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Abstract—Link abstraction is an efficient way for predicting
link-level performance (e.g., whether the receiver successfully
receives packets through communication links). It can be used
to support system-level simulation and facilitate link adaption.
Nonetheless, it is challenging to quantify the collective impact
of modulation, channel coding, interleaving, guard intervals,
and other components on error performance of the communi-
cation link. In addition, the existing link abstraction schemes
assume ideal hardware with perfect channel estimation. To
address this issue, we design a deep learning approach to
carry out link-level abstraction for millimeter wave (mmWave)
communications. Specially, we conduct link-level simulation
based on IEEE 802.11ay single carrier (SC) communication to
collect training data, and describe the detailed training and
prediction procedures in our approach. We further discuss
model reuse and adaptation so that the trained model can
be applied to different systems in different environments.
Through extensive performance evaluation with data collected
on 60GHz mmWave channels from four environments, we show
the prediction accuracy of our approach with respect to feature
selection, learning model structure, and the amount of training
data. We also demonstrate the efficacy of our approach in
model reuse in cross-environments and cross-systems.

Keywords-Link abstraction, mmWave communications, ma-
chine learning

I. Introduction

Link abstraction is essential for system-level simulations,

as a viable way to predict link-level performance without

going through physical layer simulation [1], [2]. It can

avoid the need to perform bit-by-bit link-level simulations

within system-level simulations, which is often a very time-

consuming process. Moreover, with the predicted link-level

error performance, link abstraction can be further used to

carry out link adaptation based on channel characteristics at

the receiver to improve the spectrum efficiency [2].

Nonetheless, as the complex transceiver system consists

of a number of components, including channel coding, mod-

ulation, interleaving, and guard interval insertion, among

others, it is challenging to derive a closed formula, which is

capable of approximating relationships between a number of

input parameters that characterize the channel at the receiver

and the output (i.e., error performance). Even though there

are some existing analytical bounds for link abstraction,

some approximations and assumptions have been made [1],

[3]. Another challenge is that these existing schemes only

consider ideal hardware and perfect channel knowledge at

the receiver (i.e., no channel estimation error) when deriv-

ing the mathematical expressions, leading to too optimistic

prediction results.
The most widely adopted link abstraction schemes are

based on effective signal-to-noise ratio mapping (ESM) [1].

The ESM-based schemes map a vector of the received

subcarrier SNR values to an additive white Gaussian noise

(AWGN) channel equivalent signal-to-noise ratio (SNR),

which would yield the same packet error rate (PER). Sub-

sequently, a look-up table per MCS is used to convert the

AWGN channel equivalent SNR to a PER value [4]. The

two most representative ESM-based schemes are effective

exponential SNR mapping (EESM) and mean mutual in-

formation per coded bit (MMIB) [1], [3], which have been

designed for multi-carrier systems such as Orthogonal Fre-

quency Division Multiplexing (OFDM) mode transmission

in IEEE 802.11ay. There are some research efforts [1], [3],

[5], which extend ESM-based schemes for single carrier

(SC) communications. All these ESM-based schemes involve

approximations along with assuming perfect channel estima-

tion and ideal hardware. However, in a dynamic environment

with various levels of hardware impairments of individual

devices and different signal processing algorithms, it is hard

to derive an accurate and fixed formula to characterize the

link error performance.
To overcome the aforementioned limitations, in this paper,

we design a deep neural network (DNN) based approach

to carry out link-level error performance prediction based

on a number of input features, such as received signal

power, signal bandwidth, channel multi-paths, and MCS.

As a viable approach to extract insightful knowledge from

data, machine learning has been applied extensively to a

number of areas, including image processing, natural lan-

guage process, robotics, and Internet of Things (IoT), among

others [6], [7]. Although there are some existing works on

applying machine learning to link-level performance [8], [9],

to our best knowledge, no existing research efforts have been

done to design approaches that are capable of predicting

Bit Error Rate (BER) directly on SC based millimeter wave

(mmWave) systems.
Our contributions are summarized as follows:

• A Novel Approach:We design the DNN based approach
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to carry out link-level error performance prediction

and conduct IEEE 802.11ay link-level simulation to

collect training data. We explicitly describe the details

of the training and prediction procedures that we have

developed. Our approach enables transfer learning, i.e.,

the model reuse and adaption such that a trained model

can be reused in different channel environments and

continuously tuned for different wireless systems.

