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Bayesian optimization (BO) is a well-developed machine learning (ML) field for black-box function optimization. In BO, a surrogate

predictive model, here a Gaussian process, is used to approximate the black-box function. The estimated mean and uncertainty
of the surrogate model are paired with an acquisition function to decide where to sample next. In this study, we applied this
technique to known ferromagnetic thin-film materials such as ferromagnetic (Fe100− yGay)1−xBx (x = 0–21 and y = 9–17) and
(Fe100− yGay)1−xCx (x = 1–26 and y = 2–18) to demonstrate optimization of structure–property relationships, specifically the dopant
concentration or stoichiometry effect on magnetostriction and ferromagnetic resonance linewidth. Our results demonstrated that BO
can be deployed to optimize structure–property relationships in FeGaB and FeGaC thin films. We have shown through simulation
that using BO methods to guide experiments reduced the number of samples required to statistically determine the maximum or
minimum by 50% compared to traditional methods. Our results suggest that BO can be used to save time and resources to optimize
ferromagnetic films. This method is transferrable to other ferromagnetic material structure–property relationships, providing an
accessible implementation of ML to magnetic materials development.

Index Terms— Bayesian optimization (BO), FeGa alloys, ferromagnetic resonance (FMR), magnetostriction, thin films.

I. INTRODUCTION

THE analysis and optimization of structure–property rela-
tions is a critical practice in materials engineering.

Traditionally, this process is performed via the Edisonian
approach of “trial and error” guided by expert knowledge.
While previous success has been realized with “trial and error”
methods, the cost is expensive due to long temporal scales
(many months to years), depleted resources (funding, equip-
ment use/maintenance, and so on), and researcher exhaustion.
Typically, by the time new material is fully integrated into an
industrial product, the patent protection for the initial material
development nears expiration (novel material commercializa-
tion can take up to 20 years, while patents last 30 years)—
this is not ideal [1]. Experience and intuition can be beneficial
during the materials design process and aid in expediting it;
however, this adds implicit bias, and a researcher can become
overwhelmed and less effective as the optimization involves
higher dimensions, such as multiple structure parameters, i.e.,
compositions, structures, and grain size.

Statistical and machine learning (ML) algorithms have
streamlined optimization in other fields, such as the phar-
maceutical industry [2]. Interest in using ML in materials
science increased significantly with the turn of the century [3].
In particular, the theory community has embraced advances
in ML for screening new material compositions. In addition,
computational approaches for modeling flexoelectricity have
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been combined with deep neural networks to predict optimal
design parameters for composite flexoelectric cantilevers [4].
ML has found success in various material applications, such
as identifying novel perovskites, high-efficiency photovoltaic
materials, and superconductors [5]–[7]. Experimentalists in
the rapid-throughput community have also embraced imple-
mentation of ML—these focused on closed- and open-loop
optimizations. In a closed-loop optimization, there is no
external intervention from the bench researcher. One of the
first fully closed-loop processes was applied to improving
carbon nanotube growth through an autonomous research
system—a closed-loop iterative material experimental tool
capable of chemical vapor deposition growth, in situ Raman
spectroscopy, and random forest/genetic algorithm analysis
to inform and execute adjustments to synthesis pressure,
temperature, and gas partial pressures [8]. Other approaches
for closed-loop optimization have focused on the Bayesian
optimization (BO) for composition–structure–property rela-
tionships rather than processing–structure relationships. These
composition–structure–property relationships were efficiently
explored via BO—pulsed laser deposition film composition
effect on atomic structure collected by synchrotron beam-
line data was determined [9], [10], resulting in the dis-
covery of a best-in-class phase change memory material.
Open-loop optimizations require intervention and participa-
tion of the bench researcher. There are limited instances
of ML implemented in more traditional experimental set-
ting for open-loop optimizations—e.g., photovoltaic cell opti-
mization and synthesis of polymer fibers [11], [12]. With
respect to magnetic material optimizations, there have been
studies that have focused on ML for predictive proper-
ties of soft magnetic materials, but not focused on a BO
approach [13], [14].
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Here, we present the BO and regression analysis as
a method for optimizing structure (i.e., stoichiometry)—
magnetostrictive and micromagnetic property relationships in
FeGaB [15], [16] and FeGaC [17] alloy thin films. We have
selected the FeGaB and FeGaC alloy systems because they are
the best magnetostrictive materials for magnetoelectric (ME)
antenna devices and ME sensors [18]–[21]. Thin-film mate-
rial requirements for ME antennas are a low ferromagnetic
linewidth in the GHz and simultaneously high saturation mag-
netostriction, and thus, we have selected these properties as our
objectives of interest. Manipulating these properties requires
optimizing a two-alloy system, which can prove challenging
for co-sputtering deposition. Thus, here, we demonstrate how
ML is a viable tool to enable high-performing ME materials.
This optimization process is transferrable to a wide range of
ferromagnetic materials and is not deposition method specific.

