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Any large-scale spiking neuromorphic system striving for complexity at the level of

the human brain and beyond will need to be co-optimized for communication and

computation. Such reasoning leads to the proposal for optoelectronic neuromorphic

platforms that leverage the complementary properties of optics and electronics. Starting

from the conjecture that future large-scale neuromorphic systems will utilize integrated

photonics and fiber optics for communication in conjunction with analog electronics for

computation, we consider two possible paths toward achieving this vision. The first is

a semiconductor platform based on analog CMOS circuits and waveguide-integrated

photodiodes. The second is a superconducting approach that utilizes Josephson

junctions and waveguide-integrated superconducting single-photon detectors. We

discuss available devices, assess scaling potential, and provide a list of key metrics and

demonstrations for each platform. Both platforms hold potential, but their development

will diverge in important respects. Semiconductor systems benefit from a robust

fabrication ecosystem and can build on extensive progress made in purely electronic

neuromorphic computing but will require III-V light source integration with electronics at

an unprecedented scale, further advances in ultra-low capacitance photodiodes, and

success from emerging memory technologies. Superconducting systems place near

theoretically minimum burdens on light sources (a tremendous boon to one of the most

speculative aspects of either platform) and provide new opportunities for integrated,

high-endurance synaptic memory. However, superconducting optoelectronic systems

will also contend with interfacing low-voltage electronic circuits to semiconductor light

sources, the serial biasing of superconducting devices on an unprecedented scale, a

less mature fabrication ecosystem, and cryogenic infrastructure.

Keywords: neuromorphic, superconducting electronics, optoelectronic, large-scale computing systems,

spiking network, photonics

1. INTRODUCTION

The foundations of cognition remain a great frontier of science, with potentially enormous
ramifications for technology and society. A hardware capable of simulating spiking neural networks
with the scale and complexity of the brain or even beyond could be a powerful tool in deciphering
this enigma. Achieving such large-scale systems has proven to be non-trivial with established
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CMOS hardware (Furber, 2016). A significant challenge will
be to enable efficient communication with low-latency amongst
billions or trillions of neurons. Optics appears well-matched
to the task, as the lack of resistive, capacitive, and inductive
parasitics makes optical links more amenable to high fan-
out than electrical interconnects (Shainline et al., 2019). While
digital systems partially circumvent this issue by leveraging time-
multiplexing to artificially increase fan-out (Young et al., 2019),
multiplexing introduces latency that scales exponentially above
a certain data load (Hennessy and Patterson, 2011). Optical
interconnects may enable direct connections between neurons
which would eliminate all traffic-induced delays and support
larger, faster, and more interconnected networks. However,
while the lack of interaction between photons is beneficial for
reducing parasitics during communication, it is a detriment to
computation. Electronic circuits are better suited to implement
complex, nonlinear neuronal functions. It is reasonable to
anticipate performance gains from optoelectronic neural systems
leveraging optics for communication and electronics for
computation, provided the hardware can be realized.

Our proposal to fabricate a direct, physical connection
between every pair of connected neurons is known as the
fully dedicated axon approach to communication (Segal et al.,
2016). While this strategy requires largely fixing network
topology in hardware—a chief disadvantage when compared with
highly reconfigurable digital systems—the reduced overhead and
elimination of communication bottlenecks will greatly benefit
performance. We further specify that all synapses, dendrites,
and neurons utilize fully dedicated electronic circuits, so that
each element of hardware has a one-to-one correspondence with
its information-processing role in the neural system. This fully
dedicated approach is advantageous if one aspires to create a
diverse array of synaptic and dendritic behaviors at each neuron,
as observed in biological neural systems (Marder, 1987; Euler
and Denk, 2001). For instance, a different time constant or
plasticity mechanism could be implemented at every synapse
on a single neuron. Perhaps more importantly, fully dedicated
components eliminate the auxiliary hardware required to
perform multiplexing operations. Further, performing synaptic
weighting and temporal dynamics in the electronic domain
allows for binary optical communication, which minimizes the
amount of optical energy per spike and reduces noise incurred by
communication. The scope of this paper is therefore limited to
networks meeting these three conditions:

1. Direct, optical connections are utilized for communication
between neurons (fully dedicated axons).

2. Optical communication is binary. The amplitude of the optical
signal carries no information.

3. All synaptic, dendritic, and somatic computations are
performed by fully dedicated electronic circuits.

With these conjectures established, a picture of the hardware
under consideration begins to emerge. There is a single optical
transmitter at each neuron. This light emitter produces a short
pulse of light each time the neuron spikes. The optical pulse is
coupled into a waveguide, and optical power is tapped from the
waveguide for each downstream synapse. Each synapse contains

a photodetector which registers an all-or-nothing synapse
event. From there, all synaptic weighting, spike-train filtering,
dendritic processing, signal summation, neuronal thresholding,
and plasticity mechanisms are implemented in the electronic
domain with tailored integrated circuits. A schematic of this
general framework is shown in Figure 1.

There are potentially multiple ways to physically implement
this model. The remainder of this paper will discuss two possible
implementations—a superconducting platform and a room-
temperature all-semiconductor system. The superconducting
platform, known as SOENs (Superconducting OptoElectronic
Networks) is discussed in prior work (Shainline et al., 2017b,
2019; Shainline, 2019, 2021). In short, optical links are
formed from semiconductor light sources and superconducting
nanowire single photon detectors (SNSPDs). Computation
is performed with analog Josephson junction (JJ) circuits
and memory is implemented with persistent current in
superconducting loops. The semiconductor implementation is
imagined as an exact analog of the SOENs platform, except
without the benefits (or limitations) of cryogenic elements.
Traditional photodiodes enable optical communication, analog
CMOS circuits provide computation, and emerging memory
devices provide synaptic memory.

This paper seeks to analyze the suitability of both platforms
for implementing large-scale optoelectronic neuromorphic
networks. Despite limiting our discussion only to architectures
meeting our three conjectures, there remains a vast space
of design choices, making it difficult to draw hard-and-fast
conclusions. Nevertheless, interesting guidelines can be obtained
by analyzing limits of technologies most likely to be used in each
platform. Important benchmarks for device performance are also
identified, which may be of use in monitoring the development
of this field.

2. COMMUNICATION

2.1. Optical Receivers
We begin analysis of optical interconnects with receivers. There
are two ways the receiver influences the power budget of an
optical link: (1) The receiver (and the electrical components
it must drive) sets the minimum optical signal that must be
produced by the light source, and (2) the receiver may require
electrical power of its own to run. It is found that the energy
per spike may be quite similar in both platforms once cooling is
accounted for in the superconducting case. However, the optical
power required from light sources is reduced by a factor of
1,000 in the superconducting case, at least when compared to
the semiconductor receivers of comparable total efficiency, which
omit transimpedance amplifiers (Miller, 2017).

2.1.1. Superconductor Receivers
As stated previously, the SOENs platform utilizes SNSPDs to
detect optical signals as faint as a single photon. Physically, an
SNSPD is a superconducting nanowire biased with a current
source (Ispd ≈ 10 µA). The simple structure makes fabrication
and waveguide integration straightforward (Sprengers et al.,
2011; Pernice et al., 2012; Akhlaghi et al., 2015; Ferrari et al., 2015,
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FIGURE 1 | An abstract schematic of the class of optoelectronic neurons meeting our three criteria. Each synapse (Se and Si for expiatory and inhibitory synapses,

respectively) is implemented with a physical circuit block containing a detector and a temporal filter. The detector produces an all-or-nothing electrical pulse upon

receipt of an optical spike which is then processed by the filter. The parameters of the filter (time constant, weight, etc.) can be set individually for each synapse. A

local weight update circuit (W) implements plasticity mechanisms at each synapse. Synaptic outputs are integrated in the soma (N) which drives an optical transmitter

to downstream connections upon reaching threshold.

FIGURE 2 | Receivers for the (A) superconducting and (B) semiconducting platforms. Note that synaptic weighting for the semiconductor case is included in the

filtering circuitry, shown in Figure 4B.