• Extensive Evaluation: Based on the 60GHz mmWave

channel data collected under four different environ-

ments (i.e., lecture room, data center, open area hotspot,

and large hotel lobby), we conduct extensive experi-

ments to demonstrate prediction accuracy of the BER

in terms of feature selection, model structure, and the

amount of training data. Furthermore, our experimen-

tal results demonstrate the re-usability of our trained

model in different environments as well as for different

systems.

The remainder of the paper is organized as follows. In

Section II, we introduce link abstraction. In Section III, we

describe the IEEE 802.11ay PHY simulation platform which

we used to collect training data. In Section IV, we introduce

our machine learning based approach to conduct link-level

error performance prediction. In Section V, we present the

performance evaluation results. Finally, we conclude the

paper in Section VI.

II. Link Abstraction

The ESM is the widely used link abstraction technique,

which can be generally described as

γeff = −β1Φ
−1

(
1

N

N∑
n=1

Φ

(
−γn
β2

))
, (1)

where γeff is the effective SNR, Φ−1(·) is the inverse

mapping function of Φ(·), and β1 and β2 are the scalar

parameters which need to be optimized for each MCS.

Depending on the mapping function Φ(·), several ESM
approaches have been proposed in the literature [10], and

the most widely used ones are EESM and MMIB.
The EESM and MMIB schemes were originally proposed

for multi-carrier systems. In the context of single-carrier sys-

tems, post-processing ESM (PPESM) [1] demonstrated good

performance for IEEE 802.11ay SC mode. Nevertheless,

PPESM is derived based on post processing SNR measured

after the frequency domain equalizer (FDE), which is highly

dependent on the PHY implementation.
In addition to the conventional ESM-based schemes, there

are only a few research efforts that explore machine learning-

based schemes to characterize the link-level performance [8],

[11]. For example, Carreras et al. [8] designed a logistic

regression-based scheme to map receiver subcarrier SNRs to

an AWGN-equivalent SNR for a multi-carrier system. Chu

et al. [11] used a traditional EESM approach, but employed

DNN to train β1 and β2 parameters.

Besides predicting the link-level performance (e.g., BER

and PER), another use of link-level abstraction is to carry

out the link adaptation that plays an important role in

modern wireless communication systems, such as long-

term evolution (LTE) and Wireless Local Area Network

(WLAN) systems [12]. With link-level adaptation, MCS can

be dynamically assigned in order to maximize the spectral

efficiency while satisfying the reliability requirements. For

example, in the 4G cellular system, the user equipment (UE)

reports its channel quality indicator (CQI) back to the base

station. CQI indicates that the data rate can be supported

under current channel conditions and usually involves block

error rate (BLER) prediction. Based on the received CQI

value, the base station may assign a new MCS value to

the UE in order to keep the BLER below a target value.

Similarly, the link adaptation can also be used in WLAN

systems between the access point (AP) and the station

(STA) [13], [14].

III. IEEE 802.11ay SC PHY Simulation over

Quasi-Deterministic mmWave Channel

IEEE 802.11ay [15] is the next generation WLAN stan-

dard operating at 60GHz mmWave band. It supports both

OFDM and SC modes for data transmission. In our study,

we focus on SC mode1, and use IEEE 802.11ay SC PHY to

collect training data. Although our study focuses on IEEE

802.11ay SC PHY, our methodology is generic and can

be extended to IEEE 802.11ay OFDM and any other PHY

systems.

A block diagram of IEEE 802.11ay SC PHY is shown in

Fig. 1. After a data packet is randomly generated, it will

go through scrambling, low-density parity-check (LDPC)

encoding, modulation, and interleaving operations. Before

the transmission, Inverse Discrete Fourier Transform (IDFT)

will be performed and guard interval (GI) will be further

applied to deal with the inter-symbol-interference. After

going through the wireless channel, a chain of reverse oper-

ations, including FDE, is applied to recover the transmitted

packet at the receiver. Using the decoded packet, the BER

is derived by counting the number of bits in error and

dividing the count by the total number of bits transmitted

within a packet2. These BER values are considered as a

part of training data along with their multi-tap channel

responses obtained through a Quasi-Deterministic (QD)

channel model, as described below.