II. OPTIMIZATION APPROACH

The optimization algorithms used here are BO using the
Gaussian process surrogate with radial basis function kernel
and expected improvement acquisition function. The specific
implementation of these algorithms was derived from the
open-source, python libraries developed by the Sheffield ML
group. We used GPy—a Gaussian processes framework—and
GPyOpt—a Gaussian process optimization library [22], [23].
There are advantages to GPy and GPyOpt, specifically the
ability to solve problems with nontrivial solutions, to solve
problems in parallel, and to implement multiple variable
types [23]. Alternative libraries include Spearmint [24]–[27],
BayesOpt [28], RoBo [29], and GPflowOpt [30]. The funda-
mentals of the algorithms implemented in GPy and GPyOpt
are defined in the following.

A. Bayesian Optimization

The target, black-box function to be optimized f (x)
(i.e., x can be compositional dopant concentration) may be
expensive to sample, making it critical to minimize the number
of samples x necessary to probe f (x). In this study, x is
composition and f (x) is a magnetic property to optimize. This
is the case for optimizing thin-film materials, as substrates,
targets, deposition tools, and researcher time are expensive.
BO describes a set of ML methods for determining the global
optimum (maximum or minimum) in the least number of
samples, which makes it advantageous for thin-film material
optimizations. In these methods, prior belief of the target
function is combined with samples of f (x) to form a posterior
probability over f (x)’s true behavior. Prior beliefs over the
functional form of f are encoded by selecting an appropriate
surrogate function—here, we implement Gaussian processes
as our surrogate function; this is the most widely accepted
surrogate function. However, other research has implemented
random forests and neural networks [31], [32]. Gaussian
processes formalize the assumptions that measurements of the
target function are normally distributed and that a collection of
measurements can be represented by a multivariate Gaussian
random variable with a mean and covariance, allowing one
to impose prior assumptions of function behavior through a

covariance or kernel function. The main benefit of imple-
menting a Gaussian process surrogate function is that the
uncertainty of the Gaussian process increases away from
training data. As previously mentioned, the prior belief of the
GP surrogate function can be tuned via the kernel/covariance
matrix selection. The most common or default kernel for
Gaussian processes is the radial basis function or exponen-
tiated quadratic. The radial basis function kernel is defined
by

KRBF
(
x, x ′) = σ 2exp

(
− (x − x ′)2

2l2

)
(1)

where � is the length scale and σ 2 is the output variance.
A large length scale leads to long-range correlation, while
a small length scale leads to short-range correlations; thus,
the length scale defines how smooth the function is. When
selecting a kernel, informed expertise in the application area
should be considered [33]. In the context of materials science,
the radial basis function kernel may not be appropriate for the
first-order phase transitions, and however, these are appropriate
for the second-order phase transitions and gradual disordering
without a distinct phase transition. In this case study, we know
from previous structural characterization that FeGaB and
FeGaC exhibit gradual structural disordering from crystalline
to amorphous without distinct, sharp phase transition with
increase in boron and carbon concentration in the FeGa alloy
system, and thus, a radial basis function is an appropriate
kernel for the implementation presented here [15], [17]. Based
on the application, it is key to use field expertise and decide on
an appropriate kernel or employ “kernel engineering” outlined
in several texts [33]–[35]. After the surrogate function is
updated, the selection of the next sample x is determined
through evaluating an acquisition function, which quantifies
the utility of potential measurements or experiments. Here,
we implement expected improvement as our acquisition func-
tion described in Section II-B—this directs sampling toward
regions where an improvement is likely.

