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a b s t r a c t 

Atomic-scale modeling methods such as density functional theory (DFT) and molecular dynamics (MD) can predict 
the thermodynamic properties of materials at a lower cost than experimental measurements. However, their 
regular usage in thermodynamic model construction is hampered by the lack of quantitative agreement with 
experimental measurements and the lack of uncertainty estimates on the data. To make regular usage of this 
atomistic simulation data, it is important to assess whether the atomistic simulation datasets, by themselves or 
in combination with experimental measurements, result in the same physics-informed models best supported by 
experimental measurements alone. In this work, models of aluminum thermodynamic properties are discussed 
using three data sources: atomistic calculations (DFT and MD), experiments, and a combination of atomistic 
calculations and experiments. The study shows that, after ensuring self-consistency in predicting key invariant 
points, both experimental measurements and atomistic calculations can significantly contribute to an optimal 
model. 
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. Introduction 

Atomic-scale methods such as density functional theory (DFT) and
olecular dynamics (MD) have emerged as sources of thermodynamic
roperty information, capable of predicting properties of phases that are
ifficult to measure. In addition, DFT and MD can assist the evaluation
f phase stability in temperature and composition regimes where the
ncertainty of experimental measurements is high [ 1 , 2 ]. Furthermore,
FT and MD have recently been used to refine thermodynamic models
3] . Despite the support for the usage of DFT and MD as tools to estimate
hermodynamic properties such as enthalpy and heat capacity [ 4–11 ],
onfident selection of datasets is hampered because the uncertainties are
arely reported. Some steps have been taken towards quantifying uncer-
ainties on DFT and MD data [ 12 –15 ], including evaluations of the rel-
tive contributions of various types of uncertainty sources [16] . Using
luminum as an example, this study demonstrates that atomistic simula-
ion datasets with estimated uncertainties can be used together with ex-
erimental measurements for developing optimal thermodynamic mod-
ls for the heat capacity and the enthalpy of materials. This approach
s of significant consequence, as it allows substantial expansion of the
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ool of data available for evaluating thermodynamic models or, in case
f missing data, it provides a variety of avenues to obtain them, in ad-
ition to experiments. 

Models of the heat capacity and enthalpy of a given material are
efined by thermodynamic principles and parametrized using avail-
ble datasets for specific materials [17] . Each dataset has its own re-
orted uncertainty resulting from the experimental setup and the spe-
ific methodology. In this work, aluminum (Al) is used as an example
ecause it is an important metal for numerous applications including
he automotive, aerospace, and manufacturing industries. For exam-
le, Al is a critical element in commercially used alloys, either cast or
D-printed. Thus, evaluating the uncertainty of thermodynamic mod-
ls of pure aluminum would impact the uncertainty of alloys of alu-
inum, improving the alloy design process. In this work, an optimiza-

ion approach making use of Bayesian inference for thermodynamics
 18 –20 ] and an automated weighting scheme [21] is used for devel-
ping models that include uncertainty. Atomistic simulation datasets
re used to complement datasets from experimental measurements by
roviding more data samples in the liquid phase using MD as well as
ore heat capacity data samples for the solid phase from three different
d. 
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𝐶  
ypes of DFT-based approaches. Both atomistic simulation datasets and
xperimental measurement datasets used in this work include estimated
ncertainties. 

In the past, thermodynamic models of pure aluminum have made use
f calorimetry measurements of the heat capacity [ 22 , , –35 ] and the en-
halpy of aluminum [36] , with each dataset differing in the temperature
ange of measurement and the respective estimated uncertainties. There
re many sources of uncertainty in the experimental measurements, in-
luding heating and sample preparation methods. A full discussion is
utside the scope of this work but can be found for calorimetry in [37] .

Past thermodynamic assessments [38] of calorimetry measurements
ave shown that aluminum reflects the properties of a Debye solid and
hat the heat capacity has both electronic and lattice contributions. More
ecently, an assessment of heat capacity data for solid aluminum for the
hird generation of SGTE (Scientific Group of Thermodata Europe) de-
criptions was made in the work of Bigdeli et al. [3] They used an Ein-
tein term to model the Gibbs free energy at low temperatures and a
olynomial function for high temperatures. Furthermore, Bigdeli et al.
erived a heat capacity model from the Gibbs free energy expression
nd demonstrated the value of atomistic simulation data in evaluat-
ng the properties of superheated aluminum that collapses to the liquid
tate. The atomistic data was obtained via ab initio molecular dynamics
AIMD). The inclusion of atomistic simulation data in the model of the
uperheated solid overcame a kink at the solid to liquid transition that
s present in past SGTE models. The past assessments [38] and models
39] of the heat capacity of solid and liquid aluminum had been devel-
ped using experimental measurements and did not include atomistic
alculations because no atomistic data was available at the time. 

The goal of this study is to develop a strategy to obtain the opti-
al model for the heat capacity and enthalpy of aluminum in its solid

nd liquid phases by using Bayesian inference with automatic weight-
ng to analyze more datasets than previously considered including ex-
erimental and atomistic datasets. Specifically, we show how atomistic
imulation data sources with estimated uncertainties can be selected for
he purpose of complementing experimental measurements by provid-
ng more data samples at temperatures where measurements are sparse
r missing. To this end, Section 2 describes the candidate models, the
ayesian inference approach, and the preparation of the experimental
nd atomistic simulation datasets with uncertainty estimates consid-
red in this study. Section 3 presents the optimized models, developed
y considering the datasets in the following sequence: (a) experimen-
al measurements alone, (b) only atomistic simulation data, and (c) a
omparable combination of atomistic simulation data and experiments.
inally, Section 4 provides a comparison of the optimal model presented
n Section 3 with past and present assessments of aluminum thermody-
amic properties. In addition, the impact on developing similar models
or other elements and alloys is discussed. 