2018; Sahin et al., 2015; Shainline et al., 2017a; Buckley et al.,
2020a). Photons traveling through a waveguide evanescently
couple to a nanowire on the surface of the waveguide. A
single photon has enough energy to drive the nanowire from
the superconducting phase to a resistive state. In SOENs
receivers, this momentarily redirects the bias current along an
alternate conduction pathway that activates a JJ circuit to register
the synapse event and conduct further synaptic processing
(Figure 2A).

While an SNSPD itself dissipates zero static power, electrical
power is still required for superconducting receivers. Current
biases will require some power, but should be shared by many
devices (section 3), ameliorating the cost. More important is
dynamic electrical power consumption associated with detection
events. The nanowire has an inductance, Lspd, that stores energy
from the current bias. During a detection event, this energy is
dissipated in the resistor rspd. The electrical energy necessary

to detect each photon is then 1
2LspdI

2
spd

. Lspd can be as low as
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100 nH, resulting in an electrical energy consumption (Espd) of
around 5 aJ/spike.

Since an SNSPD is capable of detecting single photons, it
will operate near the quantum limit of optical communication
(Razavi, 2012). We assume that the detection of a single photon
will be treated as the registering of a synaptic event. The
probability of a light source producing a spike with a certain
number of photons within a fixed time window is given by
a Poisson distribution. We will also conservatively assume a
detection efficiency ηD of 70% (higher detection efficiency is
certainly possible Marsili et al., 2013; Reddy et al., 2020). The
probability of measuring zero photons during a spiking event is
then given by:

P(0) =
∞
∑

k=0

Nk
ph
e−Nph

k!
(1− ηD)

k = e−NphηD , (1)

where Nph is the average number of photons per spiking event.
Neural systems are known for remarkable robustness to and even
utilization of noise (Stein et al., 2005; McDonnell and Ward,
2011). Detecting only 99% of spikes may be tolerable and would
still represent a significant improvement over biology, wherein
synapse reliability is typically in the range of 5–80% (Allen and
Stevens, 1994; Lisman, 1997). From Equation (1), this would
correspond to roughly 7 photons (0.9 aJ for λ = 1.5 µm) needed
to reach the receiver. The total number of photons produced by
the source will need to be higher to account for energy losses in
the link. The total optical energy per spike, Eopt, will be:

Eopt =
Nphhν

η
. (2)

hν is the energy of a single photon and η is the total energy
efficiency of the optical link. η includes all optical losses and the
inefficiency of the transmitter. This efficiency factor will be highly
dependent on the specifics of the platform, but for now we will
leave it as a free variable. The total power consumed by the optical
link is the sum of Eopt and Espd. Accepting a 1% error rate, these
two contributions to the total energy will be roughly equal when
η = 20%. Such a high efficiency is likely near the limits of physical
possibility. For more realistic values of η, Eopt will dominate.

Importantly, superconducting electronics come with a cooling
overhead (section 5). We conservatively assume that every watt
of power produced at low temperature will require 1 kW of
refrigeration power. System-level effective optical energy per
spike for superconducting links will be no less than 1 fJ.

Fabrication of waveguide-integrated SNSPDs has become
commonplace in recent years (Sprengers et al., 2011; Pernice
et al., 2012; Akhlaghi et al., 2015; Ferrari et al., 2015, 2018; Sahin
et al., 2015; Shainline et al., 2017a; Buckley et al., 2020a). SNSPD
materials include NbN, NbTiN,WSi, andMoSi. Superconducting
films (3–10 nm) can be sputtered at room temperature atop
many substrates and patterned into wires from 50 to 5 µm wide
using conventional lithography and etching. Multiple planes of
SNSPDs have also been demonstrated (Verma et al., 2012)—a
promising development for future large-scale neuromorphic

systems (section 5). Waveguide-integrated NbN SNSPDs can
reach photon count rates exceeding 1GHz (Rosenberg et al.,
2013; Vetter et al., 2016). However, slower detectors, such asMoSi
and WSi SNSPDs with 20 MHz count rates, have demonstrated
the best yields to date (99.7% Wollman et al., 2019). Previous
statements that SOENs were limited to 20 MHz were motivated
by these pragmatic concerns about the current state of fabrication
(Shainline et al., 2019).

2.1.2. Semiconductor Receivers
While semiconductor receivers are the predominant technology
for long-distance optical communication, intra-chip optical
receivers deviate significantly from their long-distance
counterparts, as traditional transimpedance amplifiers likely
consume too much electrical power, despite impressive optical
sensitivities. This has led to the proposal of “receiverless” designs
that omit amplifiers altogether (Miller, 2017). Receiverless
communication uses a photodetector to directly drive the input
of CMOS gates. Photons produce electron-hole pairs in the
photodetector, which in turn charge the CMOS gate capcitance
up to the switching voltage. A circuit diagram of the scheme
is shown in Figure 2B in which a photodiode directly drives a
CMOS digital buffer. A resistor is also placed in parallel to allow
the receiver to reset. In principle the resistor is unnecessary if
an optical reset is used as described in Debaes et al. (2003). The
resistor would increase the minimum optical power necessary to
register a spike and limit the bandwidth of the receiver.

With optical link efficiency η, the necessary optical energy
required to drive the receiver to a voltage V is Miller (2017):

Eopt =
CtotV

ηR
. (3)

R is the responsivity of the detector, typically of order 1A/W.Ctot

includes the photodiode capacitance, the CMOS gate capacitance,
and any wiring capacitance. It is reasonable to consider values
for Ctot at the femtofarad level. For 1.5µm photons and a
required voltage swing of 0.8 V, Eopt ≈ 0.7 fJ (5000 photons)
for unit efficiency. This is similar to the superconducting case,
once cooling is considered. If two optical communications
links were identical in all measures (source efficiency, optical
losses, etc.) except one was cooled to 4K with SNSPDs and
the other operated at room-temperature with photodiodes, then
communicating a spike would cost nearly the same energy at
the system level in each link. The power required for cryogenic
cooling pays for itself with reduced light levels in the optical
link. Cooling semiconductor receivers to 4K does not appreciably
improve the situation, as the number of photons required in the
receiverless case is related to charge, capacitance, and voltage,
not thermal noise. For capacitances below 1 fF (a difficult task),
semiconductor receivers could potentially consume even less
energy than their superconducting counterparts. Waveguide-
integrated femtofarad photodiodes have been demonstrated
in both SiGe and Ge (DeRose et al., 2011). Polysilicon
photodiodes are also attractive for increased manufacturability
Mehta et al. (2014). Most photodiodes have far better speed than
required for neuromorphic applications, reaching up to 45GHz
(DeRose et al., 2011).
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Just as with SNSPDs, semiconductor receivers will also require
electrical power, even if it is minimized by the receiverless
approach. In this case, there will be static power dissipation
through the leakage current of the photodiode. Assuming a
1V bias, a leakage current on the order of 1 nA (Zhang et al.,
2020a), and an optical link efficiency of 1%, this static dissipation
would dominate power consumption for average spiking rates
below 10 kHz. The development of low capacitance, zero-bias
photodiodes (Nozaki et al., 2018) would be a major advantage
toward making efficient, low frequency networks. Static power
consumption is also a major question for many avalanche
photodiode (APD) receivers. Avalanche gain could provide a
significant (at least one order of magnitude) reduction in the
necessary optical power per spike (Miller, 2017). While often
associated with higher bias voltages, germanium waveguide-
integrated avalanche detectors have been demonstrated to
provide 10 dB of gain even at 1.5 V bias (Assefa et al., 2010).
However, dark current is still typically in the microamp range for
such detectors (Assefa et al., 2010; Virot et al., 2014), meaning
that brain-scale networks are likely out of reach due to power
constraints (section 5). APDs may be of interest in smaller, faster
spiking networks, however. Another intriguing possibility is to
reduce static power consumption through cooling, as the dark
current could potentially be reduced by orders of magnitude
(Pizzone et al., 2020). However, in that case one forfeits a major
advantage of the semiconductor approach.

While the receiverless scheme is promising for achieving low
energies per spike, it places significant burden on the transmitter
side of the link. Neuromorphic applications magnify this burden,
as neurons are expected to drive thousands of downstream
connections in parallel. Additionally, the receiver capacitance
must be charged quickly to maintain high spiking frequencies.
The result is that relatively large optical power is required from
transmitters. The best case (η = 1) scenario is shown in Figure 3.
Semiconductor receivers can be expected to require around one
thousand times the optical power of superconducting receivers
and the highest spiking frequency of a neuron could very well be
limited by the power output of the light source. The ramifications
of this result on prospective light sources are discussed in the
next section.

