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ABSTRACT

Metal additive manufacturing (MAM) provides a
larger design space with accompanying manufacturability
than traditional manufacturing. Recently, much research
has focused on simulating the MAM process with regards
to part geometry, porosity, and microstructure properties.
Despite continued advances, MAM processes have many
variables that are not well understood with respect to their
effect on the part quality. With the common use of in-situ
sensors - such as CMOS cameras and infrared cameras —
numerous, real-time datasets can be captured and
analyzed for monitoring both the process and the part.

However, currently, real-time data predominantly
focuses on the build failure and process anomalies by
capturing the printing defects (cracks/peel-off). A large
amount of data - such as melt pool geometries and
temperature gradients - are just beginning to be explored,
along with their connections to final part quality. Towards
investigating these connections, in this paper we propose
models that capture numerous sensor capabilities and
associate them with the corresponding, real-time, physical
phenomena. These sensor models lay the foundation for a
comprehensive, knowledge framework that forms the basis
for quality monitoring and management of MAM process
outcomes.

Using our previously developed process ontology
model [1-3], which describes the relationship between
process variables and process outcomes, we can discover
the relationship between the real-time, physical
phenomena and the deviations in the targeted, build
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quality. For example, statistically significant sensor data
that predicts deviations from targeted process qualities can
be detected and used to control the process parameters.
Case studies that scope the physical phenomena and
sensor data are provided for verifying the effectiveness and
efficiency of the proposed qualification and certification
models.

Keywords: additive manufacturing, sensor systems,
quality management, in-situ monitoring, ontology

1. INTRODUCTION

Currently, producing parts with metal additive
manufacturing technologies relies heavily on additional
post-processing to satisfy functionality needs and design
requirements [4]. Post-processing requirements can be
potentially reduced by taking advantage of real-time sensor
data - such as melt pool geometry and cooling rate -
captured via in-situ monitoring systems [5-7]. Currently,
however, sensor data is primarily used in a more passive
manner to monitor build failures or to predict deviations in
the build qualities. This research presents a foundation for
a more active approach to monitoring and feedback, using
prognostic and diagnostic process models based on real-
time process phenomena to improve monitoring and
predict failure indicators.

Metal AM processes expand design freedom from
traditional manufacturing. However, users need to
manually determine the process parameters such as build
orientation, the scan pattern, and the layer thickness before
executing the build [8-10]. Choosing the optimal
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combination of process parameters is critical to both
achieving successful builds and establishing acceptable
part qualities. [11- 14].

Figure 1 shows a current AM workflow from process
setup to the quality estimation. This workflow
incorporates simulation as a decision support tool.
However, “simulation” in this workflow often relies on
physics-based models without incorporating feedback
from real-time empirical measurements.
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Figure 1. Process estimation on metal AM

Ongoing research is investigating the relationships between
the system input (process parameters) and the outputs (print
quality — shape, GD&T, functionality) by leveraging models and
simulation. Observed limitations and drawbacks to many of
these approaches are listed below:

1. Simulation results for the metal AM process are
constrained mostly to geometric distortion and
porosity prediction.

2. Predictive physical models do not include most of
the process parameters, and comprehensive
quantitative models for the metal AM process are
still lacking.

3. Build failure can only be detected during the
physical fabrication process; however, most modes
of build failure prevention are currently unachievable.

4. The mechanical properties are crucial for
determining the functionality of the parts;
however, properties vary from one build to the
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next and lack a standardized certification
methodology.

New smart configurations for sensoring and
monitoring are needed to acquire real-time insight during
the MAM fabrication. Such a system could support
repeatability through observations made during part
fabrication. For example, collected in-situ data could be used as
a reference to indicate anomalies in future builds.

To gain a better understanding of the overall metal AM
process, we propose a framework that relates process
parameters to desired build and mechanical properties. In
this paper, we use ontology-based metamodels as a
foundation for this framework. These models capture the
overall process variables, in-situ physical phenomenon,
sensor information, and process outcomes. This
information is categorized into five models: Input models,
Thermal models, Physical models, Microstructure models,
and Mechanical models.

Input models consist of all AM processing parameters,
including machine variables and user process planning
variables [15-17]. Thermal models use those inputs to
characterize the thermal properties associated with the
generated physical phenomenon. Physical models then use
sensor data to generate process signatures at the melt-pool
or layer-wise scales. The sensor ontology can be used with
the process ontology to relate process physics and final part
quality. In addition, microstructure and mechanical
property models are represent characteristics of the final
part quality that are produced by different scenarios of the
thermal models.

