement learning (RL)

based scheduling of SP allocation which finds the optimal duration
of each SP. The RL based scheme uses Q-learning and interacts
with the network deployment scenario to get the optimal SP dura-
tion. Queue size, in terms of number of packets, at the MAC layer
represents states and reward is represented as a function of number
of received packets and the action taken.

5 CONCLUSION AND FUTUREWORK
We presented three fair admission control algorithms and an EDF
based scheduling algorithm for isochronous traffic in IEEE 802.11ad
MAC. Two of the ACAs, MnAAC and MxAAC, are very simple and
can be implemented in constant time. However, their performance
is not consistent across different performance metrics discussed
in this paper. For example, MnAAC has better performance (than
MxAAC) in terms of AR, but is worse in terms of BI utilization
and AE. PFAAC provides the best performance among the three
ACAs with respect to some performance metrics such as AR and
BI utilization. However, for some other performance metrics it may
not be the best ACA (e.g., DoF). Thus, an IEEE 802.11adMAC should
choose an appropriate ACA based on its goal of which performance
metric it wants to optimize. But, generally PFAAC offers the best
tradeoff across different performance metrics. Thus, although its
time complexity is higher than the the other two, PFAAC may be
used to get overall good performance.

In this work, guard time overhead was not considered. We would
like to take this into account in our future work. We are also looking
at admission control and scheduling of IEEE 802.11ad MAC when
both isochronous and asynchronous traffic are present. We would
like to study non-preemptive versions of the EDF scheduler which
will have reduced performance in terms of acceptance ratio but
should have less overhead in terms of guard time.

REFERENCES
[1] 2016. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications. 802.11 Working Group of the LAN/MAN Standards Com-
mittee of the IEEE Computer Society.

[2] Tommy Azzino, Tanguy Ropitault, and Michele Zorzi. 2020. Scheduling the Data
Transmission Interval in IEEE 802.11ad: A Reinforcement Learning Approach. In
2020 International Conference on Computing, Networking and Communications
(ICNC). IEEE, 602–607.

[3] C. L. Liu and J. W. Layland. 1973. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. Journal of the Association for Computing



Machinery 20, 1 (January 1973), 46–61.
[4] Qian Chen, Jiqiang Tang, David Tung Chong Wong, Xiaoming Peng, and

Youguang Zhang. 2013. Directional Cooperative MAC Protocol Design and
Performance Analysis for IEEE 802.11ad WLANs. IEEE Transactions on Vehicular
Technology 62, 6 (2013), 2667–2677.

[5] Houssine Chetto andMaryline Chetto. 1989. Some Results of the Earliest Deadline
Scheduling Algorithm. IEEE Transactions on software engineering 15, 10 (1989),
1261–1269.

[6] Yasaman Ghasempour, Claudio RCM da Silva, Carlos Cordeiro, and Edward W
Knightly. 2017. IEEE 802.11ay: Next-generation 60 GHz Communication for 100
Gb/s Wi-Fi. IEEE Communications Magazine 55, 12 (2017), 186–192.

[7] C Hemanth and TG Venkatesh. 2015. Performance Analysis of Service Periods
(SP) of the IEEE 802.11ad Hybrid MAC Protocol. IEEE Transactions on Mobile
Computing 15, 5 (2015), 1224–1236.

[8] K. Jeffay, D. F. Stanat and C. U. Martel. 1991. On Non-Preemptive Scheduling
of Periodic and Sporadic Tasks. In IEEE Real-Time Systems Symposium (RTSS).

129–139.
[9] Evgeny Khorov, Alexander Ivanov, Andrey Lyakhov, and Vitaly Zankin. 2016.

Mathematical Model for Scheduling in IEEE 802.11ad Networks. In 2016 9th IFIP
Wireless and Mobile Networking Conference (WMNC). IEEE, 153–160.

[10] Mattia Lecci, Matteo Drago, Andrea Zanella, and Michele Zorzi. 2020. Exploiting
Scheduled Access Features of mmWave WLANs for Periodic Traffic Sources.
arXiv preprint arXiv:2011.05045 (2020).

[11] Thomas Nitsche, Carlos Cordeiro, Adriana B Flores, Edward W Knightly, Eldad
Perahia, and Joerg C Widmer. 2014. IEEE 802.11ad: Directional 60 GHz Commu-
nication for Multi-Gigabit-per-second Wi-Fi. IEEE Communications Magazine 52,
12 (2014), 132–141.

[12] Chiara Pielli, Tanguy Ropitault, Nada Golmie, and Michele Zorzi. 2020. An
Analytical Model for CBAP Allocations in IEEE 802.11ad. IEEE Transactions on
Communications (2020).

[13] Sandra R Thuel and John P Lehoczky. 1994. Algorithms for Scheduling Hard
Aperiodic Tasks in Fixed-Priority Systems Using Slack Stealing. In RTSS. 22–33.