2.2. Optical Transmitters
The transmitter is expected to dominate the power budget of
optical links for both platforms. Room-temperature, CMOS-
integrated light sources have been a holy grail for decades, but
materials integration issues have kept this prized objective out
of reach. For superconducting systems, SNSPDs drastically
lower the power requirements of light sources, while cryogenic
temperatures improve light source efficiency. Light sources are
likely significantly simpler in the superconducting case. However,
interfacing low-voltage superconducting electronics with
semiconductor light sources (McCaughan et al., 2019) presents
an obstacle that is absent from the all-semiconductor platform.

2.2.1. Integrated Light Sources
Optical coherence is not a requirement for the envisioned system.
NanoLEDs are thus an attractive option due to their ease of

FIGURE 3 | The required optical power to drive 103 downstream synapses

within one inter-spike interval for a given spiking frequency assuming

receiverless photodiodes with optical link efficiency η = 1.

fabrication, lack of threshold current, and improving efficiency
with shrinking scale (Romeira and Fiore, 2019). However,
nanoLEDs struggle to produce optical power significantly greater
than 1µW Romeira and Fiore (2019). While semiconductor
systems targeting spiking frequencies in excess of 1MHz may be
forced to turn to lasing, nanoLEDs should be more than sufficient
for superconducting platforms. Either way, integrating millions
of light sources on a 300mm wafer remains highly challenging.
The indirect band gap of silicon drastically reduces light
emission. Off-chip light sources are used in some applications,
but are likely untenable for massive systems, as their high static
power consumption is incommensurate with the sparsity of
neural activity. Integrated light sources would be a tremendous
boon, if not a requirement for the success of large-scale
optoelectronic neuromorphic computing. There are two courses
of action: (1) force silicon to emit light through either material
and/or environmental modifications or (2) integrate direct
bandgap materials on silicon.

Many strategies toward silicon light sources have been
pursued (Iyer and Xie, 1993; Shainline and Xu, 2007) including
quantum confinement in Si-based superlattices (Warga et al.,
2008) and nanocrystals (Walters et al., 2005), emission from
embedded erbium (Ennen et al., 1985; Palm et al., 1996), point-
defect emitters (Brown and Hall, 1986; Bradfield et al., 1989; Bao
et al., 2007; Rotem et al., 2007), extended defects (Ng et al., 2001),
strain dislocations (Kveder et al., 2004), and engineering of the
local density of optical states (Green et al., 2001). Total efficiency
from 0.1% (Kveder et al., 2004) to 1% (Green et al., 2001) has
been demonstrated at room temperature, but not at powers and
areas suitable for the semiconductor receivers introduced in the
previous section.

Abandoning silicon as an active optical element, many
researchers turned toward epitaxial germanium grown on Si
(Sun et al., 2009c). Like silicon, germanium is an indirect-
gap semiconductor. However, the direct gap is only 136 meV
higher than the indirect gap, and clever implementation of strain
(Ishikawa et al., 2003; Ghrib et al., 2012; Tani et al., 2021) and
heavy n-type doping (Liu et al., 2007; El Kurdi et al., 2009; Sun
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et al., 2009a; Camacho-Aguilera et al., 2013; Virgilio et al., 2013)
can lead to appreciable direct, radiative recombination. These
efforts have led to Ge-on-Si lasers (Sun et al., 2009b; Liu et al.,
2010), but it has proven difficult to reduce the threshold current
and increase device efficiency. Another approach is to grow SiGe
with a hexagonal lattice on GaAs, leading to a direct gap (Fadaly
et al., 2020), but this does little to solve integration problems.

At present, neither Si nor Ge emission has proved satisfactory
for the needs of digital communication, so integrating III-V
materials on silicon substrates has received significant attention.
Pending a watershedmoment in silicon sources, III-V integration
will be required for the semiconductor platform (although not
necessarily in the superconductor case, where low-temperature
changes the physical context). Epitaxial growth would be
an attractive solution for III-V integration due to the high
throughput (Norman et al., 2018), but defects due to lattice
mismatch have so far prevented this method from large-scale
adoption. III-V quantum dots are more robust to such defects
and have demonstrated high optical powers with small footprints
(Chen et al., 2016; Jung et al., 2017; Norman et al., 2018),
albeit typically grown on offcut Si substrates that are not CMOS
compatible or with thick buffer layers that make optoelectronic
contact difficult. More work is required to realize scalable, cost-
effective integration of III-V quantum dot light sources with
CMOS electronics, passive photonic waveguides, and efficient
photodetectors. Without epitaxial growth, the semiconductor
platform would be less scalable due to the limited size of III-
V wafers and the expense of performing wafer bonding. A
variety of schemes have been proposed (Norman et al., 2018;
Tang et al., 2019), including die-level bonding (Song et al., 2016;
Crosnier et al., 2017), wafer-level bonding (Hu et al., 2019; Szelag
et al., 2019; Jiao et al., 2020), transfer printing (Justice et al.,
2012; Zhang et al., 2018a, 2019), and selective-area epitaxy (Han
et al., 2021), but these approaches still appear cumbersome when
seeking the scale of integration considered here.

The situation is significantly more favorable for cryogenic
systems. Low temperature often reduces non-radiative
recombination (Sandiford, 1958; Gurioli et al., 1991; Dolores-
Calzadilla et al., 2017), improving efficiency for both silicon and
III-V light sources. The case of Ge at low temperature is more
subtle due to the pecularities of the pseudo-direct gap and inter-
valley scattering that is more prevalent at higher temperatures
(Sun et al., 2009c). The benefits are further compounded by the
low optical power requirements of SNSPDs. When integrating
III-V light sources with CMOS, the light sources must be
integrated on top of the electronics after the high-temperature
dopant activation steps have been performed. Superconductor
electronics have no such high-temperature processing steps,
so the light sources can be produced on a Si wafer before the
electronics are realized. Problems related to offcut Si wafers
and thick buffer layers are eliminated. Additionally, silicon
light sources, with their superior potential for integration,
demand exploration with the superconducting platform. Several
silicon point defects typically quenched at room-temperature
emerge as narrow-linewidth candidates for light sources in
the telecommunications band (Davies, 1989; Sumikura et al.,
2014; Buckley et al., 2017; Beaufils et al., 2018; Chartrand et al.,

2018). While single-photon emission (Bergeron et al., 2020;
Hollenback et al., 2020; Redjem et al., 2020) is not the objective
in the present context, the narrow linewidth is also attractive for
further efficiency gains via the Purcell Effect (Romeira and Fiore,
2018). LEDs have already been demonstrated with the W-center
defect (Bao et al., 2007; Buckley et al., 2017), albeit with poor
(10−6) efficiencies, limited by electrical injection efficiency rather
than emitter lifetime. Photoluminescence studies are promising
for orders of magnitude improvement (Buckley et al., 2020b),
but more work is required to improve emission efficiency in
an integrated-circuit context. If cryogenic silicon light sources
become viable, the superconducting platformmight hold a major
scalability advantage over the semiconducting analog.

2.2.2. Driving Circuitry
Both platforms require neurons to drive semiconductor light
sources. The transmitter circuitry is thereby required to produce
voltages on the scale of the bandgap of the optical source
(≈ 1V). CMOS circuitry, itself a semiconducting technology,
naturally operates on this voltage, rendering the driving circuitry
a non-issue. Standard MOSFET LED or modulator driving
circuits (Halbritter et al., 2014; Bowers et al., 2016) can
be straightforwardly adapted for neuromorphic applications.
Superconductors, however, operate in an entirely different
regime, with signals usually on the order of the superconducting
energy gap (≈ 1mV). The optimal method for interfacing
superconducting electronics with semiconductor devices is still
an area of active research. Recent progress has been made with
devices utilizing the massive change in impedance during a
phase transition between superconducting and resistive states.
In McCaughan et al. (2019), a resistive element was heated
using 50mV pulses to thermally trigger a transition in a
superconducting meander. The meander transitioned to a state
with resistance in excess of 10M� and was used to drive a
cryogenic silicon light source waveguide-coupled to an SNSPD.
While these results are promising, the light source was only
pulsed at 10 kHz (due to poor source efficiency) and was
fabricated on a separate chip.More work is needed to improve the
speed, efficiency, and to monolithically integrate driving circuitry
with LEDs.