Metamodels are capable of generalizing correlations
among the datasets used in these models [18,19]. These
correlations can be used to help 1) monitor and categorize
decision making and reasoning processes, and 2) highlight
resultant variables during the metal AM process.

Metal AM Process Framework
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Figure 2. Metal AM process workflow interaction with real-time data
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In this paper, a process and sensor framework are
leveraged to develop a feasible working zone of quality
assurance by assigning a set of optimal process variables
for achieving a satisfactory build. The feasible working
zone provides proper monitoring guidance of the physical
phenomenon to adequately regulate print quality. This
research proposes a real-time, aspect-driven model to
anticipate issues in quality and automatically identify the
responsible parameters.

2. REVIEW OF PAST WORK

Numerous types of sensors are available and have been
deployed for in situ monitoring during MAM fabrication.
These sensors are generating disparate sets of data that
have yet to be fully leveraged to provide feedback to the
MAM process at the system and part levels. The data from
these sensors must be integrated into a cohesive knowledge
and information framework for monitoring, diagnosing,
and meeting QC/QA requirements. To build an integrated
model of AM sensor data, it is critical to understand the
various sensor capabilities. The following sections review
past work in sensors, sensor classification, data fusion, and
in-situ monitoring.

2.1 Sensors for real-time process monitoring

Real-time process monitoring is empowered by in-situ
sensor measurements and data-driven analytics both of
which permit real-time estimation and characterization of
defects. Rao et al. [20] conducted real-time, quality
monitoring with heterogeneous sensors, facilitating data-
driven defect detection in AM. Lu et al. [21] studied
compressive sensors for capturing temperature fields; they
used them as inputs to heat transfer models and other
numerical methods in AM. Spears et al. [22] reviewed in-
process sensing for selective laser melting (SLM),
enumerating significant challenges from multiple input
variables that impact part quality. Salama et al. [23]
applied the industrial internet of things to facilitate real-
time monitoring and to optimize system parameters - such
as nozzle temperature and filament breakage/runout- thus
reducing maintenance time. Shevchik et al. [24] studied
AM quality monitoring using acoustic emissions as inputs
to a spectral, convolution neural network to differentiate
the acoustic features of dissimilar quality. Nassar et al. [25]
investigated sensor-based, defect detection for directed
energy deposition (DED). They used optical emission
spectroscopy and data acquisition to study the formation of
defects during the process.

V002T02A069-3

2.2 Knowledge representation for AM

Despite the continued growth of AM technologies,
there has been only limited work focusing on building a
reliable, comprehensive, coherent, knowledge base for an
AM system. Such a knowledge base could be used to
improve AM design and fabrication. Ko et al. [26]
presented a framework for Design for AM (DfAM) that
uses a knowledge base and machine learning techniques to
extract design knowledge from structured data. Also, they
applied ontology with graph representation as a knowledge
base for updating AM knowledge, reasoning about the AM
knowledge for leveraging data-driven AM design rules.
Kim et al. [27] proposed an ontological framework for
DfAM to provide structured information on AM design,
considering manufacturability constraints imposed by AM
processes. Hagedorn et al. [28] studied a knowledge-based
method for AM design ideation by developing a suite of
modular, formalized ontologies to capture information
about new uses of AM. The ontology helps to expedite
innovative deployment of AM by associating an archive of
business, manufacturing, and product realization relevant
to previous AM products with an assortment of knowledge
representations delineating different AM processes’
functional capabilities. Dinar et al. [29] developed a
formalized knowledge framework for DfAM with
reusability and integration into CAD tools.

Many investigators have conducted countless
experiments in modeling and simulation to help understand
the complex physics of AM processes [30-32]. The
knowledge gained has been expressed in guidance and
support, quantitatively addressing what aims to be
achieved for a successful build without any defects. Roh et
al. [2, 33] investigated the interactive relationship between
process parameters and thermal models to build a
knowledge-based metal AM model. Michopoulos et al.
[34] conducted ontological multiphysics modeling of
metal AM to tailor functional part performance. Ali et al.
[35] developed a product life cycle ontology for AM,
encouraging the development of an ontology for
reusability, shareability, and extensibility. Feng et al. [36]
investigated the use of meta-data as a base for new
interface and exchange standards, which also promote the
use of in-situ sensors for in-situ monitoring in laser powder
bed fusion processes. These efforts mainly focus on
improving accuracy, repeatability, and fabrication
reliability to avoid build uncertainty in AM. In general,
existing knowledge management efforts are not well
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Figure 3. Ontology model overview

classified, and relations among sensors, emissions,
physical phenomenon, and mechanical properties are often
not well formed.

