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The Ramsey sequence is a canonical example of a quantum phase measurement for a

spin qubit. In Ramsey measurements, the measurement efficiency can be optimized

through careful selection of settings for the phase accumulation time setting, τ . This

paper implements a sequential Bayesian experiment design protocol in low-fidelity

Ramsey measurements, and its performance is compared to a previously reported

adaptive heuristic protocol, a quantum phase estimation algorithm, and random set-

ting choices. A workflow allowing measurements and design calculations to run con-

currently largely eliminates computation time from measurement overhead. When

precession frequency is the lone parameter to estimate, the Bayesian design is faster

by factors of roughly 2 and 4 and 5 relative to the adaptive heuristic, random τ

choices and the quantum phase estimation algorithm respectively. When four pa-

rameters are to be determined, Bayesian experiment design and random τ choices

can converge to roughy equivalent sensitivity, but the Bayesian method converges 4

times faster.
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I. INTRODUCTION

The development of diamond NV centers as measurement tools is one of the most sig-

nificant achievements of applied quantum physics in recent years. From initial concept1

and first demonstrations,2–4 NV-based magnetometry measurements5 have been developed

for condensed-matter physics,6–10 engineering,11–13 biology14–19, nanoscale nuclear magnetic

resonance,20–25 and commercial instrumentation is now becoming available.

The qubit that draws attention to the NV center is the S = 1 spin of the electronic ground

state, which forms around a nitrogen atom, neighboring vacancy, and trapped electron in

a diamond crystal. The coherence time of the spin state can extend into the millisecond

range.26,27 At ambient temperatures, the spin state can be initialized and read out using

laser light and detection of emitted photons. With incident green light, an NV center will

begin to cycle between its electronic ground state and an excited state, absorbing a photon

and relaxing. The key factor is that the relaxation process in NV centers is spin-dependent.

Centers excited from the mz = 0 state will relax by emitting a photon and return to the

same mz = 0 state, but centers excited from the mz = ±1 states can also relax without

emitting a photon, and may switch one-way from mz = ±1 to mz = 0 in the process.

Because readout resets the state to mz = 0, only photons from the first few absorb-relax

cycles carry information about the initial spin state.

A persistent problem in NV center measurements is that it is often difficult to efficiently

collect these few meaningful, spin-dependent photons. Improvements in collection efficiency

have been demonstrated using solid immersion lenses28, optical resonators,29,30 and fab-

ricated diamond nanostructures.31–33 Other characteristics of NV centers have also been

successfully exploited. Additional information can be gleaned from the timing of emitted

photons34. More exotic approaches include spin-dependent ionization of the NV center into

different long-lasting charge states where differences in emission spectra can be measured

through many excitation-emission cycles.35–41 Another approach has been to exploit features

of a metastable state in the “dark” relaxation path of mz = ±1 states.42,43

While these methods improve readout fidelity, additional gains can be achieved through

efficient measurement design, which allows experiments to measure faster and/or more pre-

cisely. Measurement design in this context refers to the choice of experimental settings.

Previously, sequential Bayesian experiment design (SBED) produced order-of-magnitude
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FIG. 1. Timing diagram of Ramsey pulse sequences. Green areas in trace a) denote green laser

excitation. In trace b), a microwave π/2 pulse initiates precession. After a time τ selected by

the experiment design, another π/2 pulse projects the state for readout. In trace c), red curves

indicate photoluminescence emission and pink zones show time intervals where emitted photons are

counted. Signal photons are counted early in the laser pulse, and background photons are counted

after a steady state is reached. The horizontal axis corresponds to elapsed time.

decreases in both the number of measurements and measurement time as compared to swept-

frequency measurements in optically detected magnetic resonance of NV centers.44 In this

paper, we apply sequential Bayesian experiment design methods to Ramsey sequence mea-

surements, and we compare results with other adaptive and non-adaptive methods. Section

II reviews Ramsey measurements, and section III describes the measurement simulation and

introduces the measurement methods. Section IV presents the results of measurement simu-

lations comparing the different protocols, showing substantial improvement of the Bayesian

experiment design over the other methods.