3. ELECTRONIC NEURONAL
COMPUTATION

Electronic circuitry capable of performing neuronal dynamical
operations will also be necessary. Biological neurons are
increasingly recognized as sophisticated computational units
(Koch and Segev, 2000; Stuart and Spruston, 2015; Hawkins and
Ahmad, 2016; Sardi et al., 2017). Emulating such complicated
behavior has been the subject of extensive investigation in both
semiconducting (Vogelstein et al., 2007; Indiveri et al., 2011;
Brink et al., 2013; Pfeil et al., 2013; Benjamin et al., 2014; Abu-
Hassan et al., 2019) and superconducting platforms (Crotty et al.,
2010; Shainline, 2019; Toomey et al., 2019). We do not attempt
a comprehensive review of circuitry, but rather draw attention to
issues specific to optoelectronic networks in both cases.
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FIGURE 4 | Synaptic filtering circuits for the superconductor (A) and semiconductor (B) cases. Weighting in the superconducting case was shown in Figure 2. The

memristor-integrated DPI circuit pictured here is introduced in Ref. (Dalgaty et al., 2019).

3.1. Semiconductor Electronics
The maturity of CMOS processing has allowed great strides
in neuromorphic computing. While optical communication
would likely also be advantageous in digital approaches, we
focus on analog CMOS neurons for their perceived efficiency
advantages (Mead, 1990; Rajendran et al., 2012). At a basic
level, a neuron must perform three mathematical functions:
summation of synaptic inputs, temporal filtering, and threshold
detection leading to action potential generation. Summation
can be achieved by exploiting Kirchoff’s current law. Filtering
can be implemented with elementary resistor-capacitor circuits.
Thresholding is a natural function of transistors. Building upon
this basic mapping, analog neurons have demonstrated a litany
of biologically-inspired models (Indiveri et al., 2011; Liu et al.,
2015).

It was found in the previous section that optical
communication requires a minimum of about 1 fJ of energy to
deliver a spike signal to each synapse. For realistic optical link
efficiencies, this value will be at least an order of magnitude
larger. Synaptic processing circuits would therefore ideally
operate with an energy budget of 10–100 fJ to process a single
spike. Somatic computation could comfortably consume power
larger than that of synaptic processing by a factor of the average
fan-out (perhaps 1,000). Many low-energy neuromorphic
demonstrations are promising for reaching these targets. By
reducing themembrane capacitance and supply voltage, a neuron
capable of 25 kHz spike rates was demonstrated to consume
only 4 fJ/spike (Sourikopoulos et al., 2017). Many other analog
neurons, with energies ranging from femtoJoules to picoJoules
per spike, fall comfortably below the power consumption of

optical communication (Indiveri and Sandamirskaya, 2019).
However, it remains to be seen if more complicated neurons and
synapses, implementing a critical subset of behavior necessary
for cognition, will be able to maintain such low power operation.
In terms of speed, CMOS neurons have demonstrated spike
rates in excess of 100 MHz (Schemmel et al., 2017). Optical
communication should face few issues achieving such speeds, if
sufficiently bright light sources can be efficiently integrated with
CMOS circuits.

One challenge for the CMOS approach has been to design
compact circuits with long time constants. Long time constants
are important for systems targeting biological time scales
(upwards of 500ms) (Indiveri and Sandamirskaya, 2019) or
power-law distributions of timescales to implement critical
behavior (Beggs, 2007). Subthreshold transistor circuits operating
with currents in the femtoamp to picoamp range minimize the
size of capacitor needed to implement a specific time constant
(Indiveri et al., 2011). The area constraints of this scheme are
discussed in Supplementary Information A and compared to
the superconducting approach.

For a concrete example, a circuit diagram for a memristor
implementation of the popular differential-pair integrator (DPI)
synapse is shown in Figure 4B (Dalgaty et al., 2019). The DPI
produces a decaying exponential post synaptic signal in response
to an input voltage pulse—potentially from an optical receiver.
This leaky integrator behavior is characterized by a time constant
set by the value of the filtering capacitance and the rate of leakage
off the capacitor (Chicca et al., 2014). The time constant could
potentially be programmed using memristors—an advantage
over superconducting circuits that have been proposed to date.
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3.2. Superconducting Electronics
Superconducting neurons have been studied nearly as long as
CMOS implementations, with a mapping between neuronal
functions and superconducting electronics identified in the early
1990s (Harada and Goto, 1991; Hidaka and Akers, 1991). In
this case, Faraday’s Law, governing the addition of magnetic flux
through mutual inductors to superconducting loops provides
the necessary synaptic summation function. Filtering is achieved
through resistor-inductor blocks (or RC circuits in some cases
Crotty et al., 2010). Josephson junctions (JJs) provide the
requisite nonlinear thresholding element.

Like their CMOS counterparts, many superconducting
circuits have now been designed to implement sophisticated
neuronal dynamics. Superconducting neuromorphic circuits
have been designed to implement a variety of bio-inspired neuron
models (Crotty et al., 2010; Schneider et al., 2018a; Toomey
et al., 2019), dendritic processing (Shainline, 2019), and have
performed image classification in simulation (Schneider et al.,
2017). The natural spiking behavior of JJs may even require a
lower device count than analogous CMOS circuits for various
leaky-integrate-and-fire models (Crotty et al., 2010). In short,
it does not appear that superconducting circuits are any less
capable of complex neuronal computation than CMOS, although
experimental demonstrations lag far behind.

Superconducting electronics has long been pursued for
gains in energy efficiency and speed. Indeed, superconducting
elements dissipate zero static power and spike energies are
frequently reported in the sub-femtojoule range, including
refrigeration. Optical communication is likely to dominate
power consumption for superconducting optoelectronic systems
(Supplementary Information B). In terms of speed, fully
electronic superconducting neurons may be capable of spike
rates up to 100GHz (Schneider et al., 2017, 2018a). However,
this is orders of magnitude faster than any SNSPD can
respond. This speed disparity is a notable difference between
the superconducting and semiconducting architectures. While
optical communication could be integrated with CMOS neurons
with no degradation in speed, optoelectronic superconducting
systems will likely be significantly slower than their fully
electronic counterparts. This may be the cost of highly connected
systems. That said, the extraordinary switching speed of JJs is
still leveraged in optoelectronic networks to perform analog
computations within synapses, dendrites, and neurons.

The ability of superconducting electronics to go slow might
be just as compelling as their ability to go fast. While it can
be challenging to implement long, biologically realistic time
constants in CMOS neurons, superconducting loops can create
time constants orders of magnitude higher than biology by
adjusting the L/R ratio in synaptic and neuronal loops (See
Figure 4A and Supplementary Information A). The ability to
generate dynamics across many orders of magnitude in time
also dovetails nicely with suggestions that critical behavior is
important for cognition (Cocchi et al., 2017).

Fan-in has traditionally been considered a liability of
superconducting electronics. If this were the case, it would clearly
be an impediment to mature superconducting neuromorphic
systems. For superconducting neurons designed to use single
fluxons as synaptic signals, fan-in has recently been analyzed

(Schneider and Segall, 2020), and it has been found that if a single
synapse must be able to drive a neuron above threshold, fan-in
may be limited to around 100. However, it is often not necessary
for each synapse to be able to trigger a neuronal spike event.
It has been analyzed elsewhere that if analog signals containing
multitudes of fluxons are communicated from synapses to the
neuron cell body, fan-in can likely scale to biological levels
through the use ofmutual inductors (Shainline et al., 2019). Using
more fluxons comes with larger power consumption, but for
optoelectronic systems, light production will likely still dominate.

While most diagrams of superconducting circuits (including
those here) show many separate biases delivering current to
various elements, the ability to construct circuits that can be
biased in series will be critical to the scalability of this hardware. A
separate bias for every synapse would be untenable in large-scale
systems (Tolpygo, 2016). Thismimics the evolution that occurred
in superconducting digital electronics, in which the field has
turned away from parallel biasing schemes and embraced serially
biased platforms (Tolpygo, 2016) and current recycling schemes
(Kirichenko et al., 2011). SOENs are potenially amenable to serial
biasing, but this important point demands further analysis.

