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Entropy transfer from a quantum particle to a classical coherent light field
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In the field of light-matter interactions, it is often assumed that a classical light field that interacts with a
quantum particle remains almost unchanged and thus contains nearly no information about the manipulated
particles. To investigate the validity of this assumption, we develop and theoretically analyze a simple Gedanken
experiment, which involves the interaction of a coherent state with a quantum particle in an optical cavity.
We quantify the resulting alteration of the light field by calculating the fidelity of its initial and equilibrium
states. Using Bayesian inference, we demonstrate the information transfer through photon statistics. In addition,
we employ the concepts of quantum entropy and mutual information to quantify the entropy transfer from the
particle to the light field. In the weak coupling limit, we validate the usually assumed negligible alteration of
the light field and entropy transfer. In the strong coupling limit, however, we observe that the information of the
initial particle state can be fully encoded in the light field, even for large photon numbers. Nevertheless, we show
that spontaneous emission is a sufficient mechanism for removing the entropy initially stored in the particle. Our
analysis provides a deeper understanding of the entropy exchange between quantum matter and classical light.
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I. INTRODUCTION

When studying a quantum system, it is generally desirable
for it to be prepared in a low-entropy configuration. Such
systems can populate a relatively small number of quantum
states, which makes their dynamics more controllable, pre-
dictable, and comprehensible [1,2]. If the system of interest
is a gas consisting of atoms or molecules, its entropy is typ-
ically reduced by utilizing laser cooling and optical pumping
techniques. In these processes, the particles absorb light from
an applied laser field and incoherently scatter the light into
free space [3]. While these methods can irreversibly remove
entropy from the gas, the second law of thermodynamics
requires that the total entropy of the universe does not de-
crease, and therefore that the entropy of the gas must have
been absorbed by some other system. In this context, the most
common explanation is that the entropy of the gas is absorbed
by the vacuum modes of the quantized electromagnetic field
[4]. This process is often cast in the framework of open quan-
tum systems whereby the quantized electromagnetic field is
treated as an external reservoir, allowing for an irreversible
reduction of the gas’s entropy through the process of sponta-
neous emission [5–7].

It is typically explained that the reservoir can absorb a sub-
stantial amount of entropy due to the large number of possible
emission configurations [3,8]. Moreover, it is often stated that
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the coherent light field is not perturbed, and hence does not
absorb entropy, because the quantum state corresponding to
the laser field, the coherent state, is unaffected by the absorp-
tion of photons by the gas. However, there are some studies
that predict entropy removal from the gas via interaction with
the laser field [9–13]. In an effort to further understand the
underlying physics of laser cooling and optical pumping, we
propose a simple Gedanken experiment that probes the change
of a single-mode light field that coherently interacts with
a particle that couples to a background radiation field and
contains nonzero initial entropy. We determine the parameter
regime in which the coherent field is altered and how this al-
teration can be measured. In addition we analyze this process
in terms of entropy exchange between the atomic, cavity and
background radiation field degrees of freedom. We find the
cavity state to be significantly modified when the atom-cavity
coupling exceeds the spontaneous emission rate. In this case
information about the initial atomic state is imprinted on the
quantum state of the cavity mode and can therefore be deter-
mined by subsequent measurement of the cavity degrees of
freedom. At the same time, however, this information is also
simultaneously encoded in the spontaneously emitted photon
as one would expect for the case of an unaltered laser field.
This duplicity of information is interesting and provides for
additional pathways in the understanding of entropy dynamics
in atom-laser interactions.

II. MOTIVATION

We first consider the level of complexity necessary to
demonstrate the state alteration and entropy transfer processes
with the goal of removing complications or details of any
particular cooling or pumping scheme that might obscure the
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FIG. 1. (a) A schematic of the experimental setup. A particle
(circle) is placed in a lossless (κ = 0) optical cavity that contains a
coherent light field. The particle can undergo spontaneous emission
into free space at rate γ . (b) Energy diagram of the particle’s internal
state structure. It is coupled to the cavity with strength g on the bright
transition (|e〉 ↔ |b〉) and has a linewidth γ on the dark transition
(|e〉 → |d〉).

core physics of interest. While other candidates may exist, we
model the initial state of the laser field as a coherent state,
as this is the quantum state that shares the most similarities
with a classical coherent laser field [14]. The coherent state is
prepared in a lossless optical cavity, after which any external
driving fields are turned off. The introduction of such a cavity
provides the simplest way to incorporate the quantization ef-
fects of a single-mode field. While we anticipate that some of
our findings also apply to free-space coherent light fields, we
want to emphasize that the presence of many modes in a true
free-space scenario cannot be incorporated by only a single
cavity mode [15–17]. However, the purpose of this paper is to
provide, as a first stepping stone, a completely solvable mini-
mal model that is capable of describing the transfer of entropy
between a light field and a quantum particle in presence of
dissipation.

We model the gas as a single, motionless particle placed at
an antinode of the optical cavity. With these considerations in
mind, we envisage the experimental setup depicted in Fig 1(a).
The particle possesses two ground states and a single excited
state, as shown in Fig 1(b). The |b〉 ↔ |e〉 (bright) transition
is resonant with the optical cavity, which encapsulates the
coherent interaction between the cavity field and the particle.
Our approach neglects free-space spontaneous emission from
the excited state |e〉 to |b〉 by assuming a transition with a very
narrow free-space linewidth, although this will generally be
broadened by the strong interaction with the optical cavity
mode. The excited state to dark state transition, |e〉 → |d〉,
however, is solely mediated by spontaneous emission, which
models the incoherent interaction between the background
radiation field and the particle. This description is valid if the
free-space spontaneous emission rate from |e〉 → |d〉 is much
larger than the spontaneous emission rate from |e〉 → |b〉.

The net effect of this scheme is to encapsulate the quantum
process of optical pumping of an atom from the bright state |b〉
via the excited state |e〉 to the dark state |d〉 by first absorbing
a cavity photon and then by emitting a photon into free space.
Therefore, the described model is more applicable to the study
of optical pumping, that is, quantum state preparation, than to
laser cooling per se, although the two are related, with the
motional states taking the role of internal states. Due to the
presence of dissipation the coupled atom-cavity system will
relax to a stationary state that in general depends on the initial
cavity field and the initial state of the atom. With this our

paper also extends previous studies on coherent entanglement
production in the Jaynes-Cummings model [18,19].

By studying the considered optical pumping scheme, we
aim to quantify the alteration of the cavity field due to its
interaction with the particle and to determine if the parti-
cle’s entropy is transferred to the cavity’s degrees of freedom
through their resulting correlations. To achieve these goals, we
employ both statistical and information theoretic techniques.
We first calculate the final cavity field state and determine
its distinguishability from the initial cavity state qualitatively
by comparing their Husimi Q functions and quantitatively
through their quantum fidelity. Then, we demonstrate that
information about the particle becomes encoded in the cavity
field by using Bayesian inference. Lastly, we quantify the
amount of entropy transferred from the particle to the cavity
field by calculating the quantum mutual information shared
between the initial particle state and final cavity state. We em-
phasize that the atomic state is in good approximation in the
decoupled dark state after sufficiently long times and therefore
has almost no information about its initial state. In this paper,
we show that the usual assumption that this information is
encoded in the environment is correct but, in addition, in the
ultrastrong coupling regime, this information is also present
in the altered, initially coherent cavity field.

