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ABSTRACT  

To accelerate the adoption of Metal Additive Manufacturing 
(MAM) for production, an understanding of MAM process-
structure-property (PSP) relationships is indispensable for 
quality control. A multitude of physical phenomena involved in 
MAM necessitates the use of multi-modal and in-process sensing 
techniques to model, monitor and control the process. The data 
generated from these sensors and process actuators are fused in 
various ways to advance our understanding of the process and 
to estimate both process status and part-in-progress states. This 
paper presents a hierarchical in-process data fusion framework 
for MAM, consisting of pointwise, trackwise, layerwise and 
partwise data analytics. Data fusion can be performed at raw 
data, feature, decision or mixed levels. The multi-scale data 
fusion framework is illustrated in detail using a laser powder bed 
fusion process for anomaly detection, material defect isolation, 
and part quality prediction. The multi-scale data fusion can be 
generally applied and integrated with real-time MAM process 
control, near-real-time layerwise repairing and buildwise 
decision making. The framework can be utilized by the AM 
research and standards community to rapidly develop and 
deploy interoperable tools and standards to analyze, process and 
exploit two or more different types of AM data. Common 
engineering standards for AM data fusion systems will 
dramatically improve the ability to detect, identify and locate 
part flaws, and then derive optimal policies for process control. 

 
Keywords: data fusion, metal additive manufacturing, 

process monitoring, process control 
 

1. INTRODUCTION 
Metal Additive Manufacturing (MAM) enables the 

fabrication of complex heterogeneous parts and has the potential 
to transform the way high-value low-quantity products are made. 
A significant challenge for manufacturers to adopt the 
technology for production is quality insurance [1]. Numerous 
factors—including the product design, process settings, 
feedstock material properties, and machine performance—
contribute to the final part quality and hence need to be 
understood and reliably controlled [2]. 

 To accelerate the adoption of MAM components, an 
understanding of AM process-structure-property (PSP) 
relationships and how to control part quality must be developed. 
Various types of sensing techniques and material 
characterization methods are being developed and applied to 
MAM for this purpose. In-situ sensors are built into the AM 
systems to monitor the process parameters related to energy 
source, motion system, build platform and build chamber 
atmosphere. Interest has recently been increasing regarding the 
development of in-situ monitoring for part quality using 
photogrammetry, thermometry and other non-destructive 
evaluation (NDE) methods such as acoustic emission [3]. Ex-situ 
inspection employs a wide range of NDE and destructive 
material characterization methods, including x-ray computed 
tomography (XCT), coordinate metrology and microscopy 
techniques. 

In-situ sensing and ex-situ testing generate large quantities 
of data. Typically, in-situ sensing and NDE for a single build can 
produce terabytes of data. These data play a critical role in 
establishing MAM PSP relationships [4] and enabling AM 
process monitoring and control [5]. Many research efforts focus 
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on using a specific in-situ sensing technique to detect process or 
part fault. Scime et al. [6] used a tower camera with a k-Mean 
unsupervised classification algorithm to detect anomalies on a 
freshly coated powder bed for laser powder bed fusion (L-PBF). 
Smith et al. [7] applied acoustic spectroscopy to detect near-
surface defects such as pores, cracks, and voids. Yang et al. [8] 
use co-axial imaging system to detect melt pool anomaly for 
lack-of-fusion flaws. Montazeri et al. [9] compared the 
performance of a photodetector, (shortwave infrared) SWIR 
thermal camera, and high-speed video camera for overhang and 
non-overhang build status detection. The research result 
indicates that a specific type of sensor is only symptomatic of a 
specific type of subprocess in AM—e.g., energy-feedstock 
interaction, melting or solidification. However, although a 
multitude of physical phenomena are involved in MAM 
processes, little has been done to fully utilize multi-modality in-
process monitoring data to estimate both process status and part-
in-progress states. 