II. BACKGROUND

A. Ramsey experiment

The Ramsey sequence is an example of quantum interferometry, and it is the canonical

approach to determine the energy difference ~ω0 between two states. When the energy

difference depends on a signal, the Ramsey sequence is the basis of quantum sensing.4,45
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In a Ramsey experiment, a system with |0〉 and |1〉 states differing in energy by ∆E = ~ω

is prepared in the |0〉 and put into a superposition state |ψ0〉 = 1√
2
(|0〉 + |1〉) with a π/2

operator. The system is allowed to propagate for a time τ , yielding a state |ψ(τ)〉 = 1√
2
(|0〉+

e−iωτ |1〉). After another π/2 operation, the final state, |ψf(τ)〉 = 1
2
(1 + e−iωτ ) |0〉 + 1

2
(1 −

e−iωτ ) |1〉, can be read out. In the ideal case, measurement of this final state yields a result

m (m = {0, 1} for {|0〉 , |1〉}) with conditional probability P (m|τ, ω) given τ and ω:

P (m|τ, ω) = 1

2
[1 + (−1)m cosωτ ]. (1)

Under conditions of high-fidelity, single-shot readout, quantum phase estimation schemes

allow a phase φ = ωτ0 to be determined with precision ∆φ ∝ 2−M in a total time ∆t ∝
2M .46,47 Since ∆φ∆t is a constant, quantum phase estimation is said to achieve Heisenberg

scaling of the precision. Such scaling can be achieved using entangled states, and approxi-

mated by adaptive measurement designs48–52 and non-adaptive designs.53–56

However, in ambient-temperature measurements using NV centers, readout fidelity is

typically far from ideal, and the measurements have low efficiency, falling in the “averaged

readout” category.45

The NV center Ramsey sequence is illustrated in figure 1. First, the spin of the NV’s

electronic ground is initialized to |0〉 with a few microseconds of green light illumination

followed by time to allow optically excited states to relax. Next, the spins are put into a

superposition of |0〉 and |1〉 states with a calibrated π/2 microwave pulse. The spin state

then evolves for a time τ according to the interactions included in the Hamiltonian. A second

microwave pulse projects the phase-shifted state back onto |0〉 and |1〉 states for readout.

During readout, maximum spin-state contrast is achieved by counting signal photons

during the first 100 ns to 200 ns of green light illumination before the NV center’s spin state

is reinitialized to |0〉. After a steady state is reached, during the last 100 ns to 200 ns of the

laser pulse, a second count of background photons is collected to monitor and compensate

for experimental drift.
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III. METHODS

A. Experiment simulation

The measurement process consists of a series of epochs, each epoch comprisingms repeated

Ramsey sequences with the same τ setting value. Signal photon counts collected near the

beginning of the laser pulse are summed for each epoch, yielding ns signal photons. Both

τ and ms may be chosen flexibly, but we attempt to keep ms roughly consistent in order to

focus on the effects of τ choices in the different protocols.

Background photon counts are collected near the trailing end of the laser pulse in order

to monitor and compensate for changing laser intensity and other slow experimental drifts.

To simulate the count data, we model the shot noise of the ns and nb photon counts as

samples from Poisson distributions

ns ∼ Pois(msλs(t)) (2)

nb ∼ Pois(msλb(t)) (3)

where λs(t) and λb(t) are counts-per-Ramsay-sequence photon rates and the time dependence

denotes slow drifts.

To model the rates, we assume that signal and background channels drift with the same

slow time dependence, and we define a drift-free ratio, R(θ, τ) which depends on λb(t),

time-independent parameters θ ≡ {a, c, ω0, T
∗
2 }, and setting τ .

λs(t) = R(θ, τ)λb(t) (4)

R(θ, τ) = a+ c cos(ω0τ)e
−(τ/T ∗

2
)2 . (5)

The parameters include background a, contrast c, precession frequency ω0, and decoher-

ence time T ∗
2 .

As a guide to measurement simulations, we use the Ramsey experimental data from Ulm

University57 and the descriptions provided in ref. 58. The experimental overhead includes

approximately 3 µs of laser illumination, 1 µs of relaxation time and 70 ns for microwave

pulses and photodetector for a total overhead of 4.07 µs per sequence. Allowed values of τ

range from 0.1 µs to 20 µs of precession time with 50 ns resolution.
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We simulate photon counts using (4) and (5) with “true” parameter values a = 0.8,

c = 0.13, ω0 = 9.4 µs−1, and either T ∗
2 = 10 µs or T ∗

2 →∞. We use an average background

count rate λb = 0.15 photons per sequence.

B. Bayesian Inference

For all of the experiment designs described below, the simulated data is interpreted using

Bayesian inference to refine the probability distribution of the model parameters.