. Methods 

All datasets generated in this work and the code that performs the
ayesian inference are available in the supplementary information on-

ine [40] . This section presents the candidate models, the Bayesian in-
erence approach to select optimal models, and the preparation of in-
ividual datasets. Section 2.1 describes the candidate models and the
ayesian inference approach to weight the datasets and select an opti-
al model from the candidates. Section 2.2 presents the selection of
ata points from the experimental datasets considered in this work,
ollowed by the DFT and MD methods to generate heat capacity and
nthalpy data used in this work. The uncertainty in DFT and MD pre-
icted properties can be divided into numerical/statistical uncertainties,
arametric uncertainty, and model uncertainty [ 12 , 15 , 16 ]. In this work,
arametric factors (for DFT) and numerical/statistical factors (for MD)
re employed to estimate the uncertainties. Uncertainty estimates on
he experimental data were made using the Guide to the Expression of
ncertainty in Measurement (GUM) [41] . Further, we note that these
2 
re estimates of the uncertainties which are refined in the Bayesian in-
erence approach through automated weighting. Also, it was shown in
aulson et al. [19] that the uncertainty estimate has limited influence on
he value of the rescaled uncertainty corresponding to the model with
he maximum likelihood. 

.1. Candidate models and application of Bayesian automated weighting 

.1.1. Candidate models 

In this work, we develop thermodynamic models with uncertainty
uantification for aluminum using both heat capacity and enthalpy
atasets. For the solid, two versions of the segmented regression model
42] for the heat capacity and enthalpy are considered as candidates:
ne using the Debye model (referred as Debye-SR) to capture low tem-
erature (less than room temperature of 298.15 K) effects and the other
sing the Einstein model (referred as Einstein-SR) to capture low tem-
erature effects on the heat capacity. The segmented regression model
as formulated to capture all sources (electronic, phonon, and mag-
etic) of physical effects on the temperature dependence of the heat
apacity. This model has been used recently in thermodynamic model-
ng to improve model agreement both with heat capacity datasets near
 K as well as above 298.15 K [ 19 , 21 , 42 ]. It has the following general
orm: 

 𝑝 = 𝐶 

𝐿𝑜𝑤 𝑇 
𝑉 

+ 𝐶 𝑝,𝑏𝑐𝑚 + 𝐶 𝑝,𝑚𝑎𝑔 (2.1.a.1)

here the low temperature electronic and phonon effects on the heat ca-
acity are captured by the heat capacity at constant volume, 𝐶 

𝐿𝑜𝑤 𝑇 
𝑉 

, the
igh temperature effects are captured by the bent-cable model 𝐶 𝑝,𝑏𝑐𝑚 ,
nd magnetic effects are captured by the last term 𝐶 𝑝,𝑚𝑎𝑔 . The corre-
ponding enthalpy model is determined by integrating the heat capac-
ty with respect to temperature and referencing the enthalpy of pure
ubstances as 0 at room temperature (298.15 K): 

 − 𝐻 298 . 15 = 

𝑇 

∫
0 
𝐶 𝑝 𝑑𝑇 (2.1.a.2)

Two models are considered in this work for the low temperature
ffects on the heat capacity, 𝐶 

𝐿𝑜𝑤 𝑇 
𝑉 

: the Debye model, and the Einstein
odel: 

 

𝐷𝑒𝑏𝑦𝑒 

𝑉 
= 9 𝑅 

( 

𝑇 

𝜃𝐷 

) 3 𝜃𝐷 
𝑇 

∫
0 

𝑥 4 𝑒 𝑥 

( 𝑒 𝑥 − 1) 2 
𝑑𝑥 (2.1.a.3)

 

Eins tein 
𝑉 

= 

3 𝑅 

( 

𝜃𝐸 

𝑇 

) 2 
𝑒 
𝜃𝐸 
𝑇 

( 

𝑒 
𝜃𝐸 
𝑇 − 1 

) 2 . (2.1.a.4) 

here, the parameters for the Bayesian inference are 𝜃𝐷 and 𝜃𝐸 , which
re the Debye temperature and Einstein temperature, respectively. R is
he gas constant 8.314 J/mol.K. A previously described numerical Simp-
on’s integral over 100 equally spaced temperature points was employed
o evaluate the Debye term [19] . The physical difference between the
ebye and Einstein model lies in how the heat capacity approaches zero.

n the Debye model, the heat capacity approaches zero as a T 3 power
aw, while in the Einstein model the heat capacity decreases exponen-
ially. The Debye model was formulated using the concept of phonons
o describe vibration in solids, while the Einstein model assumed atoms
o be harmonic oscillators with a single frequency. 

The bent-cable model in Eq. (2.1.a.1) is a polynomial model designed
o capture the variation in slope through the higher temperatures, which
s exhibited by experimental measurements and calculations and has the
ollowing form: 

 𝑝,𝑏𝑐𝑚 = { 
𝛽1 𝑇 , 𝑇 < 𝜏 − 𝛾

𝛽1 𝑇 + 𝛽2 
( 𝑇− 𝜏+ 𝛾) 2 

4 𝛾 , 𝜏 − 𝛾 ≤ 𝑇 < 𝜏 + 𝛾

𝛽1 𝑇 + 𝛽2 ( 𝑇 − 𝛾) , 𝑇 > 𝜏 + 𝛾

, (2.1.a.5)
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here the parameters 𝛽1 , 𝛽2 , 𝜏, and 𝛾 enable the realization of three re-
ions of variable slope with a smooth transition between them. The last
erm 𝐶 𝑝,𝑚𝑎𝑔 captures the magnetic effects on the heat capacity and is ne-
lected in this work because aluminum is non-magnetic. For brevity, the
ollowing two equations will be referenced to represent these candidate
odels for the solid (Debye-SR refers to Eq. (2.1.a.6) and Einstein-SR

efers to Eq. (2.1.a.7) : 

 𝑝, 𝐷𝑒𝑏𝑦𝑒 − 𝑆𝑅 = 𝐶 

𝐷𝑒𝑏𝑦𝑒 

𝑉 
+ 𝐶 𝑝,𝑏𝑐𝑚 (2.1.a.6)

 𝑝, 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 − 𝑆𝑅 = 𝐶 

𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 
𝑉 

+ 𝐶 𝑝,𝑏𝑐𝑚 (2.1.a.7)

For the liquid, the constant heat capacity model ( Eq. (2.1.a.8 )) is
ompared with the linear heat capacity model ( Eq. (2.1.a.9) ): 

 𝑝 = 𝑐 1 (2.1.a.8) 

 𝑝 = 𝑐 0 + 𝑐 1 T , (2.1.a.9) 

The present study aims to prepare the best combination of atomistic
imulation dataset sources and experimental measurements to parame-
erize these thermodynamic models for aluminum. 