A superconducting synaptic filtering circuit is shown in
Figure 4A. Synaptic weighting is implemented in the receiver
circuit (Figure 2A), so this circuit block is only responsible for
converting a train of fluxons into a decaying exponential post-
synaptic potential reminiscent of biological and CMOS synapses.
A resistor, rsi, converts a superconducting persistent current loop
into a leaky-integrator in a similar manner to the DPI synapse.
The time constant is set by Lsi/rsi, and the synaptic current can
be added to a neuronal circuit through mutual inductors. Unlike
the DPI synapse, this circuit does not have a programmable
time constant, but does hold the potential to implement a wide
range of different time constants by fabricating different values
of Lsi and rsi.

4. SYNAPTIC MEMORY

It has been apparent to the neuromorphic community for some
time that large-scale neural systems will require innovative
approaches to synaptic memory. A local, analog memory
element unique to every synapse will provide the most efficient
performance by eliminating memory retrieval and digital
conversion. Important metrics for analog synaptic memory
technologies include weight precision, volatility, area, write
energy, write speed, and endurance (the effective number of
cycles in a device’s lifetime). We attempt to provide desired
benchmarks for a few of these metrics in the specific case of
optoelectronic networks. For this section, we assume a speedup
of about 104 over biology, for an average spike rate of 10 kHz
and a maximum of 10MHz. This is commensurate with both
the maximum count rates of high-yield SNSPDs and some of the
fastest CMOS electronic neuromorphic systems built to-date.

4.1. Memory Benchmarks
4.1.1. Endurance
Large-scale neural systems require significant investments in
money and time. Operational lifetimes on the scale of decades
(109 s), if not longer, are therefore essential. Such systems
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will be expected to learn continually during that lifespan,
placing significant requirements on the durability of memory
technologies. The number of times a synapse is updated in its
lifetime is a function of neuron spiking frequency (f ) and the
number of synapses that are typically updated after each post-
synaptic spike. Neuroscientific evidence has been presented that
the number of active presynaptic inputs required to trigger a
postsynaptic spike goes as

√
N, where N is the fan-in of the

neuron—exceeding 1,000 for brain-like systems (van Vreeswijk
and Sompolinsky, 1996; Vogels et al., 2005). We assume all
synapses that contributed to the spiking of the post-synaptic
neuron are updated with each spike. We then estimate the
number of weight updates (Nupdate) in the synapses’s lifetime (L)
will be:

Nupdate =
Lf
√
N

(4)

For a decades-long lifetime, and a mean spiking frequency
of 10 kHz, the total number of weight updates will be 1011.
This is a challenging demand for many emerging non-volatile
memory technologies.

4.1.2. Update Energy
One would like the power dedicated to weight updates not to
exceed the power used for optical communication. Once again
invoking the assumption that

√
N synapses are updated with each

postsynaptic spike, we arrive at the following relation between the
energy to produce a single spike (Eopt) and that to update a single
weight (Eupdate):

Eupdate <
√
NEopt (5)

Using the analysis in section 2, 1 fJ of energy needs to be delivered
to the receiver in either platform. Assuming a transmitter
efficiency of 1%, this would mean Eopt is 100 fJ. Therefore, for
a fan-in of 1,000 synapses, Eupdate would ideally be no more
than about 3 pJ. This value includes any energy consumption
of peripheral circuitry, both static and that associated with
programming. This efficiency appears to have already been met
by several emerging memory technologies (Schneider et al.,
2018b; Zahoor et al., 2020).

4.1.3. Update Speed
An ideal system would be capable of implementing synaptic
updates within the minimum inter-spike interval. While
semiconductor optoelectronic systems could potentially produce
spike rates in excess of 10GHz (assuming sufficiently bright,
integrated light sources can be achieved), synapses might need
to be taken offline during WRITE operations, as it is unlikely
that sophisticated plasticity mechanisms can be implemented in
under 100 ps. Lowermaximum frequencies would allow plasticity
to be implemented without ever neglecting a spiking event. For
our 10 MHz target, we desire memory updates in under 100
ns. Slower updates may not be completely intolerable, if network
dynamics are robust to missed spikes during synaptic updates or
to synaptic weights that are in the process of being altered.

TABLE 1 | List of desired performance metrics for synaptic memory in a system

with average fan-out of 1,000, maximum spike rate of 10 MHz, average spike rate

of 10 kHz, and spike energy of 100 fJ.

Metric Goal

Endurance > 1011 updates

Update Energy < 3 pJ

Update Speed < 100 ns

Weight Precision 4-8 bits

4.1.4. Weight Precision
The necessary weight precision will be determined by the
specifics of a chosen learning model and the desired application.
Weight precision has been the subject of much discussion. It
has been suggested that 4-bit precision is sufficient for state-of-
the-art mixed signal neuromorphic systems (Pfeil et al., 2012).
Deep learning systems have also demonstrated success with 8-
bit precision—a significant reduction from 32-bit floating point
numbers (Wang et al., 2018). Hippocampal synapses in rats have
been inferred to allow at least 26 different states (≈ 5 bit), which
squares nicely with computer science findings (Bartol et al.,
2015). It has also been argued that metaplasticity mechanisms
are more important for lifelong learning than the bit-depth of the
synapse (Fusi et al., 2005; Fusi and Abbott, 2007).

Target values for these key synaptic memory metrics are
summarized in Table 1.

4.1.5. Programming Signals
One important criterion that eludes quantitative benchmarking
is the complexity of programming circuitry for synaptic memory.
Significant infrastructure for producing programming signals
could limit scalability. For example, floating-gate synapses often
require programming signals at significantly higher voltages than
are likely to be used in other parts of the network. For large-
scale systems, memories with simple programming requirements
will be at an advantage. Superconducting loop memory (section
4.2.4) is intriguing from this standpoint, as the plasticity circuits
operate with nearly identical signals and circuit blocks as those
found in the rest of the network.

4.2. Proposed Technologies
4.2.1. Room-Temperature Analog Memories
Many technologies have been proposed to implement synaptic
weighting for room-temperature neuromorphic hardware, each
with strengths and weaknesses (Upadhyay et al., 2019). The
quest to find a suitable device for local synaptic memory dates
back to the origins of the field, when Mead and colleagues
investigated floating gate transistors (Diorio et al., 1998). Since
then, floating gate synapses have been used to implement
STDP (Ramakrishnan et al., 2011), are attractive as a mature
alternative to emerging devices, and have been proposed for
use in large-scale systems (Hasler and Marr, 2013). However,
there are concerns about high programming voltages, speed, and
endurance that may limit floating-gate memories to situations
with less-frequent updates. More recently, momentum has
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shifted to other technologies (Zahoor et al., 2020). Memristive
devices (Strukov et al., 2008; Yang et al., 2012; Abraham,
2018), commonly used in resistive random-access memory have
emerged as a popular alternative, with recent demonstrations
including monolithic integration with CMOS (Yin et al., 2019)
and unsupervised pattern recognition with a simple network of
synapses (Ielmini, 2018). Questions remain about high variability
(both cycle-to-cycle and device-to-device) (Dalgaty et al., 2019),
linearity, and endurance (Zahoor et al., 2020). Phase-change
memory is another option, with its own demonstration of STDP
(Ambrogio et al., 2016). Thermal management and endurance
have been raised as issues (Upadhyay et al., 2019; Zahoor et al.,
2020). Ferroelectric transistors present another alternative, as
they have low variability, good potential for CMOS integration,
and linearity (Kim and Lee, 2019). Spin-torque memory, 2D
materials, and organic electronics have also been proposed as
solutions. Interested readers should consult one of the many
review articles on this topic (Kim et al., 2018; Upadhyay
et al., 2019; Zhang et al., 2020b). The field is burgeoning with
new devices for synaptic memory, but to-date none has been
dominant enough to monopolize research. To our knowledge, no
technology has been able to simultaneously meet the targets in
Table 1, but progress in this area is encouraging.