In the ith epoch, ns,i and nb,i photons are detected and recorded from the signal and

background channels, respectively. Then Pi(θ|yi,di) is inferred given measured values yi ≡
{ns,i,nb,i} and setting (design) values di ≡ {τi,mi}. We use bold font to denote recorded

values from the current epoch and all preceding epochs, i.e. ns,i ≡ {ns,1, ns,2, . . . , ns,i}.
The distribution of time-independent parameters θ is obtained recursively incorporat-

ing data using Bayes’ rule. In each epoch, the posterior P (θ|yi,di) is proportional to the

likelihood and the prior,

P (θ|yi, τi) ∝ P (ns,i|θ, di, ñb,i, m̃b,i)P (θ|yi−1,di−1) (6)

with likelihood

P (ns,i|θ, τi, ñb,i, m̃b,i) ∝ R(θ, τi)
ns

×
[

mi + m̃b,i

miR(θ, τi) + m̃b,i

]ns,i+ñb,i

, (7)

and the posterior of the preceding epoch, P (θ|yi−1,di−1) as the prior. The first epoch uses

P (θ|y0,d0), the prior conditioned by no data. The derivation of (7) is given in Appendix A.

Background signal information is included in (7) using sums ñb,i and m̃b,i over only the

NΣ most recent epochs.

ñb,i =
i

∑

j=max(i−NΣ+1,1)

nb,j; (8)

m̃b,i =

i
∑

j=max(i−NΣ+1,1)

ms,j. (9)

Using finite NΣ allows Pi(λb) to forget old data and respond to experimental drift. The

simulations presented below use NΣ = 10.
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C. Experiment Design

The goal of the experiment designs is to choose τ values to make the measurements ef-

ficiently. In the simulations, we compare the effectiveness of four designs, including two

adaptive protocols: sequential Bayesian experiment design (SBED), and an adaptive heuris-

tic design58, and two non-adaptive designs: random setting selection and version of the

quantum phase estimation algorithm (QPEA)34.

To motivate the SBED protocol, we first provide a brief overview of optimal Bayesian

experiment design (OBED). More detailed descriptions of OBED may be found in the

references.44,59–63 Software and documentation for SBED are available through ref. 63.

In each epoch, optimal Bayesian experiment design calculates which of the candidate τ ′

settings would, on average, produce the greatest improvement in the parameter distribu-

tion relative to the cost of the measurement. To quantify improvement in the parameter

distribution, the OBED method uses the information entropy,

Hθ[P ] ≡ −
∫

P (θ) log[P (θ)]dθ (10)

as a metric. We add the subscript to Hθ to identify the entropy of a distribution over θ.

Suppose that a future measurement using setting design d′ yields result y′. (Primes denote

predicted values to differentiate from unprimed, recorded values.) Bayesian inference would

yield a projected new posterior distribution P ′(θ|y′, d′) from the prior P (θ). The beneficial

information entropy difference between P (θ) and P ′(θ|y′, d′) is gauged using Kullback-Leibler

divergence,

DKL(y
′, d′) = −

∫

P ′(θ|y′, d′) log
[

P (θ)

P ′(θ|y′, d′)

]

dθ. (11)

The utility U(τ ′) is then the average DKL benefit,

U(d′) =

∫

DKL(y
′, d′)P (y′|d′)dy′, (12)

The optimal design is the design d′ that maximizes U(d′).

Application of Bayes rule allows the integrand in (11) to be expressed in terms of distri-

butions over predicted y′. The result is the difference between two entropy-like terms:

U(d′) = Hy′|d(d
′)−

∫

Hy′|θ,d′(θ, d
′)P (θ)dθ, (13)

where the first term is the entropy of

P (y′|d′) =
∫

P (y′|θ, d′)P (θ)dθ, (14)
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which is the distribution of measurement predictions broadened by the parameter distribu-

tion. The second term in (13) is essentially the entropy of measurement noise for fixed θ,

averaged over θ.

The double integral prescribed in (13) and (14) is computationally demanding, so for

SBED we desire a calculable proxy utility U∗(d′) with maxima near the maxima of the

information-theoretic U(d′). Our proposed proxy utility is motivated by the following plau-

sibility arguments.

We start by looking at an oversimplified case where both P (y′|θ, d′) and P (y′|d′) are

normal distributions. In particular, P (y′|θ, d′) ∼ N (ym(θ, d
′), vδ) is a normal distribution

around model value ym(θ, d
′) with a noise variance vδ. In the Ramsay experiment, both the

mean ym and the variance vδ of the Poisson-distributed signal count are equal tomsλbR(θ, d
′).