The QD model, proposed by IEEE Task Group 802.11ay

(TGay) [16], uses ray tracing to generate the dominant

specular rays in an environment and relies on the QD pa-

rameters to statistically recreate the diffused rays. In general,

QD model provides a good trade-off between accuracy and

1It is worth noting that IEEE 802.11ay supports a number of MCS for
different throughput. In particular, SC PHY supports 21 MCS configura-
tions, i.e., MCS 1 to MCS21.

2In this work, the data packet length is set to 4096 bytes.
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Figure 1: Transceiver diagram of SC PHY mode

(a) Lecture Room (b) Data Center

Figure 2: Lecture room and data center environments

modeling complexity. In our simulation, we use NIST’s QD

open source software [17] to realize the channel between a

transmitter (TX) and a receiver (RX) in two environments,

i.e., lecture room of size 10m × 19m × 3m [18] and data

center of size 18m × 18m × 2.56m [19], as shown in

Fig. 2. In the lecture room, a TX is attached to the ceiling

at a height of 2.8m in the middle of the room and a RX is

randomly deployed in the environment at a height of 1.5m

as shown in Fig. 2(a). On the other hand, in the data center,

a TX is placed on a rack-top at a height of 2.19m and a

RX is deployed in the environment at a height of 2.19m as

shown in Fig. 2(b). Note that the TX and RX locations in

the data center are identical to the ones considered in the

measurement campaign [19]. To simulate different channel

conditions with random diffuse rays, 100 realizations for

each RX location are generated. These propagation rays are

then beamformed by the phased array antennas employed

at both TX and RX. A 8-by-8 phased array antenna is

used in both lecture room and data center environments.

Subsequently, a tapped delay line (TDL) fading channel is

obtained by sampling the beamformed QD channel based on

IEEE 802.11ay SC mode sampling rate, which is used by the

PHY simulation. Finally, for a fixed channel realization and

a fixed transmit power, a total of 100 packets are transmitted

to obtain the average BER value. In order to simulate various

SNR conditions, for each channel realization, we vary the

transmit power within a fixed range depending on the MCS

value [1]. In general, the BER can be described as a function

of the TDL fading channel, transmit power, and physical

layer algorithms (e.g., MCS).

IV. DNN Based Link-Level Abstraction

In this section, we propose the DNN based link-level

abstraction approach and describe its architecture, training

process, prediction process, as well as the model reuse and

adaptation in detail.

A. Workflow

Our DNN based approach is motivated by the Universal
Approximation Theorem [20], which states that a standard

feed-forward neural network with an arbitrary number of

layers and multiple neurons in each layer can approximate

any continuous function to any degree of accuracy when the

non-polynomial activation function is used. However, in our

case, the output BER may not form a continuous function

and could have some discontinuity around zero due to the

simulation accuracy (e.g., no arbitrarily small BER can be

generated). To address this issue, we only use the collected

data with the non-zero target values (i.e., non-zero BER

values) for training. Then, by using the Sigmoid function as

the activation function at the output layer, the output value

will be limited to a number in the range between 0 and 1. In

this study, although we focus on predicting the BER value

of the communication link, our designed machine learning

methodology can be applied to PER prediction as well, with

PER value as the training target.

Fig. 3 shows the complete workflow that involves both

training and run-time prediction processes.

1) Training Process: Training process contains five

steps: (i) Data collection, (ii) Feature selection, (iii) Building

a neural network, (iv) Conducting training process, and (v)
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(a) Training (b) Prediction

Figure 3: Machine learning workflow

Storing and deploying model. Each of the steps is described

below in detail.

Step 1. Data Collection: This step consists of data

collection and data preprocessing. To collect the training

data, for a given channel realization, we randomly select a

transmit power within a given range and transmit 100 packets

to obtain an average BER, which is the training target. To this

end, for each BER value, the corresponding TDL channel,

transmit power, MCS configuration are saved along with the

BER value.

Assuming that the channel is slow fading and the channel

is static during a packet transmission, we divide the channel

into 512 sub-channels and compute the sub-channel gain by

calculating the 512-point Discrete Fourier Transform (DFT)

of the TDL channel hTDL as

HTDL(k) =
L∑

l=0

hTDL(l) exp(−j2πkl/N), (2)

where k is the sub-channel index, l is the tap index, L is

the number of taps in the TDL, and N is the number of

sub-channels (i.e., 512). Together with the transmit power,

the SNR for the kth sub-channel can be computed via,

γk =
P |HTDL(k)|2

N0
. (3)

Here, N0 is the AWGN power, P is the transmit power.