III. MODEL

The system of interest [Fig. 1(a)] consists of a three-
level particle [Fig. 1(b)] coupled to a light field in a lossless
(κ = 0) optical single-mode cavity. We mention that without
this assumption our model is strictly speaking only valid on
timescales that are shorter than 1/κ because a significant
amount of photons would leak out of the cavity on longer
timescales. Let us denote the Hilbert spaces of the particle and
light field as A and L, respectively. In the time-independent
interaction picture, the system is evolved according to the
quantum master equation

d ρ̂AL

dt
= 1

ih̄
[ĤAL, ρ̂AL] + γL(Ĵ )ρ̂AL. (1)

Here, the coherent particle-cavity interaction is described by
the Jaynes-Cummings Hamiltonian

ĤAL = h̄g

2
(|b〉 〈e| â† + |e〉 〈b| â), (2)

where g is the coupling strength, and â is the annihilation
operator for the cavity field. As is achieved in the moving
frame of a particle in Doppler cooling, we have set the cavity
to be resonant with the particle’s bright state transition. The
environment surrounding the system, which we model as an
infinite bandwidth bosonic bath that is coupled to the particle’s
dark transition, has been traced out under the Born-Markov
approximation [20,21]. Its effects are incorporated through the
Lindblad superoperator

L(Ĵ )ρ̂ = Ĵρ̂Ĵ† − 1
2 (Ĵ†Ĵρ̂ + ρ̂Ĵ†Ĵ ) (3)

with jump operator Ĵ = |d〉 〈e|. This term describes the spon-
taneous emission of photons into free space by the particle
that occurs at a rate γ . We consider both analytical and nu-
merical solutions to Eq. (1) in the sections that follow. We use
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both MATLAB and the QuantumOptics package in the Julia
programming language for numerical calculations [22,23].

To model the entropy initially possessed by the particle, it
is prepared in the mixed state

ρ̂A(0) = x |b〉 〈b| + (1 − x) |d〉 〈d| , (4)

where 0 � x � 1 is the probability that the particle begins in
the bright state |b〉. As already mentioned, the cavity field is
initialized in a coherent state

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 , (5)

where |n〉 is the n-photon Fock state, so that its initial density
matrix reads

ρ̂L(0) = |α〉 〈α| . (6)

IV. ALTERATION OF CAVITY STATE

Here we demonstrate that the cavity state is altered due
to its interaction with the particle. But first, we address a
common counterargument, which postulates that there should
be no change to the cavity field because a coherent state
is an eigenstate of the annihilation operator â by definition:
â |α〉 = α |α〉, and therefore is unperturbed by photon absorp-
tion followed by free-space spontaneous emission. What this
argument fails to consider is the stimulated emission of a pho-
ton back into the cavity, which can occur if the particle-cavity
coupling rate is sufficiently large. With this additional process
in mind, we emphasize that a change of the cavity state is
expected since it implies the action of the creation operator
â† [see Eq. (2)] on the coherent state, which yields nontrivial
dynamics [24].

More specifically, we expect a change in the cavity state
when the phase coherence between different Fock states in
|α〉 is scrambled. This occurs when the relative phases of the
relevant Fock state amplitudes become substantially altered,
which we now characterize. After an interaction time t , the
accumulated phase for an n-photon Fock state |n〉 is φn =√

ngt/2. If we approximate the interaction time by the excited
state lifetime, t ≈ 1/γ , then the relative accumulated phase
�φ between two Fock states |n〉 and |n + �n〉 is

�φ(n,�n) = φn+�n − φn ≈ g

2γ
(
√

n + �n − √
n). (7)

For a coherent state |α〉, which has initial average intracavity
photon number n̄0 = 〈â†â(0)〉 = |α|2, the most relevant Fock
states lie within the range (n̄0 − √

n̄0, n̄0 + √
n̄0), in which√

n̄0 is the variance of the photon distribution. Using Eq. (7),
the relative accumulated phase between the central Fock state
|n̄0〉 and the Fock states near to the edge of the coherent state
|n̄0 ± √

n̄0〉 is then

|�φ(n̄0,
√

n̄0)| ≈ 1

4

g

γ
, (8)

in which we have assumed n̄0 	 1. If the phase coherence is
to be destroyed, then this relative phase must be much larger
than unity. Defining the particle-cavity critical photon number
m ≡ 1

2 ( γ

g )2 [25] and using Eq. (8), phase scrambling of the
coherent state is equivalent to the condition m � 1. Therefore,

m is the important parameter for determining an alteration of
the cavity state.

In Appendix A, we derive an analytic expression for the
final cavity state ρ̂L(∞) when the particle is initialized ac-
cording to Eq. (4). It is parameterized by the initial bright
state fraction x, initial intracavity photon number n̄0, and
particle-cavity critical photon number m [see Eq. (A18)]. To
understand how the final cavity state differs from the initial
coherent state, we pictorially compare their Husimi Q func-
tions, and then calculate their fidelity F .

A. Cavity state Q functions

To gain intuition for the differences between the initial
and final cavity states, we calculate their Husimi Q functions,
which are defined as

Q(β ) ≡ 〈β|ρ̂|β〉
π

. (9)

Here, the coherent states |β〉 form a basis for the 2-
dimensional optical phase space (Re[β], Im[β]). The initial
cavity state has Q function

Q0(β ) = 〈β|ρ̂L(0)|β〉
π

= |〈α|β〉|2
π

= 1

π
e−|α−β|2 , (10)

while the Q function for the final cavity state is

Q∞(β ) = 〈β|ρ̂L(∞)|β〉
π

. (11)

The latter has a more complicated form since it is generally
no longer a coherent state. Figure 2 presents numerical plots
of Q∞(β ) for various m. To focus on the effects of the in-
teraction, we choose x = 1. We also choose α = √

n̄0 = 10
so that Q0(β ) is localized and centered on the coordinate
(Re[β], Im[β]) = (10, 0) with a spread on the order of unity.

Figure 2(a) displays Q∞(β ) for the intermediate-coupling
case m = 1. We find that Q∞(β ) does not differ significantly
from Q0(β ), which indicates that the cavity field nearly re-
mains in a coherent state. In the case of stronger coupling
[m = 10−2, Fig. 2(b)], however, Q∞(β ) remains localized
near the circle |β| = |α|, but is spread over a larger phase
range �φ. In the infinite-coupling limit m → 0 [Fig. 2(c)],
we find that Q∞(β ) has a uniform phase distribution, and
therefore differs substantially from Q0(β ).

Let us now interpret these results. The function Q∞(β )
always remains localized near the circle |β| = |α| = 10 be-
cause the average number of photons in the cavity n̄ = 〈â†â〉
does not significantly change. This is a consequence of the
particle’s internal state structure [see Fig. 1(b)], which pre-
vents a reduction of n̄ by more than one, and our choice of
a large initial intracavity photon number (n̄0 = 100). On the
other hand, we observe diffusion-like behavior of the phase φ

as m decreases because the particle undergoes more Rabi os-
cillations with each Fock state before emitting a spontaneous
photon, thereby scrambling the cavity field’s phase coherence.
The coherences vanish completely in the limit m → 0, result-
ing in the uniform phase distribution shown in Fig. 2(c). This
potentially extreme change in the phase distribution is largely
responsible for the distinguishability of the initial and final
cavity states, which we now quantify in terms of their fidelity.
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FIG. 2. The Q function of the final cavity state Q∞(β ) [see Eq. (11)] for various m. We have set x = 1 and α = √
n̄0 = 10. Although the

amplitude of the state remains localized near |β| = √
n̄0 = 10, the spread in phase �φ increases as m decreases, indicating a change in the

cavity state due to the particle-cavity interaction.