The BO loop proceeds for iterations t = 1, 2, . . . Sub-
sequent sampling points xt are determined by finding the
maximum of the acquisition function u derived from the
surrogate function

xt = argmax
x

u{x | D1:t−1} (2)

where D is defined as the previously sampled points of data
D = {xn, yn}, n ∈ {1, . . . , t − 1}. The target function f (x) is
then sampled at the suggested point xt , and the value of yt is
recorded. Measurements of black-box functions are typically
corrupted by noise, εt , and thus, yt is defined by the following
equation:

yt = f (xt) + εt . (3)

Finally, the surrogate function (here a Gaussian process) is
updated by adding the point (xt , yt) to data D [36]–[38]. It is
important to note here that we have assumed a homoscedastic
noise model where constant variance is assumed (i.e., all inputs
have the same observational noise). It is also possible with BO
to assume heteroscedastic noise in GPyOpt [23].
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B. Expected Improvement

Another flexible or customizable component of BO is
the acquisition function; the acquisition function tunes the
desired amount of exploration versus exploitation in the search
space. The selection of the next sample point in the search,
xt , is determined via the acquisition function. The GPyOpt
library accommodates various acquisition functions, includ-
ing, and limited to, expected improvement, Gaussian process
lower confidence bound (upper confidence bound for max-
imization problems), and maximum probability of improve-
ment [22], [23]. We investigated the performance of these
three aforementioned acquisition functions and found for our
application the convergence of the BO to be similar (see
the Supplementary Material), thus here, we have just shown
our results using expected improvement as our acquisition
function. Expected improvement is defined by the following:

EI(x) = max(E[( f (x) − f
(
x+)

, 0
)]) (4)

where f (x+) is the value of the previous best sample. The
location of the best sample is defined as x+, where

x+ = argmax
xi ∈x1:t−1

f (xi). (5)

The expected improvement acquisition function can be
evaluated analytically as such in the following equation:
EI(x)

=
{(

μ(x) − f
(
x+) − ξ

)
�(Z) + σ(x)φ(Z), given σ > 0

0, given σ = 0

(6)

where

Z =
{

(μ(x)− f (x+)−ξ)
σ (x)

, given σ > 0

0, given σ = 0
(7)

and μ(x), σ(x),�, and φ are the mean, standard deviation,
cumulative distribution function, and the probability density
function, respectively. Note that xt from (2) and (3) is set to
the value of x+ calculated here. Expected improvement bal-
ances the tradeoff between exploitation and exploration. This
tradeoff can be tuned by varying the ξ parameter—a higher ξ
parameter enables more exploration in the model [36]. More
details on expected improvement can be found in [39]–[41].
With the GPy and GPyOpt libraries, it is possible to inte-
grate custom code for knowledge gradient (generalization
expected improvement for design problems with noisy eval-
uations) [42]–[44], Thompson sampling [45], [46], upper
confidence bound [47], and so on.

C. Pareto Optimal

When the goal is to optimize multiple material properties,
each represented by a function fi , and the relative importance
of these properties may change, it is often advisable to identify
samples that are Pareto optimal. The Pareto optimal set of
samples are those which for any particular target property fi

cannot be improved without reducing another target property.
The boundary of the Pareto optimal set is known as the

Pareto optimal front. The front will vary based on whether
f1(x) and f2(x) should both be maximized, minimized, or one
maximized and the other minimized. Pareto optimal is fun-
damental to multiobjective optimization. There are different
ways to approach multiobjective optimization, but a typical
approach is to implement scalarization techniques [48], [49].
In scalarization, the objective functions are redefined as con-
straints and then solved as a single-objective problem, such as
with linear weighting, weighted Chebychev, and ε-constraint
method [50], [51]. For larger numbers of objectives in multi-
objective problems, the issue arises in measuring convergence
of these Pareto-based algorithms. To determine the quality of
the Pareto front approximation, a hypervolume indicator is
typically deployed [52], [53]. One multiobjective approach is
through the use of a generalization of expected improvement
and the hypervolume indicator known as the expected hyper-
volume improvement. The purpose of employing techniques,
such as expected hypervolume improvement, is to assess
convergence of the estimation of the Pareto optimal set when
there are several objective functions [54], [55]. We recommend
the chapter by Emmerich et al. [56] for thorough discussion
of expected hypervolume improvement for estimation of the
Pareto front.