The 512 sub-channel SNR values characterize the channel

condition, and can be used as training input.

Step 2. Feature Selection: To characterize the channel

between TX and RX, we can use either frequency-domain

features such as sub-channel gains as computed in Step 1,

as well as the time-domain features such as K factor 3,

root-mean-square (RMS) delay spread, maximum delay, and

3K factor is defined as the ratio of the power of the dominate path to
the total power of the remaining paths

the number of the propagation paths, among others. These

time-domain features can be derived directly from the TDL

channel hTDL. In this step, we select a set of features to

prepare for the training process. Note that as Steps 2, 3, and 4

are iterative processes, we try several sets of training features

and select the one giving the best performance. Note that

we also compare the performance with or without the time-

domain features on top of the frequency-domain features.

As the number of features increases, the DNN architec-

ture becomes more complex and the required training data

increases exponentially. In order to maintain a good training

performance without requiring a large amount of training

data, we first sort the sub-channel SNR values and then

sample the SNR value by taking equally spaced elements

of the sorted SNR vector.

Step 3. Building Deep Neural Network: We leverage a
fully connected multi-layer feed-forward neural network to

perform the prediction. The loss function is defined as the

mean squared error (MSE) between the predicted error rate

and the actual simulated error rate. In terms of activation

function, for each hidden layer, the Rectified Linear Unit

(ReLU) function is used, and, for the output layer, the

Sigmoid function is used because the output is in the range

of [0, 1]. The optimizing function is using the Adamax

algorithm.

Step 4. Perform Training Process: Based on the es-

tablished DNN with its configuration (e.g., the number of

input features, the number of layers, and the number of

neurons in each layer), we carry out the training process.

We select a minibatch size of 32 and execute the training

process (200 epochs as default).

Step 5. Storing and Deploying Model: After the training
process is complete, we store and deploy the model. In

our study, we build the machine learning model using the

Tensorflow and Keras platforms for Python4. The model

(i.e., training weights and biases) is stored as a model

checkpoint at the end of the training. The benefit of a

stored checkpoint is that after it is loaded, the model can

be continuously trained to improve model accuracy or adapt

to a new scenario using additional training data tailored for

system dynamics and new environments. We also record the

normalization parameters and settings, which is necessary

for the model reuse because the same normalization process

needs to apply to the new data when we use the pre-trained

model.

2) Prediction Process: Fig. 3(b) illustrates the prediction
procedure. Once the channel state information (CSI) and

PHY configuration (i.e., MCS) are obtained, data will be

4Certain commercial equipment, instruments, or materials are identified
in this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to
imply that the materials or equipment identified are necessarily the best
available for the purpose.
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preprocessed for features extraction. The extracted features

should match the training features used to build the model,

and these features will go through the same normalization

process using stored normalization parameters and settings.

The normalized features will go through the deployed model,

and BER will be predicted. The prediction can be included in

the system-level simulation (e.g., ns-3) to determine whether

a packet can be received successfully based on the predicted

error rate. The prediction process can also be used for link

adaptation.

B. Model Reuse and Adaptation
After we obtain a trained model based on one system,

applying it to another system is an important issue, as no

two systems or two environments are identical. If the trained

model can be reused, it can significantly reduce not only the

time taken to collect sufficient data for the training process,

but also the time taken to train the model. To address this

issue, we design mechanisms for model reuse and adaptation

to enable reusing the trained model for different systems as

well as for different environments.

Our study considers two different evaluation cases: (i)

cross-environment prediction and (ii) cross-system predic-

tion. In the cross-environment prediction case, we assume

that identical digital transceiver systems (e.g., hardware)

are operating in different environments. More specifically,

we consider 802.11ay SC PHY with ideal hardware along

with perfect channel knowledge in different environments.

Within this case, we investigate whether we can apply one

well-trained model to environments with different channel

characteristics, but with the same hardware. In the cross-

system prediction case, we investigate how to apply the pre-

trained model obtained from one system to another system

with hardware impairment through continuous learning so

that the learning model can be further tuned to improve

the prediction accuracy. In the next section, we design ex-

perimental scenarios and demonstrate the efficacy of model

reuse and adaptation.