B. Fidelity of initial and final cavity states

We now quantify the alteration of the cavity field by calcu-
lating the Uhlmann-Jozsa fidelity

F (ρ̂, σ̂ ) = (Tr
√√

ρ̂σ̂
√

ρ̂ )2 (12)

between its initial and final states, which is a generalization of
the transition probability for pure states [26,27]. The fidelity
satisfies 0 � F (ρ̂, σ̂ ) � 1 for any two density matrices ρ̂ and
σ̂ , with F (ρ̂, σ̂ ) = 1 if and only if ρ̂ = σ̂ , and F (ρ̂, σ̂ ) = 0 if
ρ̂ and σ̂ have support on orthogonal subspaces. In particular,
if we find that F (ρ̂, σ̂ ) �= 1, then the cavity field is no longer
in the coherent state |α〉.

Because the cavity field is initially in a pure state, its
fidelity with the final cavity state ρ̂L(∞) is simply

F ≡ F [ρ̂L(0), ρ̂L(∞)] = 〈α|ρ̂L(∞)|α〉 . (13)

We point out that F = πQ∞(α), i.e., the fidelity is (up to a
factor of π ) the Q function of the final cavity state evaluated
at β = α. We can therefore qualitatively predict features of the
fidelity F through the plots in Fig. 2. For example, we expect
F to decrease as m decreases due to the associated diffusion-
like behavior of the Q function.

The fidelity F between the initial and final cavity state is
calculated to be [see Eq. (B2)]

F = 1 − x[1 − f (n̄0, m)], (14)

in which 0 < f (n̄0, m) < 1 is their fidelity conditioned on
the particle being prepared in the bright state (x = 1). We
present this conditional fidelity f (n̄0, m) in Fig. 3(a). We find
that f � 1, and therefore that the cavity state is significantly
altered, when n̄0 � 1 and m < 1, which agrees with our qual-
itative Q function analysis. This region of parameter space
corresponds to a cavity containing at least one photon (on
average) and a strong particle-cavity coupling, respectively.

Because a typical laser field contains many photons, we
focus on the thermodynamic limit n̄0 → ∞ for the remainder
of our investigation. In this limit, the conditional fidelity is
calculated to be

lim
n̄0→∞ f (n̄0, m) =

√
2πm e2m erfc(

√
2m), (15)

as shown in Appendix B. Figure 3(b) displays Eq. (15) and a
numerical result for n̄0 = 10, which agree very well when m
is sufficiently large:

m > mmin ≡ 1

8π2n̄0
. (16)

We now consider the strong (m � 1) and weak (m 	 1) cou-
pling limits. From Eqs. (14) and (15),

F ≈
{

1 − x(1 − √
2πm), m � 1

1 − x
4m , m 	 1

. (17)

Therefore, in the infinite-coupling limit m → 0, the fidelity
becomes F = 1 − x. This shows that the cavity field can be

FIG. 3. Fidelity F between the initial and final cavity states ρ̂L (0)
and ρ̂L (∞) [Eq. (12)] when the particle begins in the bright state
[x = 1, see Eq. (14)] as a function of the initial intracavity photon
number n̄0 and the critical photon number m. (a) Contour plot of F ,
calculated by numerically evaluating Eq. (13). When m < 1 and n̄0 >

1, we find that F � 1, signaling a significant change in the cavity
state. (b) Numerical (solid, n̄0 = 10) and analytical [dashed, Eq. (15)]
results for F as a function of m. For m < mmin [dot-dashed, Eq. (16)],
the results diverge.

013218-4



ENTROPY TRANSFER FROM A QUANTUM PARTICLE TO A … PHYSICAL REVIEW RESEARCH 4, 013218 (2022)

altered by the interaction provided that the particle has a
chance of starting in the bright state (0 � x � 1). However,
in the zero-coupling limit m → ∞, we find that F = 1, and
the field is not altered.

It is also interesting to consider how small the critical
photon number must be for the initial and final cavity states
to be substantially distinguishable, e.g., for their fidelity to be
F = 1

2 . For simplicity and to achieve the greatest effect, we
define such a critical photon number m1/2 in the case when
the particle is prepared in the bright state. From Eq. (15), we
find that this occurs when

m = m1/2 ≈ 0.09. (18)

One can therefore observe a substantial alteration of the cavity
state in an experimental setting by studying a system satisfy-
ing m � m1/2, or more generally, g � 2.3γ 	 κ .

These results are direct evidence that the cavity state can
be altered by interaction with a particle, even in the limit
of infinitely many photons, if the particle-cavity coupling is
sufficiently large. We interpret the deviation from F = 1 as
result of the development of correlations between the particle
and cavity states through the coherent interaction ĤAL [see
Eq. (2)].

V. BAYESIAN ANALYSIS

Now that we have demonstrated an alteration of the cavity
state after interaction with the particle, we consider if any
information about the particle is imprinted on the cavity field.
As shown in Sec. IV A, the change in the cavity state manifests
primarily in its phase. This suggests that simply measuring the
field intensity

〈â†â(∞)〉 = n̄0 − x(1 − e−n̄0 ) (19)

would not provide an effective way to extract this information,
as it does not access the phase of the state. To create a mea-
surement that can distinguish differences in phase, we propose
the following scheme. First, we displace the final cavity state
according to the operation

η̂L ≡ D̂(−α)ρ̂L(∞)D̂†(−α), (20)

which can be done, e.g., by removing a cavity mirror at
t → ∞ and feeding the final cavity state and a coherent state
|α〉 into separate ports of a beam splitter [28]. (We emphasize
that any information about the particle contained in the cavity
state is unaltered because this operation is unitary). After the
displacement operation, we then perform photon number mea-
surements on the resulting state η̂L. To understand why this
scheme provides us with cavity phase information, consider
again the Husimi Q function perspective of Sec. IV A. Notice
that the displacement operation [Eq. (20)] simply shifts each
phase space coordinate β to the new coordinate β − α. There-
fore, a nearly unperturbed cavity state [as in Fig. 2(a)] would
be shifted near to the phase space origin, so photon number
measurements of η̂L would yield low values, regardless of the
high-noise photon statistics of the initial distribution. Con-
trarily, only one point on the circle defining a significantly
perturbed cavity state [as in Fig. 2(c)] would be mapped near
to the phase space origin, so photon number measurements of
η̂L would typically yield much higher values.