Also in this simple case, the distribution of model values

P (ym|d′) =
∫

P (ym|θ, d′)P (θ)dθ (15)

is assumed to be a normal distribution N (〈ym〉 , vm) around a mean model value 〈ym〉 with
variance vm stemming from the distribution of parameter values.

Under these over-simplifying assumptions, the utility can be expressed as

U(d′)|N = log

[

vm(d
′) + vδ(d

′)

vδ(d′)

]

, (16)

Where the effects of the parameter distribution on model values and the effects of measure-

ment noise are separated into variances vm(d
′) and vδ(d′) respectively.

In many cases of interest, the measurement noise can be modeled by a normal distribution.

However, with nonlinear model functions, P (θ) and P (ym|d′) are generally not normal, and

we observe in simulation that P (θ) is often multimodal. Nevertheless, we have found in

previous work that SBED protocols based on (16) perform well compared to non-adaptive

protocols.44,63

In modeling the Ramsay experiment model, however, we found that (16) often performed

worse than random setting selection, especially during the first few epochs of a run. This

failure motivated us to reintroduce information entropy to gauge the effects of parameter

distribution on measurement outcomes, but we keep the form of (16) where measurement

noise and parameter distribution effects are separated. For SBED, we propose a proxy utility

U∗(d′) =

[

v∗m(d
′) + vδ(d

′)

vδ(d′)

]

, (17)
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with effective variance v∗m(d
′) defined as

v∗m(d
′) =

e2Hym(d′)

2πe
. (18)

In this expression, the entropy Hym(d
′) of the model value distribution (15) is cast as a

variance by inverting an expression for the entropy of a normal distribution. The absence

of the log() function in U∗ (17) relative to (16) does not affect the maximal-utility d′ values

because log() is monotonic.

Applied to Ramsay experiment modeling, y′ ≡ msλbR(θ, d) is the signal channel count

rate, θ ≡ {a, c, ω0, T
∗
2 } and θ ≡ ω0, and d

′ ≡ τ ′. The number of repeats per epoch, ms is set

by the allocated measurement time.

Our computational method for selecting settings is presented in Algorithm 1. We draw

Ns = 100 parameter samples and calculate corresponding model values y′ for the signal

emission rate (4) using (5), we then estimate the entropy64 Hy′(d
′) and compute the effective

variance and the proxy utility. We estimate U∗(d′) corresponding to all allowed ≈ 400

discrete τ ′ values, all using the same θ samples. Using a consistent set of θ samples endows

U∗(d′) with a smoothness, eliminating sampling noise that might obscure the maxima of

U∗(d′). Finally, we select the d′ setting with the greatest U∗(d′).

For comparison against SBED, we also consider an adaptive design for Ramsey experi-

ments reported by Santagati et al.58 This heuristic design, “Tau” is attractively simple, with

the τ setting determined by τ = h/σω0
, where σω0

is the width of the frequency distribution

and h ≈ 1 is a tuning parameter. Empirically, we found that a value of h ≈ 0.5 generated

the best results in our simulations. A scaling argument (see Appendix B) suggests that

the Tau protocol might show 1/T scaling, but the reported behavior appears to be closer

to exponential decay.58 In Tau runs, σω0
eventually becomes small enough that 1/(2σω0

) >

20 µs is outside the allowed setting range. In this case, τ is selected randomly from the top

10 % of τ values.

Third, we consider a non-adaptive protocol, “Random,” where τ is selected randomly from

the allowed settings. This protocol provides a baseline, non-adaptive case for comparison

with the adaptive protocols.

Finally, we test a non-adaptive design, “QPEA,” which incorporates many of the features

of the quantum phase estimation algorithms,46–56 but follows Dinani et al. in application of

these methods to a low-fidelity readout.34
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Algorithm 1 Pseudocode for SBED setting selection.
Input: Parameter distribution P (θ), candidate designs di

for j ← 1 . . . Ns do

θj ← sample from P (θ)

end for

for i← 1 . . . Nd do ⊲ All candidate settings di

for j ← 1 . . . Ns do ⊲ Reuse θ samples

yj ← model(θj , di) ⊲ Evaluate model function

end for

Hi ← H({y1 . . . yNs
}) ⊲ Estimate entropy of P (y)

vi ← e2hi/(2πe) ⊲ Effective variance

U∗
i ← (vi + vδ)/vδ

end for

ibest ← argmax(U∗
i ) ⊲ Choose max utility setting

Output: dibest setting

In the QPEA design, the experimental model (5) as a function of parameters θ is extended

to include a readout phase ψ in addition to the precession time τ .