4.2.2. Superconducting Technologies
Many of the aforementioned technologies may also apply to
superconducting optoelectronic systems, but their cryogenic
operation has been scarcely explored. Two other types of
memory, only accessible at low temperatures, have received the
most attention for superconducting systems: magnetic Josephson
junctions (MJJs) and superconducting loop memories. An
important distinction from room-temperature technologies is
that for superconductingmemory to be truly non-volatile, it must
retain its state both in the absence of a power supply and upon
warming to room-temperature.

4.2.3. Magnetic Josepson Junctions
MJJs have been proposed as a (nearly) non-volatile memory
technology for superconducting neuromorphic computing. A
two-terminal device, the critical current of an MJJ can be
programmed by changing the magnetic order of a ferromagnetic
material placed in the tunneling barrier of a JJ (Schneider et al.,
2018b). MJJs are non-volatile with respect to electrical power,
and there is optimism they can be made to retain their memory
through a warm-up to room-temperature. Additionally, they
provide remarkable performance with respect to the metrics
given in Table 1. The energy per update is on the order of
femtojoules (including cooling overhead), switching speeds are
commensurate with firing rates exceeding 100GHz, and devices
can be scaled to tens of nanometers. All of these metrics
surpass the requirements for optoelectronic networks, and can
be exploited in all-electronic superconducting networks as well
(Schneider et al., 2018a). More work is needed to analyze the
scaling potential of MJJs with respect to yield. The magnetic
fields used during programming can be produced with magnetic
control lines, but spin-torque mechanisms may provide a more
scalable solution. Finding an efficient, scalable solution to

programming MJJs in large-scale systems thus remains an area
of research that will be critical to their potential for adoption.

4.2.4. Loop Memory
Superconducting loop memories have been in use for decades
by the superconducting electronics community (Duzer and
Turner, 1998; Kadin, 1999), but are not ideal for dense memory
arrays commonly utilized as RAM in digital computing due
to area concerns. In the case of optoelectronic spiking neural
systems considered here, the objective is not to produce large
RAM arrays, and size as well as addressing challenges do not
emerge as significant impediments. Therefore, straightforward
extensions of binary loop memories are the synaptic memory
technology that appears most promising for the SOENs platform
(Shainline et al., 2018, 2019). In these memory cells, circulating
current persists indefinitely in a loop of superconducting wire.
The current in the loop can be controlled by adding/removing
magnetic-flux quanta with standard JJ circuitry. This memory
loop is then inductively coupled to a wire supplying a bias
current to a Josephson junction at the synapse (Jsf in Figure 2A).
When the synaptic SNSPD detects a photon, the biased junction
will add an integer number of fluxons to another integrating
superconductive loop (analogous to the membrane capacitance
of a neuron). The number of fluxons added to the integration
loop is a function of the bias supplied to the JJ, which is
determined by the magnitude of current circulating in the
memory loop. The number of analog memory levels in the
memory loop is determined by the inductance of the loop, which
is easily set with the length of a wire. High-kinetic-inductance
materials (Tolpygo et al., 2018) enable memory storage loops
with over a thousand levels (10 bits) to be fabricated in an
area of 5µm× 5µm.

The loop-memory approach has several strengths. The
memory is nearly analog and updates are nearly linear. Memory
is updated by the switching of a JJ, which involves only a change
of the phase of the superconducting wave function. This phase
can switch 1011 times in a second, so the endurance metric
defined in the previous section is not an issue. This stands
in contrast to room-temperature memories requiring material
changes (filament formation, phase changes, etc.) which are
often associated with degradation over time. Loop memory is
also attractive from a fabrication perspective as it requires no
additional materials or devices. The simplicity of the memory
lends itself favorably to 3D integration, provided cross-talk
from nearby loops can be mitigated. Plasticity circuits based on
loop memories will also operate at the energy scale of single
photons and flux quanta (10−19 J), which is commensurate with
the rest of the circuitry in the network. This allows weight
updates to be performed with the spikes the network produces
in standard operation, reducing peripheral circuitry. There is
no need to engineer differently shaped pulses for READ and
WRITE operations, and the synapse does not need to be taken
offline during programming. Simulations have demonstrated
STDP learning with circuits containing four additional Josephson
junctions (Shainline et al., 2019).

Two aspects of loop memory are concerning. First, loop
memory is not strictly non-volatile. While circulating current

Frontiers in Neuroscience | www.frontiersin.org 10 September 2021 | Volume 15 | Article 732368

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Primavera and Shainline Considerations in Optoelectronic Neuromrophic Supercomputing

can persist in a superconducting loop without any power supply,
superconductivity must be maintained. If the temperature of
the system is raised above the critical temperature of the
superconducting material, the memory will be lost. Mechanisms
for transferring weights stored in current loops to non-
volatile solutions will need to be developed if the system’s
state is to be persevered upon reaching room-temperature
(i.e., for maintenance or during a power interruption). The
second weakness of loop memory is the size. The employed
superconducting loops, as well as the transformers that couple
them, will be large compared to all of the other solutions
discussed. The consequences of these large-area components
must be considered in the context of the entire system, which we
discuss next.

5. SYSTEM LEVEL CONSIDERATIONS

Here we consider aspects concerning the integration of the
components previously discussed and how systems may reach
the scale of the brain. Basic graph theory metrics and the
assumption of 300-mm fabrication processes allow us to assess
area constraints and the benefits of 3D integration. It is found
that at least five planes of photonic routing will be required
in either platform to achieve brain-scale systems. Prospects for
3D integration of active elements are addressed. It also must be
stressed that an optoelectronic system of the complexity of the
human brain will be abjectly impossible on a single 300-mm
wafer in either case. A possible vision for connectingmany wafers
is discussed. Finally, we analyze cooling and power concerns,
finding that neither should preclude the development of brain-
scale systems in either platform.

5.1. Considerations From Graph Theory
Neurons in brain regions active in cognition, such as the cerebral
cortex and hippocampus, are characterized by a high degree
of connectivity—often in excess of ten thousand connections
per neuron (Braitenberg and Schuz, 1998; Buzsáki, 2006). These
connections often extend across appreciable spatial distances.
Creating and maintaining these connections comes with high
metabolic and spatial costs. The severely constrained biological
brain would not support such expenditures if they were not
advantageous to cognition (Bullmore and Sporns, 2012).

One reason why such high connectivity is necessary
relates to efficient communication across the network. Rapid
communication can only be achieved if the average path length
across the network is small. In the language of graph theory,
a network is a collection of nodes connected by edges. To
calculate the shortest average path length across the network,
one calculates the number of edges that must be traversed to
travel from one node to another node in the network. One takes
the mean of this quantity over all pairs of nodes. The shortest
average path length (L̄) is a global metric that offers a glimpse
at the efficiency with which information can be communicated
across space.

Equation 6 provides the relationship between L̄ and the
number of edges connected to a node, or in our case, the number
of synapses per neuron (k̄) for a random network. In a random

network, nearby and distant connections are equally probable.
Specifically, the equation holds for Erdös-Rényi random graphs
of networks with Ntot neurons (Fronczak et al., 2004):

k̄ = exp

[

ln(Ntot)− γ

L̄− 1/2

]

, (6)

where γ ≈ 0.5772 is Euler’s constant. For a network with 106

neurons, each neuron must make nearly 10,000 connections to
support an average path length of two, and 200 synapses must
be formed to support a path length of three. For a network
with 108 neurons, more than 100,000 synapses are required
for a path length of two, and more than 1,000 for a path
length of three. The human hippocampus is a module with
roughly 108 neurons, each with 10,000–50,000 nearly spatially
random connections. The objective of achieving an average
path length between two and three may be an important
reason why the hippocampus prioritizes this exceptional degree
of connectivity (Buzsáki, 2006). The cerebral cortex in the
human brain contains more than 1010 neurons, each with
roughly 10,000 connections. This analysis indicates that a path
length between two and three cannot be achieved across the
entire cortex, and accordingly the cortex is constructed with a
hierarchical, modular architecture (Simon, 1962; Meunier et al.,
2010) with high connectivity and efficient communication within
smaller modules, and more sparse connectivity between modules
separated by larger distances (Mountcastle, 1997; Meunier et al.,
2010; Bota et al., 2015; Betzel and Bassett, 2017).

While more sophisticated graph metrics can further elucidate
the network concepts underlying cognition (Bullmore and
Sporns, 2009), the simple, global metric of average shortest path
length can help inform scaling analysis of artificial cognitive
hardware at this early stage of development. We next consider
the constraints L̄ puts on the size of synaptic circuits.