.1.2. Automated weighting of datasets 

The datasets are automatically weighted using a Bayesian approach
hat makes use of the Multinest Monte Carlo algorithm [43] with 800
ive points. This algorithm was recently applied to explore the model
arameter space for thermodynamic models of hafnium [19] and alu-
inum [ 21 , 42 ]. This approach performs inference for two categories

f parameters, namely, model parameters themselves (for example for
ebye-SR in Eq. (2.1.a.6) : ƟD , 𝛽1 , 𝛽2 , 𝜏, 𝛾), and weights for each of the
atasets considered for a given model. The weight for a given dataset is
et as a ratio of the uncertainty estimate 𝛿 to a factor 𝛼. This factor enters
he Bayesian inference as a Bayesian hyperparameter 𝜀 , and determines
he weight assigned to the dataset: 

= 

𝛿

𝛼
(2.1.b.1) 

This factor 𝛼 determines whether a given dataset’s original uncer-
ainty is scaled-up ( 𝛼 < 1) or scaled-down ( 𝛼 > 1). Scaled-up means
hat the uncertainty estimate 𝛿 was underestimated with respect to the
onsidered model, while scaled-down means that the 𝛿 was overesti-
ated. The level of weighting on a dataset is discussed in terms of the
agnitude of the rescaled uncertainty. In other words, the higher the

escaled uncertainty, the less a dataset is weighted in the model. The
rior distribution for the factor 𝛼 is the exponential distribution with a
ean of 1. For each model parameter, the prior distribution is a broad
niform distribution with a physically reasonable range informed by in-
uition (for example, the Debye temperature and Einstein temperature
re set as positive quantities less than 700 K, and the constant term for
he liquid heat capacity is set between 0 and 100) for each parameter as
escribed in Paulson et al. [21] and the supplemental information [40] .
he likelihood function for a given parameter set is computed for each
ataset using two Student’s t -distributions with 𝜈 = 2 degrees of free-
om, one for the heat capacity error ΔC p and other for enthalpy error
H , with each centered at zero, scaled to the Bayesian hyperparameter
f each dataset. The joint probability density for the likelihood function
probability of the data given the parameters P(D| Ɵ)) is given as: 

 ( 𝐷|𝜃) = 

Γ
(
𝜈+1 
2 

)
√
𝜋𝜈Γ

(
𝜈

2 

)
⎛ ⎜ ⎜ ⎜ ⎝ 
1 + 

(ΔC p 
𝜖

)2 

𝜈

⎞ ⎟ ⎟ ⎟ ⎠ 
− 𝜈+1 2 

. 

Γ
(
𝜈+1 
2 

)
√
𝜋𝜈Γ

(
𝜈

2 

)
⎛ ⎜ ⎜ ⎜ ⎝ 
1 + 

(
ΔH 
𝜖

)2 

𝜈

⎞ ⎟ ⎟ ⎟ ⎠ 
− 𝜈+1 2 

(2.1.b.2) 

The model evidence is computed as the logarithm of the marginal
ikelihood function, and models are compared using the Bayes’ factor
3 
expressed as the ratio of the marginal likelihood function of two com-
eting model forms) as discussed in detail in Paulson et al [ 19 , 21 , 40 ].
o reproduce the findings of this work, the reader is referred to the sup-
lementary datasets and codebase available online [40] . 

.2. Thermodynamic property datasets 

.2.1. Preparation of datasets 

In this paper, the data sources are referred to in the format of
NAyyyy (first three letters of the last name of the first author fol-
owed by the four-digit year of publication). Experimental data sources
ith at least 10 data points in the solid phase or 6 data points in

he liquid phase are chosen in this work so that as many sources of
ata with comparable amounts of data are considered. It is of inter-
st to understand the statistical contribution of each data source. Of
hese experimental measurement data sources, heat capacity for tem-
eratures lower than 298 K is available from MAI1934 [22] , KOK1937
23] , GIA1941 [24] , HOP1962 [25] , BER1968 [26] , DOW1980 [27] ,
OC1953 [28] , ROR1962 [29] , and PAR1961 [30] . Above 298 K,
eat capacity data is available from HIR1955_1 and HIR1955_2 [31] ,
CH1970 [32] , KRA1972 [33] , ZOL1990 [34] , and EAS1924 [35] . In
articular, SCH1970 [32] and KRA1972 [33] report heat capacity data
or liquid aluminum in addition to solid aluminum. MCD1967 [36] is
 source of enthalpy data for both solid and liquid aluminum from
alorimetry measurements in a titanium diboride crucible from 366 K
p to 1647 K. McDonald [36] shows that data measured above 600 K
as larger uncertainty than data measured at room temperature because
f the partial reaction of aluminum with the crucible. 

Each experimental dataset differs from the other in the number of
oints available and since each data point is measured in the same way,
orrelations exist within a dataset. To reduce the differing degrees of
ithin-dataset correlation, 10 data points are selected from each dataset

or the solid phase in the following manner: (i) if the dataset spans the
ntire temperature range for the solid (0 K to 933.15 K), one data point
s selected at random from each 100 K interval of temperature from 0 K
o 933.5 K, (ii) otherwise, 10 data points are chosen at random from the
vailable temperature range of the dataset. Similarly, 6 data points are
elected for each dataset for the liquid from a temperature of 933.5 K
o 1600 K. Applying this approach, the datasets EAS1924, POC1953,
nd PAR1961 are not considered in this work because they have fewer
han 7 data points each. ROR1962 and HOP1962 are datasets providing
eat capacity data in the range of 1 K to 1.2 K. ROR1962 provides data
oints over 1.17 K to 1.19 K, while HOP1962 provides data over 1.08 K
o 1.19 K. With the larger range and to avoid redundancy, HOP1962 is
onsidered in this work and ROR1962 is not considered. 