V. Performance Evaluation

In this section, we describe the performance evaluation

that we used to validate the efficacy of our approach.

We present the evaluation methodology, followed by the

performance evaluation results.

A. Methodology
We leverage IEEE 802.11ay PHY simulation platforms

to collect data for 60GHz mmWave channel under four

different environments: lecture room, data center, large hotel

lobby, and open area hotspot. Among these four sets of chan-

nel data, data for lecture room and data center environments

are generated using open-source NIST QD software [17].

Channel models for large hotel lobby and open area hotspot

environments are provided by MATLAB WLAN toolbox4

The TGay channel data is used to provide more variety in

the training data that in turn increases the robustness of

the trained model. In particular, we use open area hotspot

channel data to evaluate the cross-environment prediction

performance of the trained model. In addition to a variety of

environments, we consider different antenna sizes, resulting

in different channel characteristics, to examine the prediction

efficacy of the DNN model. In particular, for open area

hotspot, a 4-by-4 phased array antenna is used; for large

hotel lobby, a 5-by-5 phased array antenna is adopted, while

an 8-by-8 phased array antenna is used for both lecture room

and data center environments.

The training is conducted using a laptop with Intel Core

i7 with CPU speed at 1.8GHz and RAM size 12GB. In

our evaluation, we adopt a multi-layer feed-forward neural

network to perform the prediction. In this network, the size

of the input layer is the number of input features, and the

size of the output layer is 1 (i.e., the predicted BER value).

We use the ReLu function as the activation function for each

hidden layer, and the Sigmoid function in the output layer.

For training and testing, we first partition the data into

a dataset with zero BER and a dataset with non-zero BER.

In a default setup, 80% of the data with non-zero BER is

randomly selected for training and the remaining 20% non-

zero BER data is used for testing. Furthermore, within the

80% training data, 20% is then used for validation purposes

during the training process.

In our evaluation, the DNN model is trained, validated,

and tested based on simulation data collected for one MCS

(i.e., MCS7). Due to the limited space, all results shown

in this section are based on MCS7. Note that modulation

order and coding rate have also been used as two additional

features to build a general model to predict all MCSs for SC

mode. The Loss function used in training is MSE, which is

defined as MSE = 1
N

∑N
i=1 (yT (i)− yP (i))

2. Here, yT (·)
is the true value, yP (·) is the predicted value, and N is the

total number of samples.

B. Evaluation Results
1) Learning accuracy versus feature selection: The

collected channel raw data (i.e., a multi-tap channel impulse

response), along with the transmission power need to be

preprocessed. We apply 512-point DFT to convert the time-

domain tap-delay channel response to its corresponding

frequency response at 512 sub-channels, equally spaced

in the band occupied by the signal. Due to the curse of

dimensionality, the number of training data required grows

exponentially with the number of features. Thus, in our case,

we only use a subset of all the 512 sub-channel SNRs. In

particular, we first sort the 512 sub-channel SNR values

in descending order; next, we sample the sub-channel at

different sampling intervals (e.g., every 16, 32, 64, 128 sam-

ples), and finally we compare their training and validation

performances.
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Figure 4: Training accuracy versus number of input sub-

channel SNRs with performance range of 10 experiments

shown

Fig. 4 illustrates the training results for the different

number of training features. As shown in the figure, the

increase in the number of features will not always produce

better training results as the number of training data can limit

the learning accuracy. In particular, the worse MSE for both

training and validation occurs when we use 32 samples. In

our case, using 8 samples and 16 samples lead to better

results in terms of converging to a smaller MSE value,

and 8 samples slightly outperform 16 samples. Thus, in

the remaining part of the evaluation, we choose 8 sub-

channel SNRs as the input features. Note that, in Fig. 4,

the dotted lines are used to demonstrate the average training

and validation performance, and the color bands are used to

show the performance range of 10 rounds of training.

2) Learning accuracy versus DNN structure: In this

scenario, we evaluate learning performance in terms of the

number of hidden layers and the number of neurons at each

layer. The training data consists of 3081 samples with non-

zero BER out of the total 13 465 collected samples.