On the other end, multi-sensor fusion problems have been 
studied intensively since the 1990s, in applications such as 
automatic target recognition, target tracking, automated situation 
assessment and smart weapons [10]. Investments in defense have 
resulted in immense data fusion capabilities. One seminal piece 
of work is the U.S. Joint Directors of Laboratories (JDL) Data 
Fusion Working Group process model. The JDL model and its 
variations provide a great foundation for characterizing 
hierarchical levels of collaborative data processing, reference 
fusion functions and applicable approaches [11]. 

Acknowledging the importance of data fusion for MAM part 
quality control and decision making, as well as the existence of 
data fusion theories and practices in other domains, the National 
Institute of Standards and Technology (NIST) is conducting a 
research effort to develop systematic methods for AM data 
fusion and standard specifications and guidance on data fusion 
processes, data fusion interfaces and data fusion for process 
control. Currently, the lack of common engineering standards for 
data fusion systems is a major impediment to utilizing rich data 
for AM process understanding and decision making. The scope 
of the research is shown in Figure 1. AM data sources include 
scanning and energy input commands, in-situ sensor 
measurements, ex-situ material characterizations, AM process 
simulations and CAD designs. The data fusion application 
scenarios include process monitoring, process control, AM PSP 
relationship identification and AM qualification, which 
correspond to the four levels of data fusion domains defined in 
the JDL model [10]. In addition, AM data fusion can be 
conducted at three levels—raw data, feature and decision 
levels—or a combination of the three, as demonstrated by [12]. 
At the raw data level, the fusion encompasses a simple 
concatenation of multiple measurements to discover information 
in some regions of space and time. Feature level fusion includes 
processing of observations into meaningful features and then 
conflating them to estimate the states of a system. Decision level 
fusion combines decisions derived from individual data sources 
for a final response. Raw data fusion suffers from several 
weaknesses including high-dimensional data challenges and data 

unbalance issues. Decision level data fusion is also less explored 
due to the difficulty in explaining a fusion result and conducting 
a control to influence it. The feature-level fusion has the potential 
to address all the challenges mentioned above but requiring witty 
strategies for data dimension reduction, feature extraction and 
conflation.  

 
Figure 1. AM data fusion reference model 

In this paper, we present a multi-scale hierarchical data 
fusion method for L-PBF process monitoring and control. The 
data include digital commands for laser scanning and laser power 
setting, scan position encoder measurements, images from co-
axial high-speed melt pool monitoring and layerwise build 
surface monitoring. The in-process data can be fused at raw data, 
feature or decision levels, as well as at four spatial scales: point, 
track, layer or part. Different process control and decision-
making strategies demand data fusion at different scales and 
levels, which will be illustrated through a case study. 

The paper is organized as follows: Section two describes the 
multi-scale and hierarchical AM data fusion methodology. 
Section 3 describes a case study of applying the data fusion 
method to a powder bed fusion process at NIST. Section 4 
presents the data fusion results and a discussion on fused data-
based process control and decision making, and Section 5 
summarizes the study and offers paths forward. 
 
2.  MULTI-SCALE HIERARCHICAL AM DATA 

FUSION  
Sensor signals and small-sized images can be collected at 

high sampling rates during MAM build processes, resulting in 
hundreds to millions of data points acquired for each layer. For 
example, ultrasound and acoustic signals can be sampled at MHz 
frequencies; signals from photodetector or pyrometer can be 
sampled around 100 KHz. Melt pool images of small field-of-
views can be acquired up to 20 KHz, while high-resolution 
global-view images and 3D scans are typically acquired less 
frequently because more measurement and processing times are 
needed for each sample. Digital commands are usually sent to a 
laser scanning system at microsecond intervals.  

Trade-offs are necessary to balance the spatial and temporal 
requirements for in-situ sensing design. However, since part 
quality is the ultimate focus of MAM processes, the primary 
objective is to accurately detect and locate build defects for AM 
process monitoring and control. Hence, we propose organizing 
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in-process data fusion in a spatial reference frame. Figure 2 
shows a multi-scale hierarchical AM data fusion framework 
consisting of pointwise, trackwise, layerwise and partwise 
fusions. Macro-scale fusion functions leverage on the smaller 
scale fusion results. This process relies heavily on correct data 
registrations. Here are the details of the fusion functions. 