R(θ, τ, ψ) = a+ c cos(ω0τ + ψ)e−(τ/T ∗

2
)2 (19)

The precession time takes on values τ = τ02
k for k = 0, 1, ...K, and measurements are

repeated Mk times with ψ values at increments of π/Mk
34,53. In our implementation, we

create a randomly scrambled sequence of all (τ, ψ) setting combinations, and then repeat

that sequence as needed, simulating ms = 500 repeats for each setting combination. The

number of measurements allocated to each τ value is given by

Mk = G + F ∗ (K − k), (20)

where G and G + F measurements are allocated to the largest and smallest τ values,

respectively.34,52–56. In its original context, each τ value contributes one binary bit to the

result. The Mk formula above allocates additional measurements to more significant bits
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Infer | design Measure
settingsdata data

(a)

Infer | design

Measure

data

settings settings

data
(b)

FIG. 2. Flow diagrams of computation and measurement using adaptive experiment design. Grey

blocks indicate single measurement epochs. In a series workflow (a), data collection stops for data

analysis and new setting decisions. In a concurrent workflow (b), measurements continue until new

settings are ready.

where errors have more severe consequences.53 In the simulations reported below, we used

G = 25 and F = 1 with K = 8 and τ0 = (20µs)/28.

To compare these four designs/protools, we value elapsed time as the resource to be

allocated. The exception is QPEA where measurement repeats are allocated according to

Mk. Accordingly, measurement efficiency is judged on the basis of elapsed time. Therefore,

in Tau and Random runs, a consistent time interval is allocated to each epoch, and the

Ramsey sequence is repeated with the selected τ until the time is spent. In the Bayes runs,

the measurement time is determined by computation time, as described in the following

subsection.

D. Concurrent design and measurement

The computational time tcalc demanded by SBED may be the method’s greatest disadvan-

tage. In a sequential measure-infer-design loop as illustrated in fig. 2(a), the measurement

waits for instructions during the design calculations. This idle time adds to the experi-

mental overhead and degrades the overall efficiency of the protocol. In the calculations for

this paper, SBED computation required a few milliseconds per epoch. In the worse case of

one sequence per epoch, a few milliseconds would be an enormous overhead compared to a

Ramsey τ of a few microseconds.
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To avoid adding computation time to overhead, we propose a concurrent workflow where

measurements and design calculations run at the same time (See fig. 2(b)). In epoch i,

the measurement process accumulates and averages data yi using a setting di designed

in the previous iteration i − 1. Meanwhile, Bayesian regression incorporates the previous

epoch’s measurement data yi−1 and chooses settings di+1 for the next iteration. After the

calculations are completed, the measurement system reports data and receives the next

setting design. By running measurements and calculations concurrently, the measurement

can continue to collect data virtually nonstop. The fact that di+1 is based off accumulated

data {y0, . . . , yi−1}, i.e. not including the current measurements yi has negligible effects in

measurements that iterate for many epochs.

We also suggest that for adaptive measurement schemes, the computation time is more

appropriately compared to the time tSNR required to reach a signal to noise ratio (SNR)

≈ 1. We propose that the infer/design calculations are fast enough if they can generate

designs in a time comparable to the time required for measurement data to significantly

change the parameter distribution. The parameter distribution only changes significantly

following measurements with SNR & 1 or equivalent. Using shorter measurement times with

fewer repetitions would produce incremental changes in the parameter distribution between

computations. At the other extreme, many more repetitions between calculations might

hurt efficiency by missing opportunities to switch to higher-utility settings.

In our simulations, tSNR can be estimated. Noise standard deviation equal to the contrast

of c = 0.13 on a background of a = 0.8 would require ≈ 40 signal photons, or ms ≈ 300

repeats, or about 4.2 ms at the median setting τ = 10 µs. By coincidence, in the Bayes

runs, the mean measurement time was 4.4 ms, which is comparable to tSNR.

IV. RESULTS AND DISCUSSION

Here we test sequential Bayesian experiment design (SBED) against the adaptive heuristic

method of Santagati et al.,58 (Tau) Random selection of settings (Random), and a quantum

phase estimation algorightm (QPEA).