To demonstrate the utility of our proposed measurement
scheme, consider a situation wherein the particle is prepared
in some diagonal mixed state [Eq. (4)], and we are tasked
with determining the initial particle state (“start in |b〉” or
“start in |d〉”) for a given experimental run by performing
measurements exclusively on the displaced cavity state η̂L.
For simplicity, we calculate the results for the maximally
mixed state (x = 1

2 ), but our results can be generalized to
any x. By symmetry, the most successful approach with-
out performing any measurements would be to sample from
a flat probability distribution (the “prior”): P(startin |b〉) =
P(startin |d〉) = 1

2 , for which the probability that we would
be correct is Pprior(correct) = 1

2 . What we show here is that a
more accurate probability distribution can be constructed by
incorporating the results from a single measurement of the
displaced cavity photon number distribution 〈n|η̂L|n〉, thereby
proving that information about the particle is present in the
cavity field.

For our purposes, it is sufficient to reduce the outcome
space to a binary scenario: Either we detect (i) zero pho-
tons (n = 0, “no click”) or (ii) one or more photons [n � 1,
“click(s)”]. This simplification is appropriate because we gain
no additional information about the particle’s initial state by
distinguishing between nonzero numbers of clicks. With this
approach, we only need to calculate the vacuum state pop-
ulation 〈0|η̂L|0〉, which is equivalent to the fidelity F [see
Eq. (14)]. (Notice that one can experimentally probe F by
measuring this population.) The probability distribution in the
event of “no clicks” is then

P(no click|start in |i〉) =
{

1, i = d
f (n̄0, m), i = b

, (21)

where f (n̄0, m) is the conditional fidelity. The “click(s)” con-
ditional probability distribution is complementary to Eq. (21).
With these results, we can use Bayesian inference to construct
a posterior probability distribution for the initial particle state
conditioned on the cavity measurement:

P(start in |i〉 |C) ∝ P(C|start in |i〉)P(start in |i〉);

i ∈ {b, d}; C ∈ {click(s), no click}. (22)

Here, P(start in |i〉) is the (initially flat) prior distribution for
the initial particle state [29]. The posterior probability distri-
bution is

P(start in |d〉 | click(s)) = 0;

P(start in |b〉 | click(s)) = 1;

P(start in |d〉 | no click) = 1

1 + f (n̄0, m)
;

P(start in |b〉 | no click) = f (n̄0, m)

1 + f (n̄0, m)
.

(23)

It is only left to demonstrate that the posterior probability
distribution predicts the initial particle state more accurately
than the prior probability distribution, i.e., that we would
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correctly predict the initial particle state with a probability sat-
isfying Ppost(correct) > Pprior(correct) = 1

2 , by sampling from
Eqs. (23). Using the posterior probability distribution, the
probability that we correctly predict the initial particle state
is

Ppost(correct) = 1

1 + f (n̄0, m)
. (24)

Since 0 < f (n̄0, m) < 1, we find that Ppost(correct) � 1
2 , and

therefore conclude that information about the particle is
present in the cavity field. We emphasize that we have in-
creased our chance of predicting the initial particle state with
a single measurement of the cavity state.

We now focus on the thermodynamic limit n̄0 → ∞, as
often occurs in laser cooling and optical pumping. In this
limit, the conditional fidelity f is given by Eq. (15). Using
this form of f in Eq. (24), we find that

Ppost(correct) ≈
⎧⎨
⎩

1 − √
2πm, m � 1

1
2

(
1 + 1

8m

)
, m 	 1

. (25)

In the infinite-coupling limit m → 0, Ppost(correct) = 1.
Therefore, a single measurement of the cavity state can in
principle predict the initial particle state with 100% accu-
racy, regardless of the high-noise photon statistics. This is
possible because in this limit the final cavity states resulting
from the particle starting in either |b〉 or |d〉 have orthog-
onal support, as evidenced by their vanishing fidelity {see
Eq. (14) and Ref. [30]}. In the zero-coupling limit m →
∞, however, Ppost(correct) = 1

2 = Pprior(correct), so the cavity
measurement does not increase our chance of predicting the
initial particle state.

VI. MUTUAL INFORMATION

In this section, we introduce an entropic perspective, which
we use to quantify the correlations between the particle, cavity
field, and external reservoir due to the light-particle inter-
actions. In particular, we use this perspective to define the
amount of entropy transferred from the particle to the cavity
field. Because the entropy of interest begins in the particle and
ends in the cavity field, we posit that the amount of transferred
entropy is characterized by the mutual information [31] shared
between the initial particle state and the final cavity state. In
general, mutual information is defined as

I (Y : Z ) = S(Y ) + S(Z ) − S(Y Z )

= S(Y ) − S(Y |Z ),
(26)

in which Y and Z are probability distributions, {S(Y ), S(Z )}
are their information entropies, S(Y Z ) is their joint entropy,
and S(Y |Z ) is the conditional entropy of Y given Z . The
entropy S is given by the Shannon entropy

S(Ycl ) = −
∑

y

P(y) ln P(y) (27)

for a classical probability distribution Ycl with events y and
probabilities P(y), whereas it is given by the von Neumann
entropy

S(ρ̂Y ) ≡ −Tr[ρ̂Y ln ρ̂Y ] (28)

for a quantum probability distribution described by a density
matrix ρ̂Y . We have used the natural logarithm in Eq. (27)
for convenience. Intuitively, I (Y : Z ) is equal to zero in the
absence of any correlations between the two distributions, and
is maximized if the higher-entropy distribution contains all of
the information of the lower-entropy distribution:

0 � I (Ycl : Zcl ) � min[S(Ycl ), S(Zcl )],

0 � I (ρ̂Y : ρ̂Z ) � 2 min[S(ρ̂Y ), S(ρ̂Z )].
(29)

Notice that the upper bound of quantum mutual information
is twice as large as its classical counterpart [32].

To connect the formalism of this section with the Bayesian
inference approach of Sec. V, we first calculate the amount of
mutual information shared between the initial particle state
and final cavity state as determined by the classical condi-
tional probability distribution we derived through the photon
number measurements [see Eq. (23)]. Then, we calculate
their quantum mutual information from a density matrix ap-
proach, which incorporates all particle-cavity correlations. To
understand the role of the cavity field in the entropy removal
process, we also compare its final entropy to that of the reser-
voir, which contains the spontaneous photons emitted by the
particle.

A. Mutual information from cavity measurements

Here we calculate the mutual information [Eq. (26)]
between the initial particle state and final cavity state as de-
termined by the photon number measurements of η̂L. Using
the click probabilities from Eq. (21), the notation of Eq. (22),
and generalizing the conditional probability distribution in
Eq. (23) to any x, the conditional entropy of the initial particle
state given the cavity measurements is

S[A(0)|L(∞)] = −
∑

C

P(C)
∑

i

P(start in |i〉 |C) ln[P(start in |i〉 |C)]

= −x f ln[
f x

1 − x(1 − f )
] − (1 − x) ln

[
1 − x

1 − x(1 − f )

]
.

(30)

From the classical mixture in Eq. (4), the Shannon entropy of
the initial state is

S[A(0)] ≡ S0 = −x ln x − (1 − x) ln(1 − x). (31)

Together, Eqs. (30) and (31) can be used to calculate the
(classical) particle-cavity mutual information

I[A(0) : L(∞)] = S[A(0)] − S[A(0)|L(∞)]. (32)
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Because the cavity state is inherently quantum, the photon
number measurements may not access all of its contained in-
formation. Consequently, Eq. (32) underestimates the amount
of mutual information shared between the particle and cavity.
However, as discussed in the next subsection, Eq. (32) will be
useful for calculating the quantum mutual information in the
thermodynamic limit n̄0 → ∞, for which numerical calcula-
tions are intractable due to the infinite dimension of the cavity
Hilbert space.