III. APPLIED OPTIMIZATION

We have investigated the FeGaB and FeGaC thin-film mater-
ial systems using the BO ML model with the goal of predicting
which compositional candidates/variants to select in order to
minimize the experimental process in terms of time, effort,
and cost. Specifically, we utilized historical single-source data
from our research group’s materials inventory in order to opti-
mize the dopant concentration and stoichiometry influence on
the material properties of magnetostriction and ferromagnetic
resonance (FMR) linewidth (X-band) for FeGaB and FeGaC
thin films [15]–[17]. We present our results for three case
studies: single-objective optimization and multiobjective opti-
mization over one stochiometric variable and single-objective
optimization for two stochiometric variables. Prior to our case
study analyses, we examine the experimental data, e.g., mag-
netostriction and FMR linewidth, for the (Fe100−yGay)1−x Bx

(x = 0–21 and y = 9–17) material system, as shown in
Fig. 1(a) and (b), respectively. The experimental results reveal
the optimized correlation of FMR linewidth (minimization)
and magnetostriction constant (maximization) as a function of
B-doping to be achieved with an atomic fraction of ≈12% B.
For ease of use with the ML techniques, the structure data were
normalized or rescaled to the maximum of the explored dopant
range and shown in Fig 1(c) and (d). The Gaussian process
model is fit using the GPy python library [22]. To simulate
the process of BO, the Gaussian fit shown in Fig. 1(c)
and (d) serves as the function for the true experimentally
determined behavior of the FeGaB system.

A. Single-Objective Optimization—One
Stoichiometric Variable

The magnetostriction can be maximized in the FeGaB
system by implementing a 1-D single-objective optimization.
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Fig. 1. FeGaB film (a) saturation magnetostriction constant and (b) FMR linewidth as a function of B-doping. (c) Normalized saturation magnetostriction
constant. (d) Normalized FMR linewidth as a function of normalized B-doping. Black dots represent known data points, while the blue line is the mean of
the Gaussian process fit. 1 Oe = (4π)−1 × 103 A/m.

Here, initial three random seed points, xt , are selected. The
algorithm then fits the surrogate Gaussian process function to
these initial data points. The maximum expected improvement
acquisition function is the next suggested experiment, xt ,
sampled. The new data point (xt , yt) is used to update
the surrogate function. This process iterates a total of three
times after the initial seed points. This is generated with the
assistance of the GPyOpt library in python [23]. An example
run of this process is shown in Fig. 2(a)–(d). The minimum
regret and the root-mean-square error (RMSE) as a function
of the number observations and iteration of the optimization,
respectively, are shown in Fig. 2(e) and (f). The minimum
regret is defined by (8) and the RMSE is defined by (9), where
f is the predicted value and o is the observation. In (9), the
mean is calculated over the samples t

regret = ytrue max − ypredicted max (8)

RMSE =
√

( f − o)2. (9)

Note that observations 0–2 represent the randomly selected
seed points. After four data points, the minimum regret con-
verges and the maximum is identified. The performance of this
process over 100 loops of the optimization as a function of
initial random seed points was tested to better understand the
variances inherent in this algorithm. The minimum regret and
the RMSE for one seed point are shown in Fig. 3(a) and (d),
two seed points in Fig. 3(b) and (e), and three seed points in
Fig. 3(c) and (f). Across all initial seed point possibilities, the
convergence appears to be faster for identifying the maximum
than capturing the entire behavior; the convergence of the
maximum is related to the minimum regret. It is expected

that the global optimum would be captured more quickly than
the full behavior of the system for BO. In addition, with the
assistance of the optimization algorithm, the minimum regret
converges by the third observation or after four data points
(seed points and acquisition function determined points)—
this simulation reveals that 50% fewer samples are required
than the search conducted with traditional methods to identify
the maximum in Fig. 1(a), assuming that there were not any
“failed” depositions, e.g., depositional mishaps (such as the
sputtering gun shutter becoming stuck) or user error (forgetting
to sputter etch the substrate). Traditional methods of optimiz-
ing structure–property relationships include linearly varying
one-variable-at-a-time (OVAT). In the case of the FeGaB and
FeGaC films, previous studies in our group have varied the
boron or carbon content linearly and consecutively from 0%
to approximately 20% [15]–[17]. Then, the balance of the
maximum and minimum of the target properties is identified
qualitatively. It has previously been shown that this sequential
OVAT experimental approach can misidentify the optimum,
especially in the case of correlated parameters [11].