Melting points determined by atomistic simulation methods (MD)
nd experimental measurements show systematic discrepancies. To ac-
ount for this discrepancy, we propose that a single melting point is
onsidered across all datasets. To account for the difference in melting
oint between experimental datasets and MD datasets, data is excluded
rom the interval T m 

E < T < T m 

P if T m 

E < T m 

P and from T m 

E > T >

 m 

P if T m 

E > T m 

P , where T m 

E and T m 

P are the melting points according
o experiment (T m 

E = 933.5 K) and the MD dataset, respectively. This
pproach avoids the inclusion of data, at a given temperature, which
s solid according to the interatomic potential and liquid according to
xperimental measurements, or vice versa. Past CALculation of PHAse
iagrams (CALPHAD) assessments show that certainty in the invariant
oints is critical for a reliable assessment [2] . 

.2.2. DFT generated heat capacity data 

For the DFT data sources, a heat capacity dataset for solid aluminum
s generated in this work (and labeled as GAB2021) and also extracted
rom literature (datasets labeled as GUA2019 [13] , GRA2009 [44] ). 
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For the DFT calculations in this work, the Vienna ab initio Simula-
ions Package (VASP) 1 [45] and its projector augmented wave method
46] pseudopotential (version 5.4) of aluminum in the 3s 2 3p 1 configu-
ation was employed. The plane wave cutoff of 600 eV and a Γ - centered
onkhorst and Pack [47] mesh corresponding to a k -points density of

000 per reciprocal atom were used. The 2 × 2 × 2 supercell of the 4
tom face-centered cubic ( fcc ) conventional cell of aluminum was used
s a basis for density functional perturbation calculations to calculate
he quasi-harmonic approximation (QHA) to the free energy as imple-
ented in Phonopy [48] . A volume range of -5 to 5 % with respect

o the equilibrium volume was used to calculate the phonon density of
tates, and hence derive the heat capacity C p (T) under the QHA up to
he melting point of 933.5 K. To obtain the equilibrium volume, en-
rgy minimization was performed before the density functional pertur-
ation calculations, wherein the total energies were converged to 10 − 6 

V and forces to 0.01 eV/Å. The uncertainty with the DFT prediction
or C p (T) was estimated using the effect of the selected exchange cor-
elation, which has been shown in the literature to be a key source of
ncertainty for DFT computed properties [ 12 , 13 ] among others such
s calculation convergence parameters and approximations to the elec-
ronic structure in form of pseudopotentials. Since heat capacity at con-
tant pressure is a first derivative of the enthalpy, the epistemic un-
ertainty due to our choice of convergence parameter ( k -point density)
s considered to be less than 1% or on the order of 0.1 J/mol.K [49] .
uong et al. [50] showed that our choice of supercell size also causes
n uncertainty on the order of 0.1 J/mol.K. Further, uncertainty in the
FT prediction can be a result of systematic bias due to approximations
ade by choosing a single exchange correlation functional. To minimize

his bias, we employ the observation in literature that shows that local
ensity approximation (LDA) and generalized gradient approximation
GGA) functionals are known to systematically underestimate and over-
stimate structural properties (such as atomic distances and cohesive
nergies) in metals such as Al [ 51 , 52 ]. This explains the finding in the
iterature that shows that the LDA and GGA bound experimental heat
apacity data [ 44 , 53 ] for metals such as Cu, Ni, and Al. We note this
pproach of using the LDA and GGA to minimize the systematic bias
s not universal to all materials, especially when both LDA and GGA
verestimate or underestimate structural properties. We note that the
pproach of Guan et al. [13] to use the Bayesian Error Estimation Func-
ional (BEEF) is attractive for materials when sources of systematic bias
ue to choice of any one functional is unknown. Using this approach
o estimate uncertainty, the predicted value of C p at a given tempera-
ure, 𝐶 𝑝,𝐷𝐹𝑇 ( 𝑇 ) , is estimated as the average of 𝐶 𝑝,𝐺 𝐺 𝐴 ( 𝑇 ) , i.e. , the DFT
redicted value with the GGA of Perdew Burke Ernzerhof (PBE) [54] ,
nd 𝐶 𝑝,𝐿𝐷𝐴 ( 𝑇 ) , i.e. , the DFT predicted value with LDA parametrized by
erdew and Zunger [55] . The associated uncertainty 𝜎𝐶 𝑝,𝐷𝐹𝑇 

( 𝑇 ) , is esti-
ated as the absolute difference between 𝐶 𝑝,𝐺 𝐺 𝐴 ( 𝑇 ) and 𝐶 𝑝,𝐿𝐷𝐴 ( 𝑇 ) : 

 𝑝,𝐷𝐹𝑇 ( 𝑇 ) = 

1 
2 
[
𝐶 𝑝,𝐿𝐷𝐴 ( 𝑇 ) + 𝐶 𝑝,𝐺 𝐺 𝐴 ( 𝑇 ) 

]
(2.2.b.1) 

𝐶 𝑝,𝐷𝐹𝑇 
( 𝑇 ) = 

||| 𝐶 𝑝,𝐺 𝐺 𝐴 ( 𝑇 ) − 𝐶 𝑝,𝐿𝐷𝐴 ( 𝑇 ) 
||| (2.2.b.2) 

The DFT data for C p (T) with uncertainties described above is used
s one source of atomistic simulation data and is referred as GAB2021
n this work. In addition, two more DFT datasets [ 13 , 44 ] for C p (T) are
xtracted from the literature using the open source WebPlotDigitizer
ool [56] : (i) dataset GUA2019 corresponding to Guan et al. [13] that
ade use of the Bayesian Error Estimation Functional (BEEF) in con-

unction with the Debye model to calculate C p (T) with Bayesian uncer-
ainty estimates; and (ii) GRA2009 corresponding to Grabowski et al.
1 Commercial products are identified in this paper for reference. Such identi- 
cation does not imply recommendation or endorsement by the National Insti- 
ute of Standards and Technology (NIST), nor does it imply that the materials 
r equipment identified are necessarily the best available for the purpose. 
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44] that made use of PBE to calculate C p (T) from free energy calcula-
ions using ab initio molecular dynamics. An uncertainty of 0.1 J/mol.K
as estimated on GRA2009 based on the tighter DFT input parame-

ers such as k-point density chosen in Grabowski et al [44] . Among
he three DFT datasets, GUA2019 shows larger uncertainty estimates
han GAB2021 and GRA2009, especially at temperatures more than
00 K. 