Fig. 5 shows the comparison of training results for three

DNN structures (i.e., one layer with 64 neurons, two layers

with 64 and 32 neurons, and three layers with 64, 32,

and 16 neurons, respectively). From the figure, we observe

that with the increase of the number of training layers, the

training accuracy improves in general. Nonetheless, as the

performance improvement from the two-layer structure to

the three-layer structure is not significant, we will not go

beyond the three-layer structure. Also, considering the three-

layered DNN leads to fast convergence performance, in the

remaining part of the experiments, we use the three-layered

DNN structure with 64, 32, and 16 neurons in the first,

second and third layers, respectively.

3) Learning accuracy versus number of training data
samples: In this evaluation, data is collected from all four

Figure 5: Training accuracy versus number of layers with

performance range of 10 experiments shown

Figure 6: Training accuracy versus number of training sam-

ples with performance range of 10 experiments shown

environments: lecture room, open area hotspot, large hotel

lobby, and data center. The total number of training samples

is 3081, which is split between training and validation. In

this experiment, we tend to evaluate how the number of

training data samples affects learning accuracy, as shown in

Fig. 6. From the figure, we observe that when only 60%
of the data is used to train the DNN, the evaluation curve

converges at the higher MSE value than the model trained

with more data, such as 80% or 100% of the total data. As

80% and 100% of the data converge at the same level of

MSE of the prediction error, our collected data should be

sufficient to train the learning model with this selected DNN

structure.

4) Cross-environment prediction: In this scenario, we

evaluate how accurately a learned model from one environ-

ment can be applied to another environment with different

channel characteristics. To this end, we consider two differ-
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ent environments. One is an indoor environment (i.e., lecture

room), and the other is an outdoor environment (i.e., open

area hotspot). Fig. 7 illustrates the channel characteristics

under these two environments in terms of K-factor and root

mean square (RMS) delay spread. In lecture room, we have

more channel realizations with stronger dominant path (i.e.,

largerK-factor) and larger RMS delay spread compared with

outdoor open area hotspot due to the high order reflections.

We first train a model based on the data collected in the

lecture room, and then reuse the same model to predict BER

for the open area hotspot environment.

As shown in Fig. 8, the model that has been sufficiently

trained in the lecture room can provide good prediction

accuracy in the open area hotspot environment, and the

prediction MSE is in the order of 10−5. This observation

confirms that sub-channel SNR features are capable of

capturing the channel characteristics well. It is worth noting

that the prediction performance in Fig. 8 is for all channel

data, whose corresponding BERs can be either zero or non-

zero.

(a) Lecture room K-factor (b) Lecture room RMS delay spread

(c) Open area hotspot K-factor (d) Open area hostspot RMS delay
spread

Figure 7: Channel characteristics
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Figure 8: Cross-environment prediction
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Figure 9: On-line learning

5) Cross-system prediction: In this scenario, we evalu-

ate how accurately a learned model from one system can

be applied to another system with different hardware. In

particular, we investigate the prediction performance when

applying the pre-trained model based on ideal hardware

to a system with hardware impairments. To emulate such

hardware impairment, carrier frequency offset (CFO) of

1.2× 106 Hz is introduced. As such, the sub-channel SNR
is estimated at the receiver from the received pilot signal.

As shown in Figs. 9(a) and 9(b), if the learned model from

one system is directly applied to another system without

further tuning, prediction bias will be observed (i.e., the

predicted value is always better than the actual value), since

the model is trained using ideal hardware. To overcome this

issue, we should deploy continuous learning to further tune

the learned model according to the new system. As shown

in Figs. 9(c) and 9(d), we observe that after less than 20

epochs, the model is converged, and the prediction bias is

corrected. Note that if the training model is not reused, it

generally takes a longer time (at least 100 epochs) to achieve

the same prediction performance, not even considering the

time to collect data. Thus, with the pre-trained model, the

convergence time can be significantly reduced.

VI. Summary

In this paper, we have studied link-level abstraction and

designed a novel DNN based approach to accurately predict

the BER of mmWave communication links. In particular,

we have introduced IEEE 802.11ay link-level simulations

to collect training data and presented the detailed proce-

dures of learning and prediction processes. We have car-

ried out extensive experiments on the data collected on

60GHz mmWave channels in four diverse environments and
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demonstrated the BER prediction accuracy when varying the

number of input features, DNN structure, and the amount of

training data. We have designed scenarios and conducted

experiments to show that the trained model can be reused in

different environments and systems. In future work, we plan

to extend our DNN based approach to other scenarios and

communication systems (e.g., MIMO communications).
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