3. METHODOLOGY

In this section, we first present an overview for the
construction of AM ontology models. The development
and integration of a sensor-specific ontology is then
proposed along with the detailed, hierarchical information
in the ontology models. Starting from the comprehensive
input models, Figure 3 provides an overview of the sensor
ontology model, which follows the build physics of the
AM process. The thermal distribution and the
microstructure evolution represent thermal behaviors in
the material deposition process, which can also be
observed through the real-time monitoring system. The
process outputs include the mechanical properties that
need to satisfy the user quality and control requirements.

Figure 3 presents the sensor ontology “family” and its
connection to the process inputs and outcomes. The sensor
ontology captures physical phenomenon interactions from
thermal and micro-scale behaviors and captures their
relationships and high interconnectedness. The objective
of the sensor ontology is to produce a dynamic, controlled
vocabulary for capturing information attained through
sensors. The thermal behaviors, physical phenomena,
process outcomes and mechanical properties are derived
from the performance of the real-time data.

3.1 Ontology development

To create the sensor ontology, we first identified its
scope, contents, objectives, and requirements. To meet the
requirements, the target ontology should capture

V002T02A069-4

knowledge from different sensors and describe their
capabilities. Understanding how various sensors can be
classified and what physical phenomenon is captured by
each sensor is essential. The resulting knowledge base
should support different levels of abstraction and criteria.
For example, the sensor ontology should represent domain
knowledge as well as empirical knowledge gathered from
benchmark studies. The following steps are used to
construct the sensor ontology in this paper:

(1) Specify the entities representative of sensors for
metal AM.

(2) Define and link potential object properties in
semi-natural sentences.

(3) Enumerate subclasses of entities.

(4) Populate with individuals and instances.

(5) Evaluate the model and iterate through the
previous steps.

The ontology framework is built using Protégé [37],
which offers a graphical interface for constructing
hierarchical ontology based on RDF (Resource
Description  Framework), OWL (Web Ontology
Language), and XML (Extensible Markup Language)
format [38].

3.2 Integration of ontology

The sensor ontology aims to align process inputs and
outputs using purposefully grouped physical phenomena
and corresponding sensors. Additionally, the sensor
ontology targets in-situ monitoring for quality assurance
through real-time data. Accordingly, adopting this sensor
ontology approach increases the capability of detecting and
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guiding the metal AM process at a controllable level. A detailed
sensor capability map, which conveys connections between
sensors, physical phenomena, and part quality does not
currently exist. The integrated sensor model development
is a crucial, first of its kind contribution for codifying AM
processes to support quality assurance and process control
through optimal sensor selection.

We developed five, local, ontology models involving
sensing features, physical emissions, causes and results of
physical phenomena, and part quality. The shared nodes in
these five models are then integrated into a larger,
quantitative, ontology model. Details of constructing the
integrated ontology are presented in Figure 4.

The first layer of the sensor ontology contains the
detailed definitions of additional components, features,
and classifications, as well as the capability to link the
physical emissions and phenomena. In this regard, this
layer provides a bridge to related research on a process-
ontology-development method, which focuses on the
process input, the thermal behavior, the evolution of
microstructure, and the final mechanical properties [2].

The physical emission layer refers to the transition of
molecules and atoms, which results from a spectrum of
frequencies, energy levels, and electromagnetic radiation
wavelengths that occur during the process. Emissions are
part of the physical process. They occur when the higher
energy of quantum particles is converted to lower-level
energy. The conversion causes light emissions with a
specific frequency and wavelength.

The causing physical phenomenon layer uses the range
of emitted wavelengths by an atom, captured by a sensor,
to quantify and measure physical activity. For example, the
melt-pool dynamics and solidification are detected by the
emission of reflected light. Obtained sensor images
provide geometric information of the melt pool and
temperature distribution through the captured emission
levels.