.2.3. MD generated enthalpy data 

For the MD datasets, 4 interatomic potentials are used to generate
nthalpy datasets through MD simulations and considered as candidates
ecause of the large variability in predicted melting points for aluminum
14] . In this work, we use a diverse candidate subset of 4 interatomic
otentials as a representative example of use cases where an available
nteratomic potential is chosen for accuracy in predicting phase transi-
ions and mechanical properties in aluminum and its alloys. We include
nteratomic potentials developed for alloys as representative of use cases
here accuracy in these properties for modeling both aluminum and its
lloy phases is desired, such as for developing thermodynamic phase di-
grams. With this aim, three candidate Embedded Atom Method (EAM)
nteratomic potentials [ 57 –59 ] designed for predicting properties of alu-
inum and its alloys are chosen from the NIST interatomic potential

epository [60] according to the accuracy of their predicted melting
oints as tabulated in Zhu et al. [14] . To generate a diverse example
andidate subset, the accuracy criterion was set as 150 K of the experi-
entally measured melting point of 933.5 K. Specifically, Sturgeon and

aird [57] was designed to correct for discrepancy in melting point,
hile Mishin et al. [58] was designed for mechanical properties of alu-
inum and Mishin [59] was designed for Ni-Al alloys. Additionally, a

ecently developed machine learning interatomic potential for Al-Mg
lloys that predicts the melting point of aluminum as 918 K [61] is con-
idered as representative of a different fitting strategy than the EAM
otentials. We note that other potentials predict melting points closer
o the experimental value of 933.5 K as tabulated in Zhu et al. [14] . The
oal of this study, however, is to demonstrate how to choose from a di-
erse candidate subset for developing a thermodynamic property model
ith quantified uncertainty. Further, in this work, we do not judge the
uality of any interatomic potential but introduce an approach on how
o choose the one from a candidate subset that can be most compati-
le with experiments to expand the data pool available for optimizing a
hermodynamic model. 

The enthalpy for both the solid phase and liquid phase are deter-
ined using isothermal-isobaric molecular dynamics (NpT-MD) simula-

ions, using Large-scale Atomic/Molecular Massively Parallel Simulator
LAMMPS) [62] with a 1 fs timestep. For the EAM potentials, a 6912
tom cell (12 × 12 × 12 supercell of the 4 atom conventional cell) of
luminum is used following the procedure described in Becker et al [9] .
or the machine learning force field, a smaller cell (864 atom 6 × 6 × 6
upercell) is considered because of the increased computational cost.
nthalpies of both solid and liquid aluminum are determined, for each
f these potentials, over the range of 200 K to 1600 K. For each of the 4
otentials considered in this study, the block averaging method of Fly-
bjerg and Petersen is used to estimate the ensemble averaged enthalpy
nd the associated statistical uncertainty [ 63 , 64 ]. This method estimates
he uncertainty as the plateau of the square of the block-averaged un-
ertainty of the enthalpy over the molecular dynamics trajectory with
espect to the reciprocal number of blocks. The plateau corresponded to
 height ranging from 1 to 25 J 2 /mol 2 for the squared uncertainty of the
nthalpy of the solid (computed for temperatures 200 K to 900 K) and
0 to 120 J 2 /mol 2 for the liquid (computed for temperatures 1000 K to
600 K), each over a width of 4 to 8 blocks. This approach resulted in
n estimated uncertainty of 1 to 5 J/mol for enthalpy of the solid and 9
o 11 J/mol for the liquid. Further, enthalpies of fusion are calculated
nd reported in the present study at the melting temperatures for each
otential reported in Zhu et al. [14] and Zhang et al. [61] . 



J.J. Gabriel, N.H. Paulson, T.C. Duong et al. Materialia 20 (2021) 101216 

Table 1 

Optimal model parameters for heat capacity model of solid aluminum expressed as mean ± standard deviation. 

Dataset Selection Θ𝐷 (K) 𝛽1 (x 10 -3 J/K) 𝛽2 (x 10 -3 J/K) 𝜏(K) 𝛾(K) 

Experiments only 390.3 ± 0.9 1 ± 0.002 8 ± 0.4 176.9 ± 17.8 84 ± 44.5 
Atomistic only 363.4 ± 5.7 -0.7 ± 0.6 9 ± 0.7 177.3 ± 16.6 102.6 ± 51.5 
Aggregated 390.2 ± 0.8 1 ± 0.002 6 ± 0.3 150.9 ± 16.7 50.8 ± 40.1 

Table 2 

Optimal model parameters for heat capacity 
of liquid aluminum expressed as mean ± stan- 
dard deviation. 

Dataset Selection 𝑐 1 (J/mol.K) 

Experiments only 31.2 ± 4.2 
Atomistic only 34.7 ± 0.2 
Aggregated 31.1 ± 0.2 
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. Results 

The results of this work are presented as follows: Section 3.1 presents
he optimal model derived from experimental measurement datasets
lone. Section 3.2 describes the selection of atomistic simulation
atasets to best complement the experimental measurement datasets by
resenting optimal models derived from atomistic simulation datasets
lone. Finally, Section 3.3 presents the optimal model combining ex-
erimental measurement datasets and atomistic simulation datasets. In
ach section, the optimal model for the considered collection of datasets
efers to the optimal model form out of the candidate model forms in-
roduced in Section 2.1.1. The parameters for each of the models pre-
ented in Sections 3.1 to 3.3 are listed in Table 1 for the solid phase,
nd in Table 2 for the liquid phase. The optimal model presented in
ection 3.3 is further compared to the literature and the similarities and
ifferences are discussed in Section 4 . Further, the differences in weight-
ng of datasets will be discussed in Section 4. 

.1. Optimal property model from experimental measurements 

Fig. 1 shows the mean heat capacity and enthalpy for solid and liquid
luminum for the optimal model form, when considering experimen-
al data sets alone. The uncertainty on the model is expressed as the
ayesian 95% credible interval bands. The full-width of the Bayesian
5% credible interval increases from 0 J/mol.K to a maximum of
.7 J/mol.K close to the melting point. Owing to the increased estimated
ncertainty of data points beyond the melting point, the full-width max-
mum of the Bayesian 95% credible interval reaches 1 J/mol.K. 