B. Quantum mutual information

We now include any additional correlations between the
initial particle state ρ̂A(0) and final cavity state ρ̂L(∞) by
determining their quantum mutual information. As seen from
Eq. (26), this calculation requires knowing the joint distribu-
tion of these two states. Because these states are defined at
different times, we calculate their joint distribution by incor-
porating an non-interacting auxiliary Hilbert space R, which
purifies ρ̂A(0) and hence contains the entropy of ρ̂A(0) at all
times. The quantum mutual information will then be given by

I (ρ̂R : ρ̂L ) = S(ρ̂R) + S(ρ̂L ) − S(ρ̂RL ), (33)

in which all entropies S are von Neumann entropies [see
Eq. (28)]. In Appendix C, we show that the density matrix
ρ̂RL is separable, which means that the quantum mutual infor-
mation satisfies the classical inequality [Eq. (29)]

0 � I (ρ̂R : ρ̂L ) � S0, (34)

in which S0 ≡ S[ρ̂A(0)]. In other words, somewhere between
none [I (ρ̂R : ρ̂L ) = 0] or all [I (ρ̂R : ρ̂L ) = S0] of the entropy
initially contained in the particle becomes encoded in the
cavity field. We elaborate on the repercussions of Eq. (34) in
Sec. VI C.

We now explain how to calculate I (ρ̂R : ρ̂L ). First, the
initial particle state is purified through its Schmidt decompo-
sition. That is, we view the particle ensemble as the reduced
density matrix of a pure state, ρ̂A(0) = TrR |u〉 〈u|AR, where

|u〉AR = √
x |b, b〉 + √

1 − x |d, d〉 . (35)

It can be shown that the reduced density matrices ρ̂A(0) and
ρ̂R have the same eigenvalues [31], which motivates the in-
terpretation of ρ̂R = TrA |u〉 〈u|AR as an identically prepared
ensemble to ρ̂A(0), but with particles that are not interacting
with the field. (This explains why the auxiliary particle de-
scribes the initial particle entropy: S[ρ̂R(t )] = S0.) The total
system’s density matrix becomes ρ̂ARL, and the master equa-
tion [Eq. (1)] is edited by incorporating the identity operator
of R:

ĤAL → ĤAL ⊗ ÎR; Ĵ → Ĵ ⊗ ÎR. (36)

This updated master equation is then used to evolve the initial
pure state

ρ̂ARL (0) = |u〉 〈u|AR ⊗ |α〉 〈α|L . (37)

We can then calculate the entropy of any subset of the ARL
composite Hilbert space by performing the appropriate trace
operations.

Figure 4(a) presents various entropic quantities as a func-
tion of time t for the choices x = m = 1

2 and α = √
n̄0 =

FIG. 4. Entropic quantities scaled by the initial particle entropy
S0 ≡ S[ρ̂A(0)]. (a) von Neumann entropies S[ρ̂M (t )] [see Eq. (28)]
of various subspaces M and quantum mutual information between
the field and auxiliary particle I (ρ̂R : ρ̂L ) [see Eq. (33)] as a function
of time t . Parameters are: x = m = 0.5 and n̄0 = 5. (b) Equilibrium
I (ρ̂R : ρ̂L ) as a function of m for various n̄0 with x = 0.5. The n̄0 →
∞ curve is given by Eq. (32). The quantum mutual information
reaches its maximum value I (ρ̂R : ρ̂L ) = S0 [see Eq. (34)] in the
thermodynamic (n̄0 → ∞), infinite-coupling (m → 0) limit.

√
5. For convenience, we have scaled all quantities by the

initial particle entropy S0. As expected, the particle entropy
S[ρ̂A(t )] decreases (as occurs in laser cooling and optical
pumping), the cavity state entropy S[ρ̂L(t )] increases, and
the entire ARL space entropy increases as it evolves under
the non-unitary dynamics. Importantly, the quantum mutual
information I (ρ̂R : ρ̂L ) increases and equilibrates to a nonzero
value, which indicates the imprinting of the particle’s initial
entropy onto the cavity field.

We present numerical results for the equilibrium value of
I (ρ̂R : ρ̂L ), scaled by S0, as a function of m for various n̄0

in Fig. 4(b) (nonsolid curves). We have dropped the time
label t → ∞ for notational simplicity. We find for n̄0 � 1
that I (ρ̂R : ρ̂L ) can exceed S0/2, and hence that a significant
amount of information about the initial particle state can
be imprinted on the cavity field, provided that m is suffi-
ciently small. As n̄0 increases, we find numerically that the
equilibrium quantum mutual information [Eq. (33)] and mu-
tual information as determined by the cavity measurements
[Eq. (32)] converge. Therefore, we use Eq. (32) to analyt-
ically calculate the equilibrium value of I (ρ̂R : ρ̂L ) in the
thermodynamic limit n̄0 → ∞ (solid curve). In the strong and
weak-coupling limits, this simplifies to

I (ρ̂R : ρ̂L ) ≈

⎧⎨
⎩S0 − ε(x, m), m � min

[
1, 1

2π

(
1−x

x

)2]
− x ln x

4m , m 	 1
, (38)

in which

ε(x, m) = −
√

2πm

[
ln

√
2πm + ln

(
x

1 − x

)
− 1

]
(39)

and 0 � ε � S0. The additional constraint on m in the strong-
coupling limit is a consequence of the highly nonlinear
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behavior of I (ρ̂R : ρ̂L ) for small m. In the zero-coupling limit
m → ∞, we find that I (ρ̂R : ρ̂L ) = 0, so the cavity field does
not contain the information entropy of the initial particle state,
as expected. However, in the infinite-coupling limit m → 0,
we find that I (ρ̂R : ρ̂L ) = S0, which means that the cavity field
contains complete information about the initial particle state.
This agrees with our Bayesian inference result in the previous
section. We rigorously prove that I (ρ̂R : ρ̂L ) = S0 only when
n̄0 → ∞ and m → 0 in Appendix C.

C. Entanglement with the reservoir

In the previous sections, we demonstrated in several ways
that the final cavity state contains information about the initial
particle state. It is therefore tempting to conclude that the
cavity field has removed entropy from the particle. However,
we have yet to consider the entropy contained in the only
remaining subspace: The external reservoir, which contains
the spontaneous photons emitted by the particle. If we denote
the reservoir Hilbert space by P, it can be shown that [see
Eq. (D7)]

S[ρ̂P(∞)] � S[ρ̂L(∞)]. (40)

Physically, Eq. (40) demonstrates that the spontaneous pho-
tons always contain at least as much information about the
initial particle state as the cavity field. In this sense, spon-
taneous emission is a sufficient mechanism for removing
entropy from the particle. A specific instance of this inequal-
ity can be seen in Fig. 4(a) by noticing that S[ρ̂ARL(t )] =
S[ρ̂P(t )].