The physical phenomenon layer connects the causing
physical phenomena with part quality. Consequently, this
layer helps the framework to observe levels and variations
of part quality. For example, the causing physical
phenomena of melt pool affects the formation of defects
observed in the deposition process, including unintended
keyholes, cracks, and pores. These physical defects of the
build process deteriorate part performance.

Finally, the part quality layer explains the final part
quality and mechanical properties induced by the physical
phenomena. This layer explains how defects and physical
phenomena cause variations in part quality.

4. SENSOR ONTOLOGY FRAMEWORK

The use of broad and specific terms in the ontology is
required to characterize and identify sensor capabilities in
metal AM. Some transducer characterizations, both static
and dynamic, exist in the literature, but without
considering the uniqueness of metal AM. Our sensor
ontology includes the inherent characteristics of metal AM
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Figure 4. Structure of sensor ontology
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physics. Those inherent capabilities are described in
greater detail in the next sections.

4.1 Hierarchy of sensor ontology

The sensor ontology is created with a set of high-level
classifications based on the essential knowledge identified
in a general fabrication scenario. In this scenario, a
fabrication event occurs when 1) the AM process, pre-set
up, material, and process parameters are chosen, 2) the
physical phenomena and process signatures are observed,
and 3) the resultant physical phenomena such as balling,
spattering, pores, and crack, are identified.
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Figure 5. The hierarchical structure of AM sensor
ontology
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There are advantages of utilizing a sensor ontology as
a bridge between real-time monitoring data and part
quality data. By leveraging the ontology during a build, a
researcher does not have to focus on every process
signature and relevant sensor data because the ontology
helps identify then subsets of knowledge needed to meet
multiple QC/QA requirements.

Observation
Sensor data
Type of measurement
Transduction effect
Energy magnitude
Energy from

Sensor Ontology 2

Figure 5 shows the hierarchical class structure of our
proposed sensor ontology. The taxonomy shown is a
simplified, high-level, class structure, with some entities
hidden because of the limited space. The sensor ontology
is governed by the main classes of Observation, Sensor
data, Types of measurement, Transduction effect,
Energy magnitude, and Energy form. Observation is a
superclass related to measurable objects such as a lack of
fusion, cavity, porosity, and melt pool in AM. Sensor data
represents a sensor output observation, which detects and
responds to some type of input from the physical
phenomenon and environment.

For example, sensor data includes an acoustic wave, a
pixel image, a transparent projection image, ultrasound,
and a volumetric measurement. Types of measurement
refers to the types of measurements that result from
measured physical emissions that include classes of 3D
scanned images, acoustic emissions, layer-wise images,
melt pool images, part images, and wave speed
measurements.

Transduction effect means converting a signal in one
form of energy to a signal in another. Electrical signals are
converted from a quantity of physics such as energy, light,
motion, temperature, force, and position. The transduction
effect is classified by modulating and self-generating.

Energy form classifies sensors into six energy forms
or signal domains. Chemical energy includes oxidation
and reduction potential, pH, composition, reaction rate,
and concentration. Radiant energy has transmittance,
reflectance, wavelength, intensity, phase, and refractive
index. Magnetic energy involves permeability, flux
density, magnetic moment, and field intensity. Electrical
energy encompasses dipole moment, polarization, voltage,
current, inductance, resistance, and capacitance. Thermal
energy is composed of the state of matter, entropy,
temperature, heat flow, and specific heat. Mechanical
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energy covers volume, area, length, force, acoustic wave,
angular velocity/ acceleration, linear velocity/acceleration,
mass flow, pressure, and acoustic intensity. Energy
magnitude captures sensor sensitivity and the correlations
between the form of the sensor signal and sensor
sensitivity, based on the magnitude of the energy change
detected. Electrical and magnetic signals require the
detection of energy in the relevant parts of the
electromagnetic spectrum.

4.2 Properties in sensor ontology

The object-type properties are defined in Table 1.
These properties are labeled as passive and active verbs
that identify the relations between entities. Similar
relations indicate a common terminology; for example,
captures relate Sensor to Observation, which means
“Sensor captures Observation.” Table 1 presents the object
properties established in the current high-level, sensor
ontology. Each pair of classes and entities (in bold font)
that are related from the first column to the first row are
defined. A has object property is defined to accommodate
such relations of Sensor to Types of measurement,
Transduction effect, Energy magnitude, and Energy
form. The direction of interpretation in the table is always
linked from the first column class to the class of the first
row with corresponding object properties. The affects
object property allows defining connection of influence
Types of measurement, Transduction effect on the result
of Sensor data and captures the quantity of Energy
magnitude.