The optimal model form is selected from the candidates introduced
n Section 2.1.1 (see Eq. (2.1.a)) for each phase. For the solid, between
he Debye-SR ( Eq. (2.1.a.6) ) and Einstein-SR ( Eq. (2.1.a.7) ) models, the
ayes’ factor (ratio of the marginal likelihood between the Debye-SR
nd Einstein-SR) is on the order of 1000. This Bayes’ factor indicates a
trong preference for the Debye-SR model form when considering these
xperimental measurement datasets. This is an expected result because
luminum is known to be a Debye solid from past assessments for this
emperature range [38] . 

For the liquid, between the constant model ( Eq. (2.1.a.8) ) and linear
odel ( Eq. (2.1.a.9) ), the Bayes’ factor (ratio of the marginal likelihood

etween the constant model and linear model) is 5. This lower Bayes’
actor indicates a weaker preference of model form between the linear
odel and the constant model. Being the model with fewer parame-

ers, the constant model is selected. Past assessments [38] and mod-
ls [39] have used a constant value to approximate the heat capacity.
ertain datasets [ 32 , 33 ] had been ignored in past assessments [38] be-
ause of their deviations from the rest of the data. In this work, samples
5 
rom all these datasets are considered. As will be discussed further in
ection 4 , these datasets receive lower weights, which is essentially the
hoice made in past assessments. 

.2. Selection of atomistic simulation datasets 

In this subsection, we present the selection of an optimal combi-
ation of atomistic simulation datasets for complementing the experi-
ental measurement datasets presented in the previous subsection. Four
ifferent combinations of atomistic simulation datasets are considered.
n each combination, one enthalpy dataset from MD (STU2000 [57] ,
IS1999 [58] , MIS2004 [59] , and ZHA2019 [61] ) is combined with

ll three heat capacity datasets from DFT (GRA2009 [44] , GUA2019
13] , and GAB2021 (this work)). For brevity, these models are referred
s MIS1999, STU2000, MIS2004, and ZHA2019 according to the respec-
ive MD enthalpy datasets considered in each. All three DFT datasets are
onsidered together in one combination because each dataset is the re-
ult of: (i) different model assumptions for the underlying DFT method,
ii) different approaches to calculating C p , and (iii) different paramet-
ic uncertainty estimation approaches. GUA2019 was calculated using
he Debye model and the Bayesian Error Estimation Functional, while
AB2021 made use of the quasi-harmonic approximation approach, and
RA2009 considers anharmonic and vacancy effects through ab initio

D. The classical MD enthalpy datasets on the other hand were com-
uted using the same MD methodology and differ only in the fitting
pproach to create each underlying interatomic potential. To build an
ptimal model where atomistic simulation datasets complement experi-
ental measurement datasets, we choose the combination that supports

he same optimal model form for both solid and liquid aluminum. 
For the solid, the Bayes’ factor (ratio of the marginal likelihood be-

ween the Debye-SR and Einstein-SR) is on the order of 1000 for all four
ombinations, indicating a strong preference for the Debye-SR model.
his is the same model form preferred by the experimental measurement
atasets presented in Section 3.1 . For the liquid, however, MIS1999
hows a Bayes’ factor of 5 (ratio of the marginal likelihood of linear
eat capacity to constant heat capacity), while STU2000, MIS2004,
nd ZHA2019 show a Bayes’ factor of 109, 2440, and 3071, respec-
ively. The low Bayes’ factor of 5 for MIS1999 indicates that there is a
eak preference for linear heat capacity. Being the simpler model with

ewer parameters, the constant heat capacity model can be selected for
he MIS1999 dataset. On the other hand, the higher Bayes’ factor for
TU2000, MIS2004, and ZHA2019 indicate that there is a strong pref-
rence for the linear heat capacity. 

The difference in preferred model form may be associated with dif-
erences in how the liquids are represented by the interatomic potential
odels. For example, although STU2000 predicts a melting point close

o experiment, it was not fit directly to properties of the liquid. More-
ver, interatomic potentials may be optimized to reproduce properties
f alloys and not only the elements, such as MIS2004 and ZHA2019.
ig. 2 compares the optimal heat capacity and enthalpy model forms
or solid and liquid aluminum for the four combinations of atomistic
imulation datasets. Comparing Fig. 2 (a, b) with (e, f) shows that the
ifference between MIS1999 and MIS2004 is large, especially in the liq-
id phase; MIS2004 was optimized for the Ni-Al alloy properties. On
he other hand, comparing Fig. 2 (a, b) with (g, h) shows a smaller dif-
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Fig. 1. shows the mean (a) heat capacity (zoomed in view in (c)) and (b) enthalpy (zoomed in view in (d) for solid (orange dashed dotted line) and liquid 
aluminum (orange, dotted line) when considering experimental data sets alone. The Bayesian 95% credible interval bands are also shown and increase with increasing 
temperaturate. 

Table 3 

Heat of fusion and melting temperature of aluminum from 

atomistic simulations using different interatomic potentials. 

Interatomic Potential 
Heat of Fusion 
(kJ/mol) 

Melting 
Temperature (K) 

MIS1999 [57] 9.76 1043.0 
STU2000 [58] 9.33 932.5 
MIS2004 [59] 9.01 871.0 
ZHA2019 [61] 10.2 918.0 
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erence between MIS1999 and ZHA2019. ZHA2019 was fitted to some
iquid phase configurations. 

Fig. 3 additionally shows all atomistic simulation datasets considered
n this work for each of the DFT computed heat capacity and the MD
omputed enthalpies. The major difference between various MD datasets
esides in the published melting points [14] as tabulated in Table 3 . En-
halpies of fusion are calculated and reported in the present study. De-
pite the discrepancy in melting point and differences in preferred model
orm, Fig. 3 shows that the different MD datasets agree with each other.
his can be explained by the discrepancies in both the enthalpy of fu-
ion and the melting point, partially canceling each other out. While the
ccuracy in melting point (in general phase transition point) is a reason-
ble criterion to select an interatomic potential for modeling the liquid
hase (in general the phase after phase transition point on heating),
t is not a sufficient criterion and additional checks are recommended.
or material systems where the model form for the phase is well estab-
ished, such as aluminum, checking whether the atomistic simulations
6 
upport the same model form as the experimental measurement datasets
s recommended before making use of the interatomic potential to model
he phase. Hence, the model derived based on MIS1999 is selected to
omplement the experimental measurements from Section 3.1 towards
uilding an aggregated model that considers both experimental mea-
urement datasets and atomistic simulation datasets. 