 

 
Figure 2. Multi-scale hierarchical AM data fusion 

Data Registration (DR): In-process data are generated 
from various measurement devices or software systems and 
hence represented in different time and spatial reference frames. 
The prerequisite for data fusion is to synchronize the data and 
transform them into one coordinate system. This process is 
called data registration [13]. 
 
Pointwise Data Fusion (PDF): Pointwise fusion allows data from 
digital commands and high sampled in-situ sensor observations 
to detect process faults and apply real-time control. 
 
Trackwise Data Fusion (TDF): Trackwise fusion integrates data 
collected through the current track with previous tracks to detect 
faults introduced between two hatchings. Functions at this scale 
include aggregating point data to track representation and 
extracting insights from multi-modality in-process data at the 
track scale. 
 
Layerwise data fusion (LDF): Layerwise fusion leverages the 
synthesized data from both PDF and TDF, then conflates them 
with updated layerwise measurements from multiple modalities 
to estimate the quality status of the past layer. The results can be 
used for layer repair and scan strategy re-planning.   
 
3D-Partwise data fusion (3DDF to avoid confusion): Partwise 
fusion estimates 3D build status and part-in-progress status and 
predicts part quality for process decision making—continue, 
pause or stop. The fusion may justify born-qualified parts. 

 
Concrete examples will be presented in the next two sections 

to illustrate multi-scale hierarchical AM data fusion and its 
application domains. 
 
3. A Use Case – PBF In-process Data Fusion 
3.1 Experiment setup 

This section aims to demonstrate the hierarchical AM data 
fusion process for a powder bed fusion build. The case study is 
based on the data collected from the Additive Manufacturing 
Metrology Testbed (AMMT) at NIST. AMMT is a fully 
customized metrology instrument that enables flexible control 
and measurement of the L-PBF process [14]. It is equipped with 
the capability to realize precise laser beam control. In order to 
advance G-code, the digital commands that AMMT uses set 
precise laser beam position, laser beam power and camera trigger 
every 100 µs [15]. A 3D build experiment was conducted on 
AMMT to illustrate the hierarchical data fusion functions. This 
experiment creates four nominally identical parts within the 
same build on a wrought nickel alloy 625 (IN625) substrate cut 
to 100 mm x 100 mm x 12.5 mm. All four parts have the same 
geometry: a bounding box 5 mm x 9 mm x 5 mm, a 45o overhang 
feature and a cylinder cavity. For demonstrative purposes, this 
study only uses the data from one part. The powder material is 
mixed recycled and virgin IN625 powder. The build consists of 
250 layers at 20 µm per layer. The build employs a constant 
speed (800 mm/s) constant power (195 W) stripe scan pattern 
with skywriting. Detailed experiment description can be found 
in [16]. 

Three types of in-process data are acquired during the build: 
pre-loaded digital commands, laser beam position encoder 
measurements and in-situ monitoring data—including layerwise 
images (LWI) and melt pool monitoring (MPM) images. The 
data sets are first registered with reference to the build plate. 
Exemplar fusion scenarios from PDF, TDF, LDF and 3DF are 
presented in this section. Section 4 interprets the data fusion 
results. 

 
Figure 3. Structure of the NIST AMMT in-process data 

Figure 3 shows four datasets collected from this experiment. 
The color scheme indicates the data type. Digital commands are 
formatted as comma-separated value (.CSV) American Standard 
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Code for Information Interchange (ASCII) text in four columns, 
representing scanner positions, laser power setting and camera 
trigger. Each row represents a 10-μs timestep for laser/galvo 
position and laser power setting. The files are organized by layer 
number, and each file provides the commands for all four parts. 
Two encoders measure the actual laser scanning positions and a 
laser power meter reports the actual power of the laser beam. A 
high-speed coaxial camera captures 10,000 in-situ melt pool 
images per second and is triggered by the digital command. A 
tower camera is responsible for a larger view that monitors the 
entire build plate. It captures images every layer before and after 
powder spreading. 