The sensor ontology reflects the technical
classification of the sensor. This includes its capability to
measure physical phenomenon and to monitor part quality.
Both capabilities indicate how to link and identify sensor
types to functionality using knowledge networks. The
sensor’s place in the hierarchical structure should also be
defined. Furthermore, the sensor ontology should include
comprehensive information about the role the sensor plays
in the AM solutions.

Hence, the sensor ontology provides sets of sensor,
process, manufacturing, and quality alternatives to connect
sensor and part quality by using an ontology framework.
In addition, when measuring information of multi-process
defects through energy forms, identifying the best
combination of sensors is critical to finding QC/ QA
solutions.

4.3 Summary

This section introduced a detailed explanation of the
knowledge model of the proposed sensor ontology. Section
5 will illustrate an example implementation that includes
both the physical phenomena and sensor selection, which
are based on the QC/QA requirements. The sensor
network, relational diagram, quality map, and sensor map
will be introduced. The structured and formalized sensor
knowledge representation for sensor capabilities, physical
phenomenon, and part quality will also be presented.

5. RESULTS
This section demonstrates how the proposed
methodology can leverage part quality, sensor data, and

Table 1. Relations among high-level of sensor ontology (reading direction I, e.g., Sensor obtains Sensor data)

T f T i E
Sensor Observation | Sensor data ypes o ransduction ne'rgy Energy form
measurement effect magnitude
Sensor captures obtains has has has has
j tured Ti . is ch d t
Observation s capture rafrsf orm is captured by Be qnge © produces produces
by into signal
is obtained has is
Sensor data b information is result of has is output of | transformed
y of from
Types of
bel t t t: t: t.
measurement elongs to captures affects affects affects
Transduction changes transforms
effect belongs to signal from affects signal of
Energy is produced ,
magnitude belongs to by produces is captured by has type of
j duced . h ignal
Energy form belongs to sp rzzyuce produces is captured by ¢ ang;ys:gna has level of
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sensor selection through knowledge representation. The
results show how the high-level, hierarchical, sensor
ontology can use taxonomic identification to facilitate
accurate analyses in metal AM.

5.1 High-level sensor ontology

The sensor ontology provides a hierarchical network
of variables and parameters that can help identify
differences and similarities between quality requirements.
The network representation also functions as a knowledge
graph, providing a means to navigate forward and
backward. And, to explore information resources and the
relationships between process variables and physical
phenomena in the ontology.

Graphical network visualization results in this section
are based on Gephi [39]. Gephi helps to visualize complex
knowledge-based systems, combining the complementary
advantages from handling large datasets, statistical
analysis, algorithms, and matrices.

The high-level, sensor ontology in Figure 6 represents
classes of Sensor, Types of measurement, Sensor data,
and Observation, which show the composition of sensor
features and relations. Lager and smaller nodes are marked
as red and blue, respectively; the size of the node is
proportional to its connection. The sensor network map
provides opportunities to improve sensor selection, data
acquisition, in-situ monitoring, and part quality. Those
opportunities can be found by forward and backward
tracing to the related quality requirement variables.

Classes (nodes) and their interrelationships highlight
abstract knowledge, while each class and classification
indicate empirical knowledge of specific AM sensor types.
The next section 1) provides insight into both the abstract
and detailed sensor relationships and 2) uses different
application scenarios to demonstrate the interconnectivity
between each sensor, each physical phenomenon, and each
part-quality requirement.

5.2 Quality and sensor network

This section will show a hierarchical, network graph
highlighting sensor features, physical phenomena, and part
quality. The AM sensor ontology generates this graph that
can be used to 1) look for the previously mentioned
similarities and differences and 2) determine new, critical,
connected relationships between sensors, phenomena, and
quality. Three examples are illustrated in Figure 7-9. Each
node is based on the hierarchical classification of sensing,
physical emission, causes/results of physical phenomena,
and, QC/QA layers.
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Figure 6. Visualization of sensor ontology

Figure 7 shows the network chain from sensor type to
the fatigue. The graph has the capability to trace the
measurable physical phenomena to provide insight into the
fatigue qualities of a part. For example, we can measure
melt-pool geometry, cooling rate, and thermal distribution
in the graph and correlate them to the part’s fatigue.
Likewise, the graph gives guidance to understand how the
measured physical phenomena affect different mechanical
properties based on different quality requirements
including part fatigue, tensile strength, yield strength,
elongation, Vickers hardness, and surface roughness