.3. Complementing the experimentally derived model with atomistic 

imulation datasets 

Fig. 4 presents the optimal model when the atomistic simulation
atasets GUA2019, GAB2021, GRA2009, and MIS1999 are used to-
ether with the experimental measurements described in Section 3.1 .
his model is referred henceforth as the aggregated model. Further,
ig. 4 compares the aggregated model (green) with the models pre-
ented in Section 3.1 (orange, referred as experimental in text, and Expt.
n the figure) and 3.2 (blue, referred as atomistic in text, and Atom.
n the figure). Each model has an associated uncertainty described by
he Bayesian 95% credible interval. The full-width of the Bayesian 95%
redible interval is at most 1 J/mol.K for the experimental model, and
.9 J/mol.K for the atomistic model and the aggregated model. The three
odels agree within the Bayesian 95% credible interval up to 400 K

nd then the aggregated model and atomistic model deviate by up to
 J/mol.K from the experimental model presented in Section 3.1 . Com-
ared with the experimental model, the Bayesian 95% credible interval
f the aggregated model is smaller, indicating a reduction in the over-
ll model uncertainty. Furthermore, for the solid, the Debye-SR model
orm is once again preferred with a Bayes’ factor on the order of 1000
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Fig. 2. shows the mean heat capacity model (left column: a, c, e, g) and enthalpy model (right column: b, d, f, h) for solid (blue, dashed dotted line) and liquid 
(blue, dotted line) aluminum when considering DFT heat capacity datasets with one MD dataset each, i.e, (a,b) MIS1999, (c,d) STU2000, (e, f) MIS2004, and (g,h) 
ZHA2019. The constant heat capacity model is preferred by the model developed using MIS1999. 

7 
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Fig. 3. Data with uncertainty from atomistic simulations in this work and oth- 
ers from literature. a) Estimation of uncertainty in Heat Capacity (C p ) from DFT 
PBE and LDA calculations (DFT-this work, is dataset GAB2021 in blue) com- 
pared with b) SGTE function (in orange, circles) and C p from other DFT work: 
DFT-BEEF (is dataset GUA2019 in green) and DFT-MD (is dataset GRA2009 
in black). Uncertainty estimates range from 0.5 J/mol.K to 2 J/mol.K. c) En- 
thalpy (H) derived from MD simulations, with 4 different interatomic potentials 
compared with NIST-JANAF (black) [65] , and an assessment by HSC Chemistry 
(red). Vertical lines represent the melting points (T a mp ) predicted by each po- 
tential or model. Experimental melting point is T m E = 933.5 K. To account for 
this difference in melting point, data is excluded from the interval T m E < T < 
T m P if T m E < T m P and from T m E > T > T m P if T m E > T m P. Uncertainty estimates 
are between 1 and 10 J/mol. 
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8 
ith respect to the Einstein-SR model. For the liquid, the Bayes’ factor
ratio of marginal likelihood of the linear heat capacity to the constant
eat capacity) is approximately unity. This once again indicates a weak
reference to linear heat capacity, and hence, being the simpler model,
he constant heat capacity is selected. 

Tables 2 and 3 show the differences in model parameters for the
olid and liquid phase, respectively. For the solid, the Debye tempera-
ure is predicted to be 390 K when the model is developed from only
xperimental data or a combination of experimental data and atomistic
ata. This is in good agreement with a Debye temperature of 390 K at
98 K, which was obtained from the derivation of experimental ther-
al conductivity data [66] . The Debye temperature is predicted to be
66 K when only atomistic datasets are included. The underestimation
f the Debye temperature can be explained by the difference in phonon
ensity of states between what can be measured and what is calculated.
n the liquid phase, the atomistic model predicts a heat capacity higher
han the aggregated model by 2 J/mol.K. 

Fig. 5 compares the original uncertainty estimate and rescaled un-
ertainty on each dataset in terms of the mean uncertainty and the asso-
iated Bayesian 95% credible interval for the experimental model (or-
nge), atomistic model (blue), and for the aggregated model (green) de-
cribed in this section. A lower rescaled uncertainty indicates a higher
eight for the dataset, in each model. A complete tabulation of the
ayesian rescaling factor in addition to the rescaled uncertainties shown

n Fig. 5 (their respective mean, 2.5th and 97.5th percentiles) is avail-
ble in the supplemental spreadsheet under the sub-sheets “Cp_solid ”,
Cp_liquid ”, “H_solid ”, and “H_liquid ” for the respective parts of each
odel. Among heat capacity datasets in the low temperature region of

ess than 10 K, the datasets HOP1962, KOK1937, and BER1968 have
stimated uncertainties on the order of 10 − 5 J/mol.K and hence do not
how on the plotting scale of Fig. 5 . Upon rescaling the uncertainty, the
upplementary spreadsheet “Cp_solid ” shows that HOP1962 is weighted
he most among HOP1962, KOK1937, and BER1968 in both the aggre-
ated model as well as the experimental model. In the higher temper-
ture region for the solid, that is, greater than 10 K, the supplemen-
ary spreadsheet shows that DOW1980 has the lowest rescaled uncer-
ainty for both the experimental and aggregated models and is hence
eighted the most. For the solid phase, all heat capacity experimental
easurement datasets show rescaled uncertainty less than 1 J/mol.K.
ll the atomistic simulation heat capacity datasets, that is, GUA2019,
RA2009 and GAB2021 also show rescaled uncertainties of less than
 J/mol.K. For the liquid phase, SCH1970 shows the highest rescaled
ncertainty of 2 J/mol.K and is hence weighted the least. Among the
nthalpy datasets, the mean rescaled uncertainty of the atomistic sim-
lation dataset MIS1999 in the aggregated model is 2000 J/mol in the
iquid phase, and 500 J/mol in the solid phase. The experimental mea-
urement enthalpy dataset MCD1967 shows a maximum rescaled un-
ertainty of 100 J/mol in the aggregated model. Together, the supple-
entary spreadsheets and Fig. 5 show that although the atomistic sim-
lation datasets are initially underestimated in their uncertainties, their
escaled uncertainties are within one order of magnitude as the experi-
ental measurement datasets. 