Figure 3 displays statistics from 100-run batches of simulated Ramsey measurements

where the precession frequency ω0 is the only unknown parameter, and T ∗
2 → ∞ makes

decoherence unimportant. The measurement time in each epoch is roughly equivalent. In
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FIG. 3. Measurement simulations where only ω0 is treated as an unknown. (a) TrueR curve plotted

as a function of τ with a = 0.8, c = 0.13, ω0 = 9.4 µs−1 and T ∗
2 → ∞ (b) Histograms comparing

the number of times each τ setting was used chosen by four protocols. QPEA and Random are

non-adaptive and Tau and SBED are adaptive protocols. (c) Evolution of mean σω0
. The Bayesian

protocol outperforms the heuristic protocol, and the random protocol produces roughly double the

uncertainty. Shaded areas are 90 % credibility regions. Dotted lines are standard deviation of

error. (d) Evolution of absolute sensitivity vs. elapsed ”wall clock” time. The SBED protocol is

roughly twice as fast as the Tau protocol, four times as fast as Random and five times as fast as

QPEA. Statistics are calculated over 100 individual runs.

the QPEA simulations, each epoch repeats (τ, ψ) settings 500 times. The average time per

epoch was 3.9 ms. Tau and Random runs are allocated 4 ms of measurement time per

epoch, i.e. ms = 4 ms/(τ + 4.07 µs) repeats of the Ramsey sequence. SBED measurement

simulations mimic a concurrent workflow, using the execution times of the inference and
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experiment design code to determine the measurement times. In these simulations, the

mean epoch time is 4.4 ms.

The histograms in fig. 3(b) provide a comparison of how frequently the various protocols

use different τ settings. The QPEA protocol places a very strong emphasis on small τ ; in

fact the median τ is 0.625 µs. The Random protocol also emphasizes low τ by virtue of the

fact that measurement time is allocated uniformly, and more repeats are possible when τ is

small.

The adaptive Tau and SBED protocols produce similar overall distributions of setting

choices, shown in fig. 3(b). These protocols both exhibit an initial emphasis on small τ ,

later moving to large τ . A striking feature of the Bayes histogram of selected τ values is the

comb-like structure indicating that the Bayesian method adaptively concentrates τ values

where the model true curve (a) has maximum slope. By comparison, the Tau and Random

protocols show no such phase selectivity, although such selectivity could be programmed

into an improved heuristic.

The standard deviation of the ω distributions are plotted in fig. 3(c) as a function of

the number of Ramsey sequences. Above ≈ 105 sequences, all four protocols converge to a

(Σms)
−1/2 scaling. The inset replots the boxed region on linear scales over a doubling of the

sequence count.

Figure 3(d) provides a comparison of the absolute sensitivity η of the Ramsey ω0 mea-

surement used as a magnetometer. The uncertainties in field and frequency, σB and σω0

respectively, are related by σB = σω0
/γ, where γ = 2π 28 GHz/T is the gyromagnetic ratio.

For uncertainties that scale as t
−1/2
lab , η2 ≡ σ2

Btlab is a constant. All three protocols produce

nearly constant η2 after about 1 s of laboratory time. The inset replots the boxed region on

linear scales. To achieve equivalent uncertainties, the Bayes protocol is about twice as fast

as Tau, four times as fast as Random, and five times as fast as QPEA.

At several places, in figure 3(c) and 3(d), and in figure 4 below, the plotted mean value

lines fall outside the shaded 90% credibility region. In a typical run, the standard deviation

will vary slowly and then rapidly fall orders of magnitude toward the asymptotic value. In

a batch of 100 runs, there will be instances where most of the runs will have converged,

while a few remain with high standard deviation. In these instances, the mean is heavily

influenced by a few, very large outlier values that fall outside the credibility interval.

Fig. 4 presents results from 100-run batches of measurement simulations where a, c, ω0,
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FIG. 4. Simulations of measurements to estimate ω0, a, c and T ∗
2 . (a) True R curve plotted as a

function of τ with a = 0.8, c = 0.13, ω0 = 9.4 µs−1 and T ∗
2 = 15 µs. (b) Histograms of τ setting

values determined by Random selection and by SBED protocols. (c) Uncertainty in frequency,

σω0
vs. Ramsey sequence count. (d) Absolute uncertainty η2 for SBED and random selections

of τ . The Bayesian method uses concurrent measurement and calculation. In the random design

data, the time required for data analysis has been discounted. Statistics are calculated over 100

individual runs.

and T ∗
2 are all treated as unknowns. We compare only SBED and Random protocols, as

no heuristic is available and QPEA is designed for frequency/phase determination only.