Although the initial particle state and final cavity state
are correlated, the separability of ρ̂RL indicates that they are
not entangled. This is why their quantum mutual information
satisfies the stricter, classical bound [see Eqs. (29) and (34)].
However, Eq. (40) can be used to show that both the particle
and the cavity field become entangled with the external reser-
voir. As shown in Appendix D,

I[ρ̂P(∞) : ρ̂R(∞)] � S[ρ̂R(∞)],

I[ρ̂P(∞) : ρ̂L(∞)] � S[ρ̂L(∞)].
(41)

Equations (41) imply entanglement when the inequalities are
strict, which occurs if m > 0. Consequently, the particle and
cavity can develop richer quantum correlations with the reser-
voir than with each other.

VII. CONCLUSIONS

We have demonstrated through a simple Gedanken experi-
ment under what conditions the entropy of a quantum system
can be imprinted on a classical coherent light field, which
we modeled as a coherent state in a lossless single-mode
cavity. We have quantified the cavity state’s alteration due
to the particle-cavity interaction through the measurement
of fidelity and shown that the cavity field contains informa-
tion about the initial state of the particle by the method of
Bayesian inference and using quantum information theoretic
techniques. Our results demand reconsideration of the under-
lying physics of laser cooling and optical pumping in the
very strong particle-light coupling regime [10,33–36], as it

suggests that the assumption of an unperturbed light field is
not necessarily accurate.

The entropy transfer from the particle to the light field
could be realized in an experimental setting by studying a
system that satisfies κ � γ , g. Although we have mainly
focused on the high-n̄0 limit, we believe that there is also
interesting physics in the low-n̄0 regime. Our model could also
be generalized to further understand some cavity-based quan-
tum memories [37–42] by, e.g., incorporating cavity pumping
and loss (κ �= 0) or initializing the cavity field in a different
quantum state. We also anticipate that this system can be
used as a platform to generate and study Fock-like states
from a classical light source [43] and novel photon-subtracted
states [14].

As we have pointed out earlier, our model lacks the pres-
ence of many modes required to predict the realistic dynamics
of entanglement between the free-space electromagnetic field
and the atom. Therefore, we believe that possible extensions
to this paper could incorporate many quantum modes that
interact with the atom. Besides this, there are many ways to
extend this study for the purpose of modeling optical pumping
and laser cooling processes in a single-mode cavity more
accurately. Most notably, the incorporation of cavity pumping
and loss could permit a nontrivial equilibrium solution even
when the particle can relax back to the bright state, which
would bring the particle’s internal state structure closer to that
of typical two-level models. In this case, one could altogether
remove free-space spontaneous emission and therefore certain
effects of the background radiation field on the particle to
further investigate the entropy dynamics of the laser-particle
system [44]. Of course, particle motion could also be in-
corporated, potentially allowing for another Hilbert space to
exchange entropy.

One could also study this system in the context of phase
space compression. However, the rich correlations generated
by quantum mechanical processes preclude a clear phase
space approach for quantum systems [45–47]. This would re-
quire, for example, a deeper understanding of the connection
between Wigner trajectories and Liouville’s theorem [48]. On
a related note, one could consider the use of quantum discord
as a measurement of quantum correlation [49] as opposed to
von Neumann entropy.
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APPENDIX A: FINAL CAVITY FIELD STATE

In order to derive an analytic form of the cavity field state
in the limit t → ∞, we separate the density matrix into bright
and dark manifolds:

ρ̂b = 〈b|ρ̂|b〉 |b〉 〈b| + 〈b|ρ̂|e〉 |b〉 〈e|
+ 〈e|ρ̂|b〉 |e〉 〈b| + 〈e|ρ̂|e〉 |e〉 〈e| , (A1)

ρ̂d = 〈d|ρ̂|d〉 |d〉 〈d| .
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This simplifies the formalism because the initial particle-
cavity state

ρ̂(0) = [x |b〉 〈b| + (1 − x) |d〉 〈d|] ⊗ |α〉 〈α| (A2)

explicitly assumes there are no coherences between the three
internal states. Taking a time derivative and using the master
equation [Eq. (1)] in the form

d ρ̂

dt
= 1

ih̄
(Ĥeffρ̂ − ρ̂Ĥ†

eff ) + L̂jump(ρ̂), (A3)

we find

˙̂ρd = γ 〈e|ρ̂|e〉 |d〉 〈d| , ˙̂ρb = 1

ih̄
[Ĥeffρ̂b − ρ̂bĤ†

eff]. (A4)

Here, we used 〈i| L̂jump | j〉 = 0 for i, j ∈ {b, e} and defined

Ĥeff = Ĥ − ih̄γ

2
|e〉 〈e| ,

L̂jump(ρ̂ ) = γ 〈e|ρ̂|e〉 |d〉 〈d| .
(A5)

We first diagonalize the non-Hermitian matrix Ĥeff in the
subspace {|e, n − 1〉 , |b, n〉}

Ĥn = h̄

2

(−iγ g
√

n
g
√

n 0

)
(A6)

for n � 1. The zero-excitation subspace {|g, 0〉} is constant in
time. The eigenvalues are λ

(n)
± = −ih̄�

(n)
± , with

�
(n)
± ≡ γ

4
± i

2

√
ng2 − γ 2

4
, (A7)

and the kernel of the matrix Ĥn − λ
(n)
± Î2 is spanned by

V̂n = h̄

cn

(−i�(n)
+ − g

√
n

2
g
√

n
2 −i�(n)

+

)
(A8)

with normalization factor c2
n = (−ih̄�

(n)
+ )2 + h̄2g2n/4. Here,

Î2 is the 2 × 2 identity matrix. We now define V̂ = ∑
n ên,n ⊗

V̂n, in which êk,l is a single-entry matrix with a 1 at position
(k, l ) and zeros elsewhere, so that the bright manifold matrix
can be written as ρ̂b = V̂ ρ̂V V̂ †.

We can use the method of Laplace transforms to solve for
the transformed density matrix:

sL[ρ̂] = L[ ˙̂ρ](s) + ρ̂(0), (A9)

which we then can solve for steady-state:

ρ̂(t → ∞) = lim
s→0

L[ ˙̂ρ](s) + ρ̂(0). (A10)

Projecting with 〈d| and |d〉 and using Eq. (A4), 〈d|ρ̂b|d〉 = 0,
and 〈e|ρ̂d |e〉 = 0, we find

ρ̂d (t → ∞) = γ lim
s→0

〈e|L[ρ̂b](s)|e〉 + 〈d|ρ̂d (0)|d〉 . (A11)

To solve for the first term on the right-hand side of Eq. (A11),
we first find

L[ρ̂V ](s) = L[V̂ −1ρ̂b(V̂ †)−1](s)

=
∑

n,n′�1

ên′,n ⊗ R̂n′,n(s), (A12)

with

R̂n′,n(s) = h̄2

cn′c∗
n

〈n′|α〉 〈α|n〉

×

⎛
⎜⎝

g2
√

nn′

4(s+�
(n′ )
+ +�

(n)∗
+ )

ig
√

n′�(n)∗
+

2(s+�
(n′ )
+ +�

(n)∗
− )

− ig
√

n�
(n′ )
+

2(s+�
(n′ )
− +�

(n)∗
+ )

�
(n′ )
+ �

(n)
+

(s+�
(n′ )
− +�

(n)∗
− )

⎞
⎟⎠. (A13)

We next calculate

L[ρ̂b](s) =
∑

n,n′�1

ên′,n ⊗ V̂n′ R̂n′,n(s) V̂ †
n . (A14)

Projecting Eq. (A14) onto the excited state subspace and
incorporating the initial condition from Eq. (A2), Eq. (A11)
becomes

ρ̂d (∞) = |d〉 〈d| ⊗
[

(1 − x) |α〉 〈α|

+ x|α2|
∑

l,l ′�0

Kl,l ′ 〈l ′|α〉 〈α|l〉 |l ′〉 〈l|
]
,

(A15)

with

Kl,l ′ ≡
(

1 + l + l ′

2
+ (l − l ′)2

8m

)−1

, (A16)

in which m ≡ 1
2 ( γ

g )2 is the particle-cavity critical photon num-
ber [25].