. Discussion 

The aggregated model derived in Section 3 is now compared in
ig. 6 with models published by the past assessment by Desai [38] , an
ssessment generated by a commercial assessment software HSC Chem-
stry [67] , and the 1991 SGTE function [39] . HSC Chemistry makes use
f the thermodynamic databases and optimizes thermodynamic prop-
rty models. For the case of aluminum, the HSC evaluation is based on
he thermodynamic data for the solid from Burcat and Ruscic [68] and
he liquid data from Burcat and Ruscic [68] , Knacke et al . [69] , and
elov et al. [70] The 1991 SGTE function was adopted in many commer-
ial thermodynamic databases such as those distributed by Thermo-Calc
71] . The model developed in this work agrees within 3 J/mol.K over the
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Fig. 4. Comparison of (a) Heat capacity (with zoomed view in c)) and corresponding (b) Enthalpy (with zoomed view in d)) for the aggregated model (green), 
atomistic model (blue), and experimental model (orange) for solid (dashed dotted line) and liquid (dotted line). Agreement between the three models within 95% 

CI is up to 400 K for Cp, while agreement within 95% CI for the enthalpy agreement is upto 600 K. 
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d  

e  

f  
emperature range of 300 K to 1600 K with all these considered assess-
ents. Both the models from HSC chemistry and the SGTE function are
lotted from 300 K and above because the model form is not meant to
xtrapolate to 0 K. The model in this work deviates more than 2 J/mol.K
bove 600 K from the assessment by Desai and HSC Chemistry, but is
ithin 1 J/mol.K of the SGTE function across the complete temperature

ange considered. We attribute these differences to two factors: first, the
ncreased number of data sources considered in this work, i.e. , inclusion
f DFT and MD data, compared to Desai, HSC Chemistry, and SGTE;
nd second, the increased uncertainty in heat capacity measurements
bove 600 K. The maximum deviation near the melting point is likely
ecause the melting point is a point of discontinuity in the enthalpy
f a pure substance. Hence, the derivative of enthalpy (heat capacity)
oes to infinity or is at best undefined at the melting point. Further, it
s likely that as measurements are made closer to the melting point, the
easured heat capacity increases because of the increase in vacancies in

luminum. Furthermore, there is an increasing uncertainty of the mea-
urement technique, for example, because of reaction of aluminum with
he crucible at temperatures close to the melting point [36] . 

This work sought to examine the statistical contribution of all data
ources to the model, correcting for the bias from differences in numbers
f observations per dataset as well as differences in predicted invariant
oints. We also note that the aggregated model makes use of datasets
hich were excluded from past assessments as outliers because of de-
iations of more than 5 % with respect to the most trusted datasets at
he time Desai made the assessment, such as KRA1972 and SCH1970.
onetheless, these datasets receive low weights in the Bayesian ap-
roach, but still contribute to a more refined estimate of the heat ca-
acity of liquid aluminum with uncertainty. The atomistic simulation
t  

9 
atasets statistically contribute more in the solid phase than in the liq-
id phase. Choice of appropriate atomistic simulation datasets in combi-
ation with experimental measurements supports the same model form
upported by experimental measurements alone. In addition, inclusion
f the atomistic simulation datasets provides more data and reduces the
ncertainty of the overall optimal model for the range of 0 to 1600 K.
e note that inclusion of an interatomic potential that is optimized with

iquid phase properties may receive a larger weight than the presently
onsidered interatomic potentials. Furthermore, although the constant
eat capacity model is preferred by experimental datasets for aluminum,
 non-constant model for the heat capacity of the liquid phase is pos-
ible in materials such as found in the work of Becker et al. [9] . We
lso note that, in general, systematic bias can be caused by choosing a
articular physics-based model for modeling the system because of the
ossibility of missing physics in the model. This can be remedied by
odeling the bias as a Gaussian, such as been done for other models
sing Bayesian inference [72] . Although this was not performed in this
ork, segmented regression was chosen because literature shows that it

aptures all known physical effects on the heat capacity for aluminum
42] , namely, both electronic and phonon contributions to the heat ca-
acity at both low and high temperatures. 

. Conclusions 

This study demonstrates that the inclusion of atomistic simulation
ata along with experimental measurements for the heat capacity and
nthalpy of aluminum can support and improve the model forms used
or the analysis of experimental datasets. The three models (experimen-
al, atomistic and aggregated) agree within the Bayesian 95% credible
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Fig. 5. Comparison of the mean original estimated uncertainty with the mean Bayesian rescaled uncertainty for (a, b) heat capacity datasets (in J/mol.K) and (c, d) 
enthalpy (in J/mol) considered in this work. In each subfigure, mean original uncertainty is solid (in black, web version). The mean rescaled uncertainty is shown 
as (i) circles (orange web version) for experimental model (Expt) (ii) dots (blue web version) for atomistic model, and (iii) hatched (green web version) aggregated 
model. Error bars indicate the Bayesian 95% credible interval on the mean uncertainty. All heat capacity datasets are rescaled by no more than an order of magnitude, 
while enthalpy datasets MIS1999 and MCD1967 are rescaled by more than an order of magnitude from their original uncertainties. 

Fig. 6. Comparison of the optimal heat capacity model with past assessments by Desai, a commercial optimization software HSC Chemistry, and the SGTE1991 
description in terms of (a) the predicted values and (b) the deviations, showing that agreement is within 3 J/mol.K. 

i  
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t  

g  
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t  

f  

c  
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c  

o  

d

D

nterval up to 400 K and then the aggregated model and atomistic model
eviate by less than 3 J/mol.K from the experimental model. The max-
mum full-width of the Bayesian 95% credible interval is 1 J/mol.K for
he experimental model and is reduced to 0.9 J/mol.K for the aggre-
ated model. When considered alone, certain atomistic simulation data
an result in qualitatively different models compared to the experimen-
al ones. Nevertheless, estimating and evaluating uncertainties allows
or reliable selection of the optimal model. Moreover, the atomistic cal-
ulation results complement experimental measurements by providing
10 
ata in regions of temperature and composition domains that are diffi-
ult to measure. In addition, the approach provides more data for model
ptimization, which results in models that are more reliable and pre-
ictable by providing quantified uncertainty. 
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