As above, 4 ms were allotted for measurements in the Random protocol, but SBED code

execution was slower with 4 variables, and an average of 13 ms were allocated per epoch in

Bayes protocol runs.

Compared to the histogram in fig. 3(b), the SBED histogram structure in fig. 4(b) is
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much richer. For a qualitative interpretation of this structure, we note that the modeled

signal given by (5) is most sensitive to contrast c at small τ extrema, is most sensitive to

T ∗
2 for extrema near τ ≈ T ∗

2 ( = 15 µs) and is most sensitive to ω0 for large slope of the

model function and τ ≈ T ∗
2 /
√
2. The maxima of the envelope are skewed to slightly smaller

τ values by the fact that low-τ designs produce more photons per epoch, and deliver smaller

uncertainty.

Presumably, an adaptive heuristic could be developed and tuned for this four-variable

measurement. It is likely that the development would require significant labor, however.

Implementation of the Bayes protocol was comparatively simple, requiring only minor ad-

justments to include a, c and T ∗
2 as unknowns in the model function.

Figs. 4(c)-(d) show that the Random protocol is slower to converge than the Bayes proto-

col, but the contrast in asymptotic performance is weaker than in the single-unknown case

above. We attribute the apparent efficiency of the random approach to the fact high-utility

τ values selected by SBED are widely distributed among the available settings, not tightly

grouped at large τ as they appear in fig. 3(b). Our selection of T ∗
2 =15 µs in a 20 µs τ is close

to optimal for the random protocol, artificially permitting τ selections to cover the same τ

range that SBED protocol chooses adaptively. In other calculations using T ∗
2 =10 µs, (not

shown) the SBED protocol self-limits to τ values less than 14 µs, where the signal is strong.

The resulting OBED measurement is roughly 2 times faster than random in this case.

V. SUMMARY

The simulation results show that sequential Bayesian experiment design is an efficient pro-

tocol for single-NV Ramsey measurements, outperforming a tuned heuristic protocol, Tau,

random setting selection, and the established QPEA method in efficient use of laboratory,

“wall-clock” time. A key factor for the Bayes protocol is the introduction of a concurrent

workflow, which allows measurements to continue until design calculations are complete,

and effectively eliminates computation time from the overhead, at least when computation

time is less than the time needed to attain SNR ≈ 1. Longer measurements might reduce

efficiency through missed opportunities to select higher-utility settings.

The efficiency gains produced by sequential Bayesian experiment design in this work

are significant, but modest compared to the order-of-magnitude gains previously reported
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for measurements of peaks on a wide, flat background.44 We explain this difference not-

ing that measurements in the broad background of a spectrum offer little compared to the

information-rich settings near the peaks, so large gains are possible by focusing measure-

ments on the peak regions. In contrast, the Ramsey measurements tend to be informative

over a larger range of setting values.

While this paper has focused on efficiency during data acquisition, sequential Bayesian

experiment design also offers efficiency advantages in the time periods before and after

data acquisition. For development of a protocol before measurement, the Bayes methods

are easily adapted to new experiment models or to different measurement goals, especially

when compared to the demands of designing efficient heuristics. Even in cases where Bayes

calculations would be prohibitively slow, the Bayes protocols may serve as a reliable guide

for heuristic protocol development. Also, if post-measurement data analysis is required, it

might be reasonable to count analysis time as part of measurement overhead. In the Random

protocol results above, data was analyzed at each epoch to show progress but the analysis

time was discounted. But in a more typical use, a quick protocol would yield raw data, and

any required data analysis might contribute to overhead. The Bayes protocol offers (almost)

instant results because the data is continuously analyzed as part of the protocol.

VI. DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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Appendix A: Derivation of likelihood

This appendix provides a derivation of the likelihood, P (ns,i|θ, di, ñb,i, m̃b,i) of receiving

ns,i signal counts given parameters θ, settings di = {τi, mi} with precession time τi and ms,

repeats. Background channel counts are incorporated via ñb,i and m̃b,i given in (8) and (9)

respectively.

P (θ|yi,di) ∝ P (ns,i|θ, di, ñb,i, m̃b,i)P (θ|yi−1,di−1). (A1)

where P (θ) incorporates n and m data from all preceding epochs. The derivation ex-

presses the likelihood of nb counts in mb repeats as a function of a signal count rate λs,

which is the product of the ratio R(θ, τ) and the background count λb.