Projecting 〈b| and |b〉 on Eq. (A10) and noting that the
steady-state bright state population results from the cavity
being in the vacuum state |0〉, we have

ρ̂b(∞) = xe−|α|2 |b〉 〈b| ⊗ |0〉 〈0| . (A17)

Tracing over the atomic states, we find that the final cavity
field state is

ρ̂L(∞) = (1 − x) |α〉 〈α| + xρ̂c, (A18)

in which

ρ̂c = e−|α|2 |0〉 〈0|
+ |α|2

∑
l,l ′�0

Kl,l ′ 〈l ′|α〉 〈α|l〉 |l ′〉 〈l| (A19)

characterizes the effects of the interaction.

APPENDIX B: FIDELITY BETWEEN INITIAL AND FINAL
CAVITY FIELD STATES

Here we calculate the fidelity

F (ρ̂, σ̂ ) = (Tr
√√

σ̂ ρ̂
√

σ̂ )2 (B1)

between the initial and final states of the cavity. As seen from
Eq. (A18),
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F [ρ̂L(∞), ρ̂L(0)] = F [ρ̂L(∞), |α〉 〈α|]
= 〈α|ρ̂L(∞)|α〉 (B2)

= 1 − x[1 − f (n̄0, m)],

in which

f (n̄0, m) ≡ e−2n̄0

(
1 + n̄0

∑
l,l ′�0

Kl,l ′
n̄l+l ′

0

l!l ′!

)
(B3)

is the fidelity conditioned on the particle beginning in the
bright state, and n̄0 ≡ 〈â†â(0)〉. We use this result to create
a numerical contour plot of F in Fig. 3(a).

We now calculate an analytic expression for F in the ther-
modynamic limit n̄0 → ∞. Using the Laplace transform of
Kl,l ′ [see Eq. (A16)] and the Fourier transform of the resulting
Gaussian term to reduce its order, we find that the sum in
Eq. (B2) can be rewritten as

∑
l,l ′�0

Kl,l ′
n̄l+l ′

0

l!l ′!
=

∫ ∞

−∞

∫ ∞

0
ds du G(u, s), (B4)

in which

G(u, s) =
√

2m

πs
e−se2n̄0e−s/2 cos ue−2mu2/s. (B5)

In the limit n̄0 	 1, G(u, s) is localized around s = 0
and u = 2π p, where p is an integer. This can be seen
from the dominating term exp(2n̄0e−s/2 cos u). Expanding the
argument of this term to lowest order in s and u, we find that

e2n̄0e−s/2 cos u ≈ e2n̄0 e−sn̄0
∑
p∈Z

e−n̄0(u−2π p)2
. (B6)

From this result, we see that the relevant domains are 0 < s <

1/n̄0 and |u − 2π p| < 1/
√

n̄0.
Let us now consider the size of G(u, s) for fixed s. The

Gaussian term e−2mu2/s dampens the integrand for increasing
u. Along with the term in Eq. (B6), G(u, s) is maximized when
u = 0, and the next largest maxima occur when u = ±2π .
Therefore, we can neglect all the components other than p = 0
in Eq. (B6) if the Gaussian term e−2mu2/s is sufficiently small
for all p �= 0. This is true when

1 	 e−8π2m/s ⇒ m >
s

8π2
. (B7)

Because the largest relevant value is s = 1/n̄0, this condition
is strictest when

m > mmin ≡ 1

8π2n̄0
. (B8)

Because we are interested in the thermodynamic limit n̄0 →
∞, we can approximate Eq. (B6) with only the p = 0 compo-
nent, and our result will be valid for all m. Using these results,
Eq. (B4) becomes

∑
l,l ′�0

Kl,l ′
n̄l+l ′

0

l!l ′!
≈ e2n̄0

n̄0

√
2πme2m erfc(

√
2m). (B9)

Substituting this result into Eq. (B3) and applying the ther-
modynamic limit n̄0 → ∞, we find that

lim
n̄0→∞ f (n̄0, m) =

√
2πme2m erfc(

√
2m). (B10)

We also point out that F is exactly the n = 0 population of the
displaced cavity field [see Eq. (20)]:

F [ρ̂L(∞), ρ̂L(0)] ≡ 〈α|ρ̂L(∞)|α〉
= 〈0|D̂(−α)ρ̂L(∞)D̂(α)|0〉 (B11)

= 〈0|η̂L|0〉 .

APPENDIX C: EQUILIBRIUM QUANTUM ENTROPIES
AND MUTUAL INFORMATION

In this Appendix we derive expressions for the equilibrium
(von Neumann) entropy of various subspaces, as well as the
equilibrium quantum mutual information between the cavity
field and auxiliary particle I (ρ̂R : ρ̂L ). We first purify the ini-
tial particle state ρ̂A(0) by using the Schmidt decomposition:

|u〉AR =
∑

i

√
βi |ψi〉A ⊗ |φi〉R =

∑
i

√
βi |ψi, φi〉 , (C1)

where |ψn〉A is an eigenvector of ρ̂A(0) with eigenvalue βn and
|φn〉R ∈ R for an auxiliary Hilbert space R. (Note that we drop
the subscript labels whenever it is unambiguous for notational
simplicity.) Because we prepare the initial particle state as

ρ̂A(0) = x |b〉 〈b| + (1 − x) |d〉 〈d| , (C2)

then it follows that an appropriate Schmidt decomposition is

|u〉AR = √
x |b, b〉 + √

1 − x |d, d〉 . (C3)

The corresponding initial (pure) state of the entire ARL (par-
ticle + auxiliary particle + cavity) system is then

ρ̂ARL(0) = |u〉 〈u|AR ⊗ |α〉 〈α| = {
x |b, b〉 〈b, b| + (1 − x) |d, d〉 〈d, d| +

√
x(1 − x)[|b, b〉 〈d, d| + H.c.]

} ⊗ |α〉 〈α| . (C4)

We now evolve each term in Eq. (C4) to its corresponding equilibrium state by using Eqs. (A15) and (A17):

ρ̂ARL(∞) = x |b〉 〈b|R ⊗
(

e−n̄0 |b〉 〈b|A ⊗ |0〉 〈0|L + n̄0 |d〉 〈d|A ⊗
∑

l,l ′�0

Kl,l ′ 〈l ′|α〉 〈α|l〉 |l ′〉 〈l|L
)

+ (1 − x) |d, d〉 〈d, d| ⊗ |α〉 〈α| +
√

x(1 − x)e−n̄0/2(|b, b〉 〈d, d| ⊗ |0〉 〈α|L + H.c.).