 
3.2 Data Registration 

AM data registration is a technique to fully align the data 
from different AM sensors and software [17]. The outcome of 
data registration is fully synchronized data represented in a 
common coordinate system [13]. This is an important 
preprocessing step that uses camera triggers, timestamps and file 
names to construct an integrated data landscape for this case 
study. 

 
Figure 4. Digital command visualization 

3.2.1 Encoder-digital command alignment 
Figure 4 shows the data visualization of the digital 

commands. The .csv formatted command file is shown in the 
upper table. Parameter x1 and x2 are the laser positions defined 
in the AMMT build plate coordinate system. The Power column 
shows the laser power applied at that location. The Trigger 
column provides trigger commands to the coaxial camera. 

Whenever the value switches to 2, the camera takes one MPM 
image. The blue arrows in Figure 4 plot the scan path for the 
infilling and overshooting regions. The orange rectangular is the 
pre-contour path that employs a lower laser power of 100 W to 
outline the cross-sectional shape. The black dots mark the 
positions of coaxial camera triggers. The green and red spots 
mark the infilling start and end positions, respectively. 

An encoder imbedded in the machine records the actual 
position and power of the laser beam. Figure 5 shows the fully 
aligned encoder data that are synchronized with the camera 
triggers. The next step is to register the MPM image on the build 
plane. 

 
Figure 5. Registered encoder data 

3.2.2 MPM data registration 
The details of MPM data registration are explained in the 

authors’ previous paper [13]. In general, the aim is to place each 
image at the correct position on the build plate. Figure 6 shows 
an MPM image registration example. Two images are registered 
against the actual laser beam positions at which the images were 
taken, based on their frame sequence numbers. This work 
reconstructs and presents the fundamental melting conditions 
spatially from the temporally organized MPM image files. 
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Figure 6. Registering the MPM images to fully registered 
encoder data 

3.2.3 LWI data registration 
LWI data registration has two essential purposes: aligning 

them to the build plate coordinates and undistorting the optical 
images acquired by the tower camera. Figure 7 shows the process 
of LWI alignment by layer number. AMMT has three LEDs in 
the building chamber that flash sequentially to create various 
optical conditions [16]. Three images are taken after a layer of 
powder is freshly coated. Another three images are taken after 
the laser finishes scanning the layer. 𝐴!" , 𝐴!#, 𝐴!$, 𝐵!", 𝐵!#, 𝐵!$ 
denote the six images collected from layer i. 

 

 
Figure 7. LWI alignment 

Original LWI images show noticeable optical distortion, 
since the tower camera may not be an ideal pinhole camera and 
is not in an utterly perpendicular position to the build plate. 
Figure 8 shows the process of LWI image registration using 4-
point homography. It picks one layer with a rectangular cross 
section to calculate the transformation matrix. Four corner points 
are hand-picked on both the LWI image and the corresponding 
scan command synthesized world coordinate image. Note, the 
manual point picking process can be replaced by image 
processing technique while the layerwise image resolustion 
improved. Next, the matrix is applied to all the LWI images to 

correct the distortion. Note that this process assumes that the 
distortion is the same in all images, since the tower camera has a 
fixed position and the build surface remains unchanged 
throughout the build process. 

 

 
Figure 8. LWI image registration by perspective image 
transformation 

The final step of the LWI registration is to register all the 
pixels into the AMMT build plate coordinate system. Figure 9 
shows an example of a register individual pixel. Based on the 
pixel position, pixel resolution and the world coordinates of the 
corner points, each pixel can be registered against the 
corresponding coordinate on the build plate. For example, 
[𝑥"", 𝑥#"] indicates the position of the bottom left corner of Pixel 
2,1. 