A similar process was repeated in the FeGaB system for
minimization of FMR linewidth implementing a 1-D single-
objective optimization. The optimization process is simulated
similar to the optimization in Fig. 2. This optimization used
initial three random seed points and three iterations—it is
shown in Fig. 4(a)–(d), with the minimum regret and RMSE
in Fig. 4(e) and (f). The performance of this process over
100 loops of the optimization as a function of initial random
seed points was tested. The minimum regret and the RMSE
for one seed point are shown in Fig. 5(a) and (d), two
seed points in Fig. 5(b) and (e), and three seed points in
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Fig. 2. FeGaB film optimization where f (x) is the normalized magnetostric-
tion and x is the normalized atomic fraction of B. (a) Surrogate function (blue
solid line is the mean and shaded region is the 95% confidence interval) and
suggested next observation (magenta vertical line), xt , after the initial random
seed points. (b)–(d) Simulated BO process. (e) and (f) Minimum regret and
RMSE, respectively.

Fig. 5(c) and (f). Similar to the example simulation for maxi-
mization of magnetostriction constant, in the minimization of
FMR linewidth case, the minimum regret converges by the
third observation or after four data points (seed points and
acquisition function determined points)—this is 50% fewer
samples than the traditional experiment used to identify the
minimum in Fig. 1(b), assuming that there were not any
“failed” depositions.

B. Multiobjective Optimization—One Stoichiometric Variable

Often in magnetic film development, there are multiple
objectives that need to be optimized based on the spe-
cific application. In the application space of high-frequency
(1–10 GHz operation) ME mechanical antennas, it is necessary
to have high magnetostriction and simultaneously maintain
low FMR linewidth [19]. The B-doping concentration in
FeGaB films that meet the requirement for high magnetostric-
tion constant and low FMR linewidth can be determined
via Gaussian process regression in combination with Pareto
analysis. For a 2-D [ f1(x) and f2(x)] Pareto frontier, the
front describes the set of options for which you cannot
improve on one metric, f1(x), without diminishing the other
metric, f2(x). Here, we focus on the 2-D case; however,
there are analogs for higher dimensions. Here, our f1(x) and

Fig. 3. Optimization of the magnetostriction in the FeGaB system was
performed 100 times. The minimum regret was calculated for (a) one seed
point, (b) two seed points, and (c) three seed points. The RMSE was calculated
for (d) one seed point, (e) two seed points, and (f) three seed points. Note
that the mean values and standard deviations are displayed.

f2(x) are magnetostriction and FMR linewidth, respectively.
As previously mentioned, we are maximizing magnetostriction
and minimizing FMR linewidth. First, we sort our metrics
according to FMR linewidth from the lowest to highest value.
Now, our magnetostriction values are sorted according to the
FMR linewidth. We then start at the lowest FMR linewidth and
its corresponding magnetostriction value. When comparing
these values to the next ascending FMR linewidth value and
corresponding magnetostriction, we determine whether the
next ascending measures have an increased magnetostriction
value. If the aforementioned is true, then the previous FMR
linewidth and corresponding magnetostriction value belong to
the Pareto front. If the next ascending FMR linewidth has a
corresponding magnetostriction that is lower, then this is a
dominant solution and not a part of the Pareto frontier. This
process continues until the highest FMR linewidth and the
corresponding magnetostriction are reached. Fig. 6 shows the
Pareto plot of f1(x) versus f2(x), i.e., magnetostriction and
FMR linewidth, respectively. The Pareto frontier, otherwise
known points where the magnetostriction is maximized, and
the FMR linewidth are simultaneously minimized. The Pareto
analysis can serve as a method of multiobjective optimization
when there is not a clear figure of merit available to optimize.
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Fig. 4. FeGaB film optimization where f (x) is the normalized FMR
linewidth and x is the normalized B-content doping. (a) Surrogate function
(blue solid line is the mean and shaded region is the 95% confidence interval)
and suggested next observation (magenta vertical line), xt , after the initial
random seed points. (b)–(d) BO process. (e) and (f) Minimum regret and
RMSE, respectively.