5.2. Generic Spatial Constraints
Based on the significance of the interplay between the
hippocampus and cerebral cortex in cognition (Friston and
Buzsáki, 2016), we assume hardware for artificial neural
systems will make use of similar architectural principles. Here
we assume optoelectronic circuits will be fabricated using
the conventional sequential, planar processing techniques of
the silicon microelectronics industry. Photonic planes will
implement the passive optical interconnects and electronic planes
will accommodate all active electronics for neuronal function.
We further specify to consideration of 300-mm wafers and seek
a relationship between the network path length and the size of
components on the wafer.

The area of a neuron occupied by its photonic waveguides can
be approximated in a similar manner to the wires for electronic
circuits (Keyes, 1982). This gives the following expression for the
area of passive photonic circuitry:

Ap =
(

kwwg

pp

)2

. (7)

pp is the number of photonic waveguide planes, k is the degree
of each neuron (assumed identical), and wwg is the pitch of
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FIGURE 5 | Number of planes of active synaptic circuits (pe) and passive

photonic waveguides (pe) required to maintain a path length of 2.5 as a

function of the number of neurons on a 300-mm wafer (N300).

waveguides. The area of a neuron due to electronic synaptic
circuits is given by

Ae =
kw2

sy

pe
. (8)

wsy is the width of a synapse and pe is the number of planes
of electronic circuits. Both NtotAp and NtotAe are subject to the
area constraint of a 300-mm wafer. We use these relations to
calculate the number of planes (electronic and photonic) that will
be required to maintain a path length of 2.5 across a network
of a given size (Figure 5). See Appendix C for analysis of path
length dependence on wsy and wwg. A specific routing scheme
is analyzed in reference (Shainline et al., 2019). More than 10
million neurons (less than a mouse brain) on a single 300-mm
wafer appears out of reach for any platform.

5.3. Fabrication Processes
We assume 300-mm silicon wafer processing. Wafer-scale
integration has already been demonstrated for electronic
neuromorphic systems (Schemmel et al., 2010). Still, even at
this scale, reaching 106 optoelectronic neurons per wafer is
a tall order for either platform (Figure 5). We choose this
integration metric somewhat arbitrarily; 106 neurons per wafer
corresponds to 104 wafers for a human-cortex-scale system.
This is roughly the same order as the number of processing
units in modern supercomputers. If this target is to be reached,
3D integration at some level will be necessary. From Figure 5,
it is clear that either platform will require a minimum of
five photonic planes. Fortunately, photonic planes are quite
amenable to 3D integration. Common waveguide materials
include amorphous silicon (aSi), silicon nitride (SiNx) and
silicon oxynitride (SiOxNy). These dielectric materials can be
deposited at low temperature, enabling several multi-planar
demonstrations (Sacher et al., 2015; Shang et al., 2015; Chiles
et al., 2017; Zhang et al., 2018b). Additionally, low-temperature
deposition makes such processes compatible with back-end
CMOS fabrication. It should be noted that five photonic
planes represents a best-case scenario, as wider waveguides

have lower loss and only minimal reduction in average path
length (Supplementary Information C).

3D integration of active electronics is less straightforward,
particularly for the semiconductor approach. 3D CMOS
integration has been the subject of decades of research
(Rosenberg, 1983; Knickerbocker et al., 2008; Sakuma et al.,
2008; Vinet et al., 2011; Lim, 2013; Zhao et al., 2015; Elfadel
and Gerhard Fettweis, 2016; Li et al., 2017) and still faces
uncertainty. Required high-temperature processing steps for
dopant activation and contact anneals typically have a degrading
effect on previous layers. Much of 3D integration of silicon
microelectronics takes place at the die scale (Elfadel and
Gerhard Fettweis, 2016), which is incommensurate with the
scale of systems under consideration. For the semiconductor
scenario, the best course of action may be to abandon 3D
active electronics altogether in favor of simply reducing the
footprint (wsy) of synapses. We see again from Figure 5 that
nearly 106 neurons can be integrated on a single plane if each
synapse is on the order of 10µm × 10µm. This may be a
challenging benchmark to reach with high-functionality synapses
implementing complex plasticity and dynamics. Subthreshold
circuits that have embraced larger CMOS nodes for decreased
variability may need to adjust to more modern nodes, of which
there is some precedent (Rubino et al., 2019). Additionally,
photodetectors will be on the micron scale and long time-
constant capacitors can require significant area (Appendix A)
(Indiveri and Sandamirskaya, 2019). Both of these elements
would however be fabricated on separate planes from MOSFETs.

Superconducting platforms would likely take the opposite
approach, embracing 3D integration in the face of necessarily
large device areas. Superconducting electronics, including active
JJs, are routinely deposited at low temperatures (< 180 °C).
Integrated circuits with two stacked planes of JJs have been
demonstrated by two research laboratories (Ando et al., 2017;
Tolpygo et al., 2019), along with multiple of planes of
SNSPDs (Verma et al., 2012). This is particularly important,
as superconducting systems will not be able to reach 106

neurons per wafer without 3D integration. A reasonable estimate
for a superconducting synapse may be 30µm on a side
(Supplementary Information B). Such a size would require
eight electronic planes.

We note that even if pp = pe = 1, it is still possible to

fabricate wafers with 106 neurons, provided k̄ = 100, giving
L̄ = 3.5 (Figures 9, 10 in Supplementary Information C).
While this does not match the short path lengths of cognitive
circuits in the brain, such a network is likely to have significant
technological and scientific utility while offering an intermediate-
term practical objective.

5.4. Constructing Multi-Wafer Systems
Given that neither system will scale to billions of neurons on a
single wafer, many wafers (∼10,000) will need to be connected
together to support human-brain-scale computing. A vision for a
multi-wafer system is discussed in reference (Shainline, 2021) for
the SOENs platform. Briefly, wafers are stacked and free-space
optical communication is used to form highly inter-connected
columns mimicking the modular structure of biological circuits
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FIGURE 6 | Tradeoff between size and average spiking frequency for a

population of optoelectronic neurons with a power budget of 10 MW

(f = η* 10MW
(N*

neuronsN
*Eopt )

. Fan-out (N) is 103 and the optical energy needed at each

synapse is assumed to be 1 fJ (accounting for cooling in superconductor

case). This likely would correspond to the limits of either superconductor or

semiconductor neurons.

(Mountcastle, 1978, 1997; Meunier et al., 2010; Bota et al., 2015;
Betzel and Bassett, 2017). Columns are coupled to each other with
lateral inter-wafer connections, but such connectivity is more
sparse than that within a column. Optical fibers provide low-loss
communication over long distances.

Achieving systems of this scale requires advances, particularly
in wafer-scale circuit integration and system-level construction.
A phenomenon akin to Moore’s law, with ever-decreasing feature
sizes enabling ever-higher integration density is unlikely to carry
this concept forward, as many device sizes are limited by other
physical considerations. Metrics related to number of planes of
integrated circuits and number of wafers in a systemmay bemore
relevant to chart progress in neuromorphic supercomputing.
Gradual progress may be possible by consistently scaling up, but
it is difficult to envision this sustained trend without a powerful
economic drive.

5.5. Power Consumption and Cooling
5.5.1. Cooling Systems
Cooling systems will be a key component to either platform.
For superconducting electronics, the system will fail completely
if the temperature rises above the critical temperature (Tc).
Superconducting neuromorphic systems will rely on niobium
(Tc = 9.3 K) or a material with a similarly low Tc. Liquid
helium (4.2 K) is the cryogen of choice for such temperatures.
Cooling systems will add significantly to the power consumption
of superconducting electronics. The power efficiency of a
refrigeration system is measured by its specific power (Alekseev,
2015). The specific power gives the number of watts consumed
by the refrigeration system for every watt of heat removed. The
theoretical limit for specific power, given by the Carnot limit,

is TH−TC
TC

. For liquid helium temperature (4.2 K), the Carnot
limit demands that at least 74watts of refrigeration power are
required to remove every watt of heat produced on-chip if the
system is operated in a 300K ambient. State-of-the-art systems
have reached specific powers below 400W/W. Auspiciously, the

FIGURE 7 | Summary of necessary hardware demonstrations for each

platform if human-brain-scale artificial cognition is to be achieved.

most efficient refrigeration systems also tend to have the highest
heat loads. The ability to cool heat loads as high as 10 kW at
4.2 K have already been demonstrated by commercially available
systems (Holmes et al., 2013). Throughout this paper we assume
a more conservative specific power of 1, 000W/W, representative
of the smaller scale cryogenic systems used in most laboratories
today. It does not appear that cryogenic capability will be
an insurmountable obstacle toward large-scale superconducting
neural systems.