The distribution P (λb) is determined from nb and mb, then eliminated from the final

expression by integration. To simplify notation, we suppress the explicit τ dependence in

the following.

The likelihood of receiving ns signal counts in ms repeats is a Poisson distribution with

mean msR(θ)λb.

P (ns|θ,ms, λb) =
(msR(θ)λb)

nse−msR(θ)λb

ns!
. (A2)

The background count rate distribution is determined by

ñb and m̃b

P (λb) ∝
(m̃bλb)

ñbe−m̃bλb

ñb!
λνb. (A3)

The fraction in this expression is a Poisson distribution expressing the likelihood of count-

ing ñb photons. With m̃b = 0 experiments and ñb = 0 photons collected, the trailing λνb

can be viewed as a prior with exponent ν to be determined later. For the Jeffreys prior,

ν = −1/2.
The distribution of λb values is incorporated into the likelihood of ns by integration.

P (ns|θ,ms, ñb, m̃b) =

∫

P (ns|θ,ms, λb)P (λb|ñb, m̃b)dλb (A4)

Substituting from (A2) and (A3), the integral is tractable, yielding

P (ns|θ,ms, ñb, m̃b) = C

[

R(θ)ns

msR(θ) + m̃b

]ns+ñb+1+ν

. (A5)
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The prior exponent ν is selected so that the net effect of two likelihoods from two identical

measurement results is the same as a single likelihood with combined data. That is, we

require

P (ns|θ,ms, ñb, m̃b)
2 ∝ P (2ns|θ, 2ms, 2ñb, 2m̃b), (A6)

which is satisfied by ν = −1.

Testing also confirmed ν = −1. Using ν = 0, the simulations converged to incorrect

mean parameter values. With ν = −1 the simulations regularly converged to the true values

within a standard deviation.

We also note that with the choice of ν = −1 (A3) is a gamma distribution of the general

form

λb ∼ Γ(α, β) =
βαλα−1

b e−βλb

Γ(α)
, (A7)

with α → 0 and β → 0 and where Γ(x) is the gamma function. Gamma distributions are

conjugate priors for Poisson likelihoods, and in the case α → 0 and β → 0, the gamma

distribution becomes “vague” as its variance →∞.

The factor C in (A5) contains exponential functions ms!, m̃b!, and (ms + m̃b)!, which

are computationally challenging for large m values. Since the θ distribution is explicitly

normalized in software, we are free to choose a convenient pseudo normalization for the

likelihood provided that the θ dependence is preserved. To eliminate factorials we choose

the following pseudo-normalization,

P (ns|θ,ms, ñb, m̃b) ∝ R(θ)ns

[

ms + m̃b

msR(θ) +mb

]ns+ñb

, (A8)

where C has been replaced by 1 and the θ-independent numerator ms + m̃b has been

inserted to ensure that the fraction in square brackets is of order unity.

Figure 5 illustrates the performance and behavior (7) or (A8) for different numbers of

background measurements, mb. The inset shows that the likelihood is a peaked function

that approaches a Poisson distribution as m̃b increases. The main plot shows the effect of

the m̃b on the performance of the SBED method. Only marginal improvements are gained

by extending background measurements beyond nb & 10× ns.
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FIG. 5. Influence of background count averaging on the performance of the Bayesian protocol. The

inset plots the likelihood of ns = 1 as a function of R for m = 10 repeats per epoch, background

counts summed over NΣ epochs, and λb = 0.15. The line labeled “Poisson” is proportional to the

Poisson distribution for ns = 1 assuming λs = Rλb. In both the main figure and inset, the benefits

of background averaging saturate for NΣ & 10.

Appendix B: Scaling of Tau protocol

Each epoch begins with a consistent phase uncertainty σφ = τσω0
= h. If the number of

repeats per epoch is constant, each epoch decreases uncertainty by a constant factor β < 1

on average. After the kth epoch,

σ ∝ βk (B1)

Each epoch requires measurement time proportional to τ , neglecting overhead, so total

measurement time T scales as

T ∝ β−(k+1) (B2)

The net behavior is therefore predicted to follow Heisenberg scaling,

σ ∝ 1/T, (B3)

under the assumption that the number of repeats per epoch is constant.
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FIGURE 1

τ

readout: signal

background

π/2 π/2
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FIGURE 2

Infer | design Measure
settingsdata data

(a)

Infer | design

Measure

data

settings settings

data
(b)
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FIGURE 3
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FIGURE 4
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FIGURE 5
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Infer | design Measure
settingsdata data
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data

settings settings

data
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