Figure 8 shows an example of how to leverage the
sensor ontology and navigate the network graph in reverse.
This approach can be used to identify what types of
physical phenomena and sensor data should be captured to
help assure that a requirement is satisfied. In this example,
the tensile strength of the part is the requirement. We
navigate the knowledge graph backward until we find
measurable physical phenomena that we might be able to
sense, and the corresponding sensor set to be captured from
these the physical phenomena. While we may not be able
to measure the level of tensile strength directly during the
build process, this nonetheless supports the decision of
what physical phenomena we might want to sense and
what sensors we can use to gather the data.

Copyright © 2021 by ASME and
The United States Government

220z dunf /g uo Jasn AysiaAlun ajejs elueniksuuad oy Aq ypd-Ge00.-120Zo10P-690EZ0I200A/LLZ L089/690YZ0LZ00A/9LE58/ L 202310-013al/4pd-sBulpesooid/319-013a1/610 swse uonos|j0dje}bipawse//:dpy woly papeojumoq



. Causing Physical Resultant Physical
Sensing Physical emission Phenomenon Phenomenon QC/O-A

|

|

|
Electromagnetic spectriin of CCO/CMOS cam}a

| |
|
| ' '
| : '
| r“q I |
| | |
| | Vaid
|ccoiemBs camera : | I : .
: I | Photof_énergy I: | Keffhole ~ —
| | ! | . | PowddE‘Spaﬂerl--\
I | Size I
Radjgtior
: Faine | : |
| | |
|| waingth ‘ |
l L Therm dlahonll Coolfid Rate |
| IR cinera || || |
| |
I Electromagnetic spaktrum of IR cameral | Infrarelnergy I :
| : I IIThsrmai Distribution |
| || ! |
I || |I |
I || II |
| || |I |
b o e Ve e _ |
Figure 7. Quality and sensor map of fatigue
Causing Physical Resultant Physical
Sensing Physical emission Phenomenon Phenomenon QC/QA
I T T ! S
I I I | | |
I : \ I | I |
| | il | | |
: Electromagnetic spectrlim of CCD/CMOS ca}fneré Il : | |
| I | |
| : | Photohénergy Il | Kefhgle | |
| I I | |
|CCD/CMOS camera I ¥ | | LackofRusi :
| : | Ra I | |
: | : ; | Size : engthl
I Ffane L waveBogth T | o :
| - L
: | i : le@Rate : | |
I
| IR camera : | Therm I : Thef istortion | :
| | — il |
2 |
: Electromagnetic s@rrum of IR camera: ; nirs remy } : Thermal Distribution : Crack : |
, |
I [ I | I |
| [ I | | |
| : \ N [ | |
| | I I | | |
e [ I | |
Figure 8. Quality and sensor map of tensile strength
) Causing Physical ~ Resultant Physical
Sensing Physical emission Phenomenon  Phenomencn QC/QA
e ——————— == ——————=— I
|
| | |
| Lo | |
| | | 1
| ! | | 1
| Electromagnetic spectr@p% CCD/CMOS camera : |
| | | Phoro@nergy | |
: CCD/CMDS camera I Il ~ I |
I
| : | : |
| | - ; |
| : | wagBngth : | |
l Electromagnetic s@!rulp of IR '.llamsra i | | :
| | Il | |
: IR camera | | | | | | :
| b N [ | |
I I | Infraréd bnergy | | | | |
h | |
| by
I by I [ | :
| b I | | |
| o N | | |
| by I [ | |
e | e — l— | l___ !

V002T02A069-9 Copyright © 2021 by ASME and
The United States Government

220z dunf /g uo Jasn AysiaAlun ajejs elueniksuuad oy Aq ypd-Ge00.-120Zo10P-690EZ0I200A/LLZ L089/690YZ0LZ00A/9LE58/ L 202310-013al/4pd-sBulpesooid/319-013a1/610 swse uonos|j0dje}bipawse//:dpy woly papeojumoq



Figure 9 illustrates the quality and sensor map for
satisfying a density requirement by correlating the quality
of density, sensor, and physical phenomena. Density is
affected by multiple resultant physical phenomena related
to voids, keyholes, lack of fusion, pores, and cavities,
which are also classified as observed defects. These defects
are the results of the fusion-based process and limit various
mechanical properties. During the build process, these
defects can occur by a change of melt-pool size, which is
significantly affected by the heat source and other process
variables in real-time. The heat source emits thermal
radiation and the melt pool emits electromagnetic energy
levels and wavelengths, characteristic captured in Figure 9.