5.5.2. Power Limitations
Modern supercomputers typically consume megawatts of power.
Tianhe 2, for instance, requires 17.8MW for operation (and
another 6.4MW for cooling) (Tolpygo, 2016). If we thus assume
a total power budget of 10MW, we can analyze the trade-off
between average firing rate and number of neurons. We assume
1 fJ of optical energy is required to initiate a firing event at
each synapse and plot the maximum average frequency spiking
frequency for several different optical link efficiencies in Figure 6.

Power does not appear to be a limiting factor in achieving
brain-scale and brain-speed optoelectronic networks. If the
power resources of modern supercomputers were dedicated to a
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brain-scale optoelectronic neuromorphic system, average spiking
rates on the order of 10 kHz (104 speedup over biology) appear
feasible even with relatively inefficient optical links. Such a system
may enable brain-scale computation with time accelerated by
four orders of magnitude.

Another factor to consider is power density. There is a
maximum power density that can be handled by heat removal
systems for both the semiconducting and superconducting
case. In the semiconductor case, high-performance computing
routinely generates power densities of hundreds of watts per
square centimeter (Tolpygo, 2016). A theoretical limit of
around 1 kW/cm2 is postulated in Zhirnov et al. (2003). In
contrast, superconducting systems will be required to operate
at significantly lower power densities. Roughly 1 W/cm2 is a
conservative limit for on-chip power density that can be cooled
with liquid helium (Tolpygo, 2016). Superconducting optical
links appear to be capable of dissipating about three orders of
magnitude less energy per bit, approximately canceling out the
limited power density requirements of superconducting systems
in comparison with semiconductors. In practice, it might well
be the case that mature, sophisticated synapses and neurons will
occupy so much area that these power density limitations will
be of no consequence. For instance, even with link efficiency of
η = 10−4, a synapse would require a lateral dimension of less
than 30µm for power density considerations to limit spiking to
less than 1GHz. Section 5 argued that superconducting synapses
are not likely to be smaller than this. 10µm semiconducting
synapses could reach 1GHz with 1 × 10−3 efficiency. However,
optoelectronic systems will have nonuniform power dissipation
across the chip/wafer, with most of the power being dissipated at
the light sources. A more in-depth analysis is required to see if
heat removal will be an issue near the light sources in particular,
but for the superconducting case it is convenient that the light
sources themselves are not superconducting, and can afford
to be raised to higher temperatures without failure. Concerns
about local heating may be assuaged with layouts that sufficiently
shield and/or separate thermally sensitive devices from the
light sources.

6. CONCLUSION

The prospects of neuromorphic systems at the scale of the
brain and beyond are tantalizing. The fan-out capability of
optical communication coupled with the computational power
of electronic circuitry makes optoelectronic systems a promising
framework for realizing these high ambitions. However, there is
no technology platform that is ready to support optoelectronic
spiking networks of the scale and sophistication of the human
brain. Making this vision a reality will require breakthroughs
at the device level, no matter which path is chosen, particularly
with regard to integrated light sources. Beyond that, several
different classes of devices must be integrated alongside each
other, which further reduces the likelihood for success. Efficient,
densely integrated light sources, waveguide-coupled detectors,
local memory devices, and capable neuronal circuitry all must
be consolidated onto a single platform. Candidates for all

requisite devices can be proposed for either semiconducting or
superconducting platforms, and the two systems may be capable
of similar performance. However, the technological paths toward
achieving brain-scale systems with the two platforms diverge in
important respects (Figure 7).

Semiconductor platforms hold advantages in technological
maturity, room-temperature operation, and perhaps speed. Spike
rates in excess of 10GHz may be feasible, but only for systems
significantly smaller than the human brain due to power
constraints. Semiconductor receivers can potentially operate with
extremely low energies per spiking event (sub femto-joule),
making them a worthy competitor of superconducting single
photon detectors. However, these low energy receivers require
significant optical power from integrated light sources. To
achieve biological-scale fan-out, either very bright light sources,
repeatering schemes (costing area and yield), or additional gain
stages (costing power) will need to be included. In terms of
neuronal computation, semiconductor neurons have already
demonstrated impressive functionality and low-power operation
that should be capable of integration with optical communication
infrastructure, provided the long-standing challenges with
CMOS-integrated III-V light sources can be overcome. Synaptic
memory is a major open question, but a variety of non-volatile
memory solutions have seen extensive investigation, and time
will tell if one technology can meet the requirements we have
laid out for brain-scale optoelectronic systems. 3D integration
of transistors, photodetectors, and memory may not be a
feasible solution, meaning aggressive scaling of synaptic circuits
while maintaining complex functionality is perhaps a better
strategy. The fabrication processes for mature semiconductor
neural systems may prove to be prohibitively complicated and
heterogeneous, perhaps requiring different processing strategies
for sources, detectors, and memories. If wafer-scale monolithic
integration of these components cannot be achieved, and chip-
scale die-stacking techniques are required, the outlook for
achieving brain-scale systems is limited.

Superconducting optoelectronic neural systems suffer from
a comparatively primitive fabrication ecosystem, but the
incorporation of superconducting devices provides several
intriguing properties. SNSPD receivers place nearly the
theoretical minimum burden on integrated light sources. This
attribute compounds positively with the improvements in
efficiency for light sources operating at cryogenic temperatures.
Integration of light sources with superconducting electronics
does not appear to have the same material integration challenges
as integration with CMOS, but this state of affairs may be due
to the lack of attention the effort has received. These factors
make the large-scale integration of light sources appear more
tractable than in the semiconductor case—perhaps even opening
the door to silicon as an active optical material. Driving these
light sources with superconducting electronics, however, has yet
to demonstrate the performance required for this application.
The implementation of a high-impedance pulse-and-reset circuit
remains an open challenge. For computation, superconducting
neuronal circuits appear just as capable of implementing complex
neuronal and synaptic behaviors as their CMOS counterparts,
but will need to be designed with serial biasing in order to scale.
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Additionally, some speed advantages present in superconducting
electronics will be negated by the response time of SNSPDs
(<1GHz). Of course, even if maximum spike rates are limited
to 20 MHz, this would still represent a speed-up of four orders
of magnitude over biological systems. Memory seems to be a
strength for the superconducting platform, as superconductivity
provides new avenues of storing synaptic weights. Loop
memory in particular may be capable of implementing plasticity
mechanisms that operate with only the signals produced through
normal network activity. Caution is in order here, however, as
superconducting synaptic plasticity mechanisms have scarcely
been explored. 3D integration may yield more readily in the
superconductor platform. The inconvenience of cryogenic
cooling is a serious consideration, but power and heat removal
estimations indicate this is unlikely to be a limiting factor
for brain-scale systems. If all these issues can be resolved,
superconducting optoelectronic systems may require simpler
manufacturing processes than the semiconductor approach,
as the material ecosystem could potentially be parsimonious.
Of course, superconducting foundries are far less developed
than their semiconductor counterparts, which may negate these
advantages in the near-term.

We would be remiss to paint the quest for neuromorphic
supercomputing as only a question of hardware. The inner
workings of the brain are the subject of intense investigation,
and the emergent phenomena of cognition and consciousness
remain taunting, increasingly lonely enigmas entrenched in
the netherworld between philosophy and science. Watershed
breakthroughs in neuroscience and algorithmic development
will be required for the discussed hardware platforms to
have practical applications, although the hardware platforms
themselves may be of use in helping to unravel some of
these mysteries. The question of whether it is prudent to
develop hardware before algorithms has pestered the field

of neuromorphic computing since its inception. In this case,
we believe that the length of development, rich opportunities
for spin-off technologies, and inestimable potential make
such hardware development well-worth pursuing even at this
incipient stage.
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