 
Figure 9. LWI pixel registration 

3.3 Feature-based pointwise data fusion  
PDF is conducted in real time to fuse high-frequency 

sampling data to detect process faults at the micro scale. In this 
case, the in-situ MPM images can be characterized by particular 
features. For example, to monitor melt pool size, an MPM image 
with 14400 pixels can be reduced to a single value—melt pool 
area. As a result of data registration, each point on Figure 6 has 
several measured numerical values—laser beam position, actual 
scan speed, actual laser power and melt pool size. Classical PV 
maps indicate certain relationships among these values. Higher 
laser power or lower scan velocity results in larger melt pool size 
when other conditions remain the same. The melt pool prediction 
model S=f(P, v) governs this relationship. If the calculated melt 
pool size deviates from the model, then a fault can be reported. 

Figure 10 demonstrates a single-point PDF process. At 
location [𝑥", 𝑥#], the actual laser power and scan speed is 187 W 
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and 796 mm/s from an encoder with a measured melt pool area 
of 0.0268 mm2. This value is compared to the estimated melt 
pool size using a melt pool prediction model derived in [18]. The 
error is beyond one standard deviation and assumes an irregular 
melt pool.  

 
Figure 10. A PDF process 

3.4 Raw-data-level trackwise data fusion  
Although the PDF has the finest resolution, it does not 

provide direct information about a part with multiple tracks or 
complex scan strategies. A standalone melt pool observation only 
represents the transient status of a tiny region. Besides, it is 
isolated from the continuous melting process. An independent 
abnormal melt pool has less chance to result in a part defect. 
Hence, TDF becomes a useful technique for checking the 
remelting condition between two adjacent scan tracks. The 
fusion was realized, again, upon the fully registered MPM 
images aligned on two scan tracks.  

      
Figure 11. TDF track remelting reconstruction 

Figure 11 shows an example of how the remelting status can 
be reconstructed simply by stitching together the melt pool 
images on two adjacent tracks. Two high-frequency MPM 
images next to each other have a time gap of 50 µs, resulting in 
40 µm of spatial distance. This number is much smaller than the 
average melt pool length. As a result, the fusion of a series of 
MPM images can create a continuous melt pool track. While 
processing the fusion track by track, the overlapping area 

indicates remelting condition. In this figure, the black dots are 
the MPM positions, while the green and blue colors indicate the 
area with and without remelting, respectively. 
 
3.5 Decision-level layerwise multimodality data fusion  

LDF first fuses the high-frequency sampled data from the 
same layer into layerwise feature maps, where the feature 
selection and extraction depend on the user's interest. Figure 12, 
for instance, shows a layerwise melt pool size map by fusing the 
melt pool area feature out of each MPM image from the same 
layer. In the color map, warmer colors and higher elevation 
indicate a larger melt pool area. Note: the MPM images were 
taken at discrete locations. The original data points may not 
sufficiently create the map for the whole layer. Data interpolation 
techniques could be used to fill the gap. This example, for 
demonstration purposes, uses the Triangulation-based natural 
neighbor interpolation method to create the map. 

 
Figure 12. LDF from MPM images. The color bar scales the melt 
pool area from 0.015 to 0.025 mm2. 

 
Figure 13. LDF from LWI. The color bar scales the grayscale 
intensity from 0 to 1, where grayscale 255 in LWI is equal to 1 
in the LDF map.  
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Meanwhile, fully registered LWI images can also be fused 
based on pixel values and an appropriate scaling method, 
resulting in a similar map, as shown in Figure 13. 

Image processing can be applied to both images. When 
edges are detected, geometry deviations can be measured for 
both modalities and indications can be derived from the layer 
printing quality. In the case when the indications from multi-
modality data hard to agree with each other, a voting mechanism 
can be applied for a decision level data fusion. The weight for 
each measurement modality can be determined based on the 
uncertainty involved in the measurement. In the example above, 
melt pool monitoring has a higher spatial resolution, hence it was 
assigned a higher weight than was the layerwise imaging.  
 