5.3 Relational diagram for monitoring

The radar plot is a useful method to explore the
complex, multidimensional relationships among the data
using the sensor ontology [40].

This two-dimensional radar diagram 1) gives a
graphical representation of multivariate data from the
ontology and 2) provides a way of comparing multiple,
quantitative variables in complex systems. Each variable is
provided with an axis that starts from the center. All axes
are arranged radially, with equal distances between each
other, while maintaining the same scale between all axes.
Gridlines that connect from axis to axis are often used as a
guide. A variable is plotted along an axis, and all the
variables from the ontology are connected to form a
polygon.

As shown in Figure 10, the radar graph highlights
multi-relational features and connections to various causal
physical phenomena. This graph shows how the melt pool,
cooling, and thermal distribution correlate to multiple
defects during the process and overcomes the limitations
of the network graph described in Sec 5.2.

Figure 11 shows a detailed mapping of sensor
capabilities to the physical phenomena — such as the melt
pool, thermal behavior, crack, and cooling - providing a
process monitoring strategy. Therefore, the results
illustrate a sensor capability and mapping combined with
the methods developed in the ontological, network graph.
These results can be used to integrate and navigate the AM
process and sensing capability.

In Section 5, we described 1) a hierarchical structure
of sensors for AM, 2) a quality and sensor network, and 3)
an interactive relation of physical phenomena and sensor
capability to QC/QA requirements. Together, these help us
investigate an AM system network to identify correlated
physical phenomena and the minimum set of sensors for
maximum coverage of a given set of multiple requirements
for process monitoring. Conversely, they help us identify,

V002T02A069-10

for a given set of sensors, the best subset of requirements
that can be met. Thus, this advantage provides insights into
what can be performed with an existing sensor suite and
will prioritize new sensor capabilities for in-situ
monitoring.

Causing Physical Phenomenon Vs. Resultant Physical Phenomenon

@ Melt Pool Size Cooling Rate ¢+ s+ Thermal Distribution

Balling

Crack, Powder Spatter

Thermal Distortion { Void

Surface Roughness Keyhole

Lack of Fusion Cavity

Pores

Figure 10. Relational diagram between Causing

Physical Phenomenon and Resultant

Phenomenon

Physical

Sensor Capability

e==Melt Pool Size  e====Crack
CCD Camera

«+++ Thermal Behavior

Ultrasonic Sensor CMOS Camera

Acoustic Sensor

High Speed camera

Photodiode ':: High Resolution Camera

Pyrometer IR Camera

Figure 11. Diagram of sensor capability

6. CLOSING REMARKS AND FUTURE WORK
This research investigates the relationship between
AM process inputs, physical phenomena, and process
outputs by considering different sensors, their capabilities,
physical emissions, and mechanical properties. The
minimal selection of sensors is targeted to cover a given
set of quality requirements by detecting and tracking
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feature deviations during the AM build process. The
selection uses a sensor capability map based on
information captured in the AM process ontology. An
essential and necessary outline for understanding and
identifying in-situ sensing capabilities and process
monitoring is developed.

In addition, a hierarchical structure is embedded in the
sensor ontology, which is relevant to the AM process
models. Towards better insight into the large data sets from
AM processes, the multi-physics in metal-based AM
technology is characterized. Furthermore, the sensor
framework can aid advanced process control and help
predict potential changes of a specific parameter and
physical phenomenon. This is done by monitoring and
diagnosing process problems in the metamodel.

Novel, framework development is necessary to
enhance repeatability, fidelity, and functional integrity of
experimentation. Thus, the proposed ontology-based
sensor framework offers an underlying platform for in-situ
sensor  measurements, real-time  guidance  for
characterizing printing defects, AM diagnostics, and
process quality indication.

Future work includes the development of models to
facilitate the data-driven, real-time prediction and control
of metal additive manufacturing. The real-time prediction
and control model can facilitate the analysis of the process,
measurements, and data-driven formulation to achieve
closed-loop control.
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