(C5)
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From this result, the reduced density matrices in the RL, R,
and L subspaces are

ρ̂RL(∞) = x |b〉 〈b| ⊗ ρ̂c + (1 − x) |d〉 〈d| ⊗ |α〉 〈α| ;

ρ̂R(∞) = x |b〉 〈b| + (1 − x) |d〉 〈d| ;

ρ̂L(∞) = xρ̂c + (1 − x) |α〉 〈α| ,
(C6)

where ρ̂c is given in Eq. (A19). Notice that ρ̂RL(∞) is separa-
ble, and is therefore not an entangled state. The corresponding
von Neumann entropies of the RL and R subspaces are calcu-
lated to be

S[ρ̂RL(∞)] = S0 + xS(ρ̂c);

S[ρ̂R(∞)] = S0,
(C7)

in which S0 ≡ S[ρ̂A(0)]. We do not investigate the behavior of
S(ρ̂c), but we see from Eq. (A19) that ρ̂c is generally not pure,
and hence has nonzero entropy. The von Neumann entropy of
the L subspace S[ρ̂L(∞)] is more difficult to calculate because
ρ̂c and |α〉 〈α| do not always have orthogonal support. We can,
however, use the identity [31]

∑
i

piS(ρ̂i ) � S

(∑
i

piρ̂i

)

�
∑

i

piS(ρ̂i ) −
∑

i

pi ln pi

(C8)

to place an upper and lower bound on the cavity field en-
tropy. We emphasize that the upper bound in Eq. (C8) is
only reached when the ρ̂ ′

is have orthogonal support. From
Eqs. (C6) and (C8),

xS(ρ̂c) � S[ρ̂L(∞)] � S0 + xS(ρ̂c). (C9)

We can use this result to place bounds on the equilibrium
quantum mutual information between the R and L subspaces:

0 � I[ρ̂R(∞) : ρ̂L(∞)]

= S[ρ̂R(∞)] + S[ρ̂L(∞)] − S[ρ̂RL(∞)]

� S0.

(C10)

It is interesting to consider when the equilibrium quan-
tum mutual information I[ρ̂R(∞) : ρ̂L(∞)] is maximized, i.e.,
when the equilibrium cavity field contains complete informa-
tion about the initial particle state. From Eqs. (C6) and (C8),
this occurs only if the density matrices ρ̂c and |α〉 〈α| have
orthogonal support. This condition is equivalent to

F (ρ̂c, |α〉 〈α|) = 0, (C11)

where F is the fidelity [see Eq. (B1)]. Using Eqs. (A18) and
(B2), this can be rewritten as

f (n̄0, m) = e−2n̄0

(
1 + n̄0

∑
l,l ′�0

Kl,l ′
n̄l+l ′

0

l!l ′!

)
= 0. (C12)

Because the term in parentheses is positive, the only way
to satisfy Eq. (C12) is to consider the thermodynamic limit
n̄0 → ∞. In this limit, we can then use Eq. (B9) to simplify
Eq. (C12) to

√
2πme2m erfc(

√
2m) = 0, (C13)

which is true only when m → 0. Therefore, we come to the
conclusion that I (ρ̂R : ρ̂L ) = S0, and therefore that the cavity
state contains all of the information about the initial particle
state, only in the strong-coupling (m → 0), thermodynamic
(n̄0 → ∞) limit.

APPENDIX D: ENTANGLEMENT WITH THE RESERVOIR

Here we show that the spontaneous photons in the external
reservoir contain at least as much information about the initial
particle state as the cavity field. We also show how this result
implies that both the particle and cavity become entangled
with the reservoir.

Consider the quantum state describing the particle A, cavity
field L, and external reservoir P (which we model as an infinite
bandwidth bosonic bath). In our Gedanken experiment, these
three subspaces constitute the entire universe, i.e., they form a
closed system and therefore undergo unitary evolution. If we
purify the particle state (as done previously) with the auxiliary
Hilbert space R, then the density matrix of the entire system
at any time t is

ρ̂ARLP(t ) = |�ARLP(t )〉 〈�ARLP(t )| , (D1)

which is obviously pure. It follows that the entanglement
entropy between the ARL and P subsystems satisfies

S[ρ̂ARL(t )] = S[ρ̂P(t )]. (D2)

Suppose we propagate the entire ARLP system to equi-
librium. For n̄0 	 1, the equilibrium particle state ρ̂A(∞) is
approximately pure (or completely pure for n̄0 → ∞) because
the particle almost certainly ends in the dark state |d〉:

ρ̂A(∞) = xe−n̄0 |b〉 〈b| + (1 − xe−n̄0 ) |d〉 〈d|
≈ |d〉 〈d| . (D3)

It immediately follows that

ρ̂ARL(∞) ≈ |d〉 〈d| ⊗ ρ̂RL(∞). (D4)

The entanglement entropy is then

S[ρ̂ARL(∞)] ≈ S[ρ̂RL(∞)] = S0 + xS(ρ̂c), (D5)

in which we used Eq. (C7). Combining this result with
Eqs. (C9) and (D2),

S[ρ̂L(∞)] � S0 + xS(ρ̂c)

= S[ρ̂RL(∞)]

≈ S[ρ̂ARL(∞)]

= S[ρ̂P(∞)],

(D6)

or

S[ρ̂L(∞)] � S[ρ̂P(∞)]. (D7)

Equation (D7) states that the reservoir S[ρ̂P(∞)] always
absorbs at least as much information entropy as the equi-
librium cavity state. Therefore, spontaneous emission in our
setting is always a sufficient mechanism for the removal of
entropy from the system.

We now show that the reservoir is entangled with both
the particle and the cavity by considering the equilibrium
quantum mutual information values I[ρ̂P(∞) : ρ̂R(∞)] and
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I[ρ̂P(∞) : ρ̂L(∞)]. For simplicity, we restrict ourselves to
the large photon number regime n̄0 	 1. While the reservoir
always becomes correlated with the particle and cavity, the
entanglement only manifests when Eq. (D7) is a strict inequal-
ity, i.e., when m > 0. Using Eqs. (C7), (D3) and the strict
inequality version of (D7),

I[ρ̂P(∞) : ρ̂R(∞)]

= S[ρ̂P(∞)] + S[ρ̂R(∞)] − S[ρ̂PR(∞)]

= S[ρ̂P(∞)] + S[ρ̂R(∞)] − S[ρ̂AL(∞)]

≈ S[ρ̂P(∞)] + S[ρ̂R(∞)] − S[ρ̂L(∞)]

> S[ρ̂R(∞)]

� min{S[ρ̂P(∞)], S[ρ̂R(∞)]},

(D8)

which shows that the reservoir is entangled with the initial

particle state. Similarly, using Eqs. (C7), (D3), and the strict
inequality version of Eq. (D6),

I[ρ̂P(∞) : ρ̂L(∞)]

= S[ρ̂P(∞)] + S[ρ̂L(∞)] − S[ρ̂PL(∞)]

= S[ρ̂P(∞)] + S[ρ̂L(∞)] − S[ρ̂AR(∞)]

≈ S[ρ̂P(∞)] + S[ρ̂L(∞)] − S[ρ̂R(∞)]

> S[ρ̂L(∞)]

� min{S[ρ̂P(∞)], S[ρ̂L(∞)]},

(D9)

which shows that the reservoir is entangled with the final
cavity state.
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