3.6 Multi-level partwise data fusion for Overhang Feature 

Evaluation  
3DDF presents at the macro level of the fusion work (Figure 

2). It focuses on part feature inspection that can provide direct 
insights into part quality. The general workflow is similar to a 
feature-level LDF. The main difference is that, instead of fusing 
extracted features from a single layer, 3DDF selectively picks the 
features at particular areas from multiple layers for fusion. The 
part feature could be geometric features or build features. Figure 
14 shows the 3DDF result for the overhang down-skin area, 
which is highlighted in the CAD model on the left. This work 
focuses explicitly on the down-skin area with zero vertical 
support during the build. The top and bottom surfaces are 
included just for comparative purposes. 

 
Figure 14. 3DDF for the overhanging down-skin region. The 
color bar scales the melt pool area from 0 to 0.035 mm2. 

4. RESULTS AND DISCUSSIONS 
This section illustrates the multi-scale data fusion results for 

the AMMT overhang part build. It covers process monitoring to 
part defect identification and quality prediction. The following 
examples, however, should not set a limit on the potential uses 
of the AM data fusion framework. 

 
4.1 Data fusion for process monitoring 

Data fusion results provide a new point of view for AM 
process monitoring in real-time. PDF, TDF, or LDF can provide 
real-time process monitoring at different scales, with divergent 
accuracies, and for various domain interests. LDF fuses in-
process data after the scan is finished for a layer and provides a 

plane view for that layer quality. TDF enhances the fusion scale 
to the track level, which may be ideal for monitoring the physical 
condition between tracks, such as bonding and melting 
conditions. PDF can be the most accurate point-to-point 
monitoring if the fusion can be executed timely. 

In Figure 15, PDF provides measurement alignment and 
melt pool status inspection functions. According to our previous 
melt pool prediction studies [19, 20], for the same material and 
parts built on AMMT, PDF can be utilized to determine at each 
position whether the melting is normal, oversized, or undersized. 
In this figure, a constant laser power of 195 W and scan speed of 
800 mm/s should contain the melt pool to 0.015 to 0.025 mm2 
based on the overall laser energy density input. Any melt pool 
outside this range would be considered an anomaly. 

Figure 15 plot is for a layer with a cylinder cavity on the left 
and an overhang area with 45° slope on the top right. The 
majority of the plot is dominated by blue points that generally 
indicate steady melting conditions. The scattering oversized and 
undersized melt pools would not have a significant impact on the 
part. However, the melt pool size close to the cavity significantly 
increases where the same energy density is applied. This could 
be a sign that this area has geometric or other physical defects 
such as uneven paving powder or immense thermal residual 
stress. 

 
Figure 15. PDF fused result for one layer 

4.2 Data fusion for part quality monitoring 
Expected outcomes of AM data fusion are reliable 

inspection, evaluation, and improvement of the final AM part 
quality. Part quality, which is closely related to process quality, 
may not precisely equal to process quality. In other words, a few 
rare small process deviations such as abnormal melt pools 
scattered on a layer may not cause issues for the final part 
because the subsequent building process could compensate for 
them. Therefore, larger-scale fusion such as TDF and LDF may 
present more comprehensive pictures for part quality 
monitoring. 

Figure 16 shows the actual measurement from XCT and 
LWI, and the fused results from TDF and LDF. All the figures 
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show the top view. The cropped edge area is taken from the last 
layer of the build. In XCT, the edge clearly outlines the boundary 
of the part. The rough edge can be traced back to the same region 
on TDF. The TDF image shows a defect edge area not fully 
melted, indicating a significant lack-of-fusion. Similarly, one 
may observe the rough surface in the LWI image. Alternatively, 
this could also correlate to the large melt pool intensity region in 
an LDF image. The uneven surface on both the XCT and LWI 
images can be related to the deviated patterns in the same area as 
the TDF and LDF images. 

 

 
Figure 16. Comparison between raw measurements to the fused 
result TDF and LDF 

The fusion also proves that better overlapping conditions 
between melting tracks can help improve the part quality in 
geometric accuracy. 
 
4.3 Data fusion for process control and decision making 

The LPBF process is fast and precisely controlled during the 
build. It is not easy to integrate human involvement into the 
decision-making process when the build is ongoing. For 
example, for our overhang part build, a laser beam quickly (800 
mm/s) scans the entire layer. It can finish scanning this layer 
within 1.05 s. It is too short for a human to read, analyze and 
make a decision on.  