C. Single-Objective Optimization—Two
Stoichiometric Variables

The single-objective optimization in FeGaB system can
be expanded for two structure parameters (stoichiometry),
x1,i and x2,i , i.e., atomic fraction of B and Fe:Ga ratio.
Prior to implementation, it is necessary to practice correlation
analysis between the two structure parameters. The correlation
matrix, r , is determined via the following:

r =
∑ (

x1,i − x̄1
)(

x2,i − x̄2
)

√∑(
x1,i − x̄1

)2 ∑(
x2,i − x̄2

)2
. (10)

The r -value indicates the strength of correlation, whether
positive or negative, between the structure parameters. For
the data in Fig. 7(a), the off-diagonal terms of the correlation
matrix were calculated to be 0.9533, which indicates a strong
positive correlation between atomic fraction of B and the
Fe/Ga ratio. It is apparent here that the B-doping dispropor-
tionately displaces the Ga atoms rather than the Fe atoms in the
FeGaB films. In this case with correlated structure parameters,
this 2-D single-objective optimization collapses down to a
1-D single-objective optimization problem through implement-
ing linear regression analysis in combination with Gaussian
regression. This two-structure single-objective optimization for

Fig. 5. Optimization of the FMR linewidth in the FeGaB system was
performed 100 times. The minimum regret was calculated for (a) one seed
point, (b) two seed points, and (c) three seed points. The RMSE was calculated
for (d) one seed point, (e) two seed points, and (f) three seed points. Note
that the mean values and standard deviations are displayed.

Fig. 6. Pareto frontier for the FeGaB films. The black dots represent the
criterion space and the red dots represent the Pareto optimal.

identifying the global maximum of magnetostriction in FeGaB
is shown in Fig. 7(b).

In addition, the single-objective optimization in the FeGaC
system can be expanded for two structure parameters, x1,i and
x2,i , i.e., atomic fraction of C and Fe/Ga ratio. For the data
in Fig. 7(c), the off-diagonal terms of the correlation matrix
were calculated to be 0.0532, which indicates that there is no
correlation present. Therefore, the two structure parameters
can be treated as independent variables. In Fig. 7(d), the
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Fig. 7. (a) Atomic fraction of B (%) and Fe/Ga ratio versus the magnetostriction constant. (b) 1-D description of the Gaussian process fit for the magnetostriction
as a function of atomic fraction of B considering a linear correlation between atomic fraction of B and Fe/Ga ratio. The normalized data as well as the
Gaussian process are displayed. The shaded region represents the 95% confidence bound for the linear regression fit between the normalized atomic fraction
of B and the normalized Fe/Ga ratio. (c) Atomic fraction of C (%) and Fe/Ga ratio versus the magnetostriction constant. (d) 2-D description of the Gaussian
process fit for magnetostriction as a function of both atomic fraction of C and Fe/Ga ratio. The red “x” denotes the predicted maximum, and the magenta dot
represents the next suggested experiment to run based on the evaluation of the acquisition function.

data were normalized and fit to a surrogate function with
both the structure parameters as input variables. The predicted
maximum is indicated with a red “x.” The next suggested
experiment (x1,t and x2,t) is determined with the acquisition
function; it is shown with a magenta dot. This is an example
how to implement BO for higher order structure parameters
to optimize material properties.

IV. CONCLUSION

Active learning has been shown highly effective in materials
science optimization problems [57], [58]. Here, we have shown
how BO and regression analysis (i.e., Gaussian processes and
linear regressions) can be implemented to optimize structure–
property relationships in FeGaB and FeGaC thin films. With
simulating BO methods to guide experiments, the number
of samples required to statistically determine the maximum
or minimum was reduced by 50% compared with tradi-
tional methods. Therefore, BO can be used to save time
and resources to optimize ferromagnetic films. The Pareto
analysis was used for multiobjective cases and shown to be
a viable replacement for a figure of merit. Here, we demon-
strated a multiobjective case of low FMR linewidth and high
magnetostriction, which is ideal for ME antennas. In addi-
tion, we showed some caveats regarding correlated structure
parameters—with correlated parameters 2-D or higher dimen-
sion problem can be simplified to lower dimension problem.
These methods are accessible and can be implemented in a
laboratory setting without the use of specialty high throughput
tools or a degree in computer science. Through user friendly,

Jupyter notebooks in Python these algorithms can be imple-
mented via open access GPy and GPyOpt libraries [21], [22].
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