Figure 17 shows a hypothetical PDF-based automatic 
decision-making process to correct the abnormal melt pool on-
line. The system has detected a series of oversized melt pools at 
the moment (a). The laser beam continues moving along the 
designed path while the system makes decisions at the moment 
(b). The unfilled dots mark the melt pool created during the 
analysis period. At the beginning of the moment (c), the machine 
has sent a signal to the laser head to reduce the power. As a result, 
the following melt pool can be well controlled within the normal 
range. (d) shows the laser beam that has moved out of the large 
melting region. Thus, the decreased laser power may not produce 
a large enough melt pool as it fails to introduce sufficient energy 
to the powder. Nevertheless, the machine detects the negative 
results at the end of the moment (e). New observation pushes the 
machine to make another decision to modify the laser power to 
a higher value in (f). These series operations can fix most of the 
critical anomalies that randomly show up during the build. 

 
Figure 17. Hypothetical AM control strategy based on PDF. The 
legend is the same in Figure 15. 

 
4.4 AM data fusion and multi-loop feedback control  

AM in-process data fusion can be incorporated into closed-
loop process control and real-time build decision making, as 
shown in Figure 18. Pointwise and trackwise fusions happen in 
real time and the fusion results can be part of process real-time 
control. For example, Shkoruta et al. [15, 21] proposed and tested 
laser power modulation to regulate melt pool intensity in real 
time and demonstrated the effectiveness of the proposed 
approach through experiments on the open-source SLM 
machine. 
 

 
Figure 18. AM in-process data fusion for closed-loop control 

The LDF is utilized for near real-time layer repair or scan 
strategy replanning. While the build status derived from the 
partwise data fusion will be used to justify if a build should 
continue or stop to prevent waste.  
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5. CONCLUSION 
This paper proposes a comprehensive AM data fusion 

framework that captures multi-scale hierarchical in-process data 
melding for process monitoring and control. PDF, TDF, LDF and 
3DDF can be used in various applications. Selecting data fusion 
at the right scale(s) leads to an enhanced build performance. Data 
registration as a preprocessing step yields ready-to-integrate data 
with preferred formats, structure and features. 

AM data fusion is an essential technique for presenting 
meaningful information to AM end-users for decision making. 
Reading individual MPM images and manually aligning to the 
processing parameters can be difficult. With data fusion 
techniques, the numerical values, binary images and grayscale 
pixels become useful information that can be fully utilized in AM 
QA/QC. For example, the fused PDF presents almost the entire 
landscape of the layerwise part quality to the AM end-users with 
compatibility and originality. TDF builds upon the PDF to use 
raw MPM images to investigate the remelting conditions 
between tracks, which provides straightforward insights to the 
users on how strongly the material is bonded. 

Along with the visualization and data processing functions, 
the proposed fusion work provides opportunities to realize real-
time control and robust decision-making. Online layerwise 
rescan strategies or scan replanning can bring back the part 
quality after a defect layer. 

Future works include developing rapidly deployable and 
interoperable data fusion tools to analyze, process and exploit 
two or more different types of data from the same or multiple 
sensors. The aim is to develop a automatical data fusion tool for 
different types of AM machines. New capabilities will be 
developed to better organize information from multiple sources, 
and further dramatically improve the real-time data fusion ability 
to detect, identify and locate part flaws, and apply controls to 
eliminate them. Such methods as the monitoring framework 
mentioned in Section 4 will be implemented, evaluated and 
validated using NIST AMMT to advance the development of AM 
QA/QC standards. 

DISCLAIMER 
Certain commercial systems are identified in this paper. 

Such identification does not imply recommendation or 
endorsement by NIST; nor does it imply that the products 
identified are necessarily the best available for the purpose. 
Further, any opinions, findings, conclusions, or 
recommendations expressed in this material are those of the 
authors and do not necessarily reflect the views of NIST or any 
other supporting U.S. government or corporate organizations. 
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