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Ontology-Driven Learning of Bayesian Network for
Causal Inference and Quality Assurance in Additive

Manufacturing
Ruimin Chen , Yan Lu, Paul Witherell, Timothy W. Simpson, Soundar Kumara , and Hui Yang

Abstract—Additive manufacturing (AM) enables the creation of
complex geometries that are difficult to realize using conventional
manufacturing techniques. Advanced sensing is increasingly be-
ing used to improve AM processes, and installing different sen-
sors onto AM systems has yielded more data-rich environments.
Transforming data into useful information and knowledge (i.e.,
causality detection and process-structure-property (PSP) relation-
ship identification) is important for achieving the necessary quality
assurance and quality control (QA/QC) in AM. However, causality
modeling and PSP relationship establishment in AM are still in
early stages of development. In this paper, we develop an ontology-
based Bayesian network (BN) model to represent causal relation-
ships between AM parameters (i.e., design parameters and process
parameters) and QA/QC requirements (e.g., structure properties
and mechanical properties). The proposed model enables engineer-
ing interpretations and can further advance AM process monitor-
ing and control.

Index Terms—Additive manufacturing, AI-based methods,
probabilistic inference.

I. INTRODUCTION

ADVANCED sensing is increasingly integrated into additive
manufacturing (AM) to enhance process understanding

and improve process control, leading to data-rich environments.
A four-level framework for AM data management and quality
improvement is shown in Fig. 1 [1]. Sensors capture data related
to AM processes and an integrated database stores heteroge-
neous data from multiple sensors. Predictive models and knowl-
edge are extracted from the collected data to further support pro-
cess monitoring and quality control. Realizing the full potential
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Fig. 1. A four-level framework for AM data management and QA/QC.

of sensing data will lead to an unprecedented opportunity to un-
derstand the AM process and offer a new sensor-based solution
for quality assurance and quality control (QA/QC). Current prac-
tices for QA/QC focus on correlation analysis, which utilizes
features (i.e., design parameters, process parameters) to predict
the quality of AM builds [2], [3]. A comprehensive review
related to QA/QC management of AM is discussed in [4]. How-
ever, correlation does not imply causation. New challenges lie
in integrating all the information into actionable AM knowledge
that captures explicit causal relations, for example, how to select
the right parameters to fabricate AM parts that meet QA/QC
requirements.

A Bayesian network (BN) contains a graphical structure
that represents causal relationships among a large number of
variables and allows for probabilistic causal inferences using
the observed variables. It moves one step forward to support
the inference of causality from observational data and improves
interpretability at the same time. Bayesian inference is widely
used in early expert system development. The conditional prob-
abilities are used to represent complex relationships by the
BNs [5]. Despite numerous computational models are developed
to represent AM sub-processes. Identifying causal interconnec-
tions between variables becomes a challenging task. While there
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Fig. 2. An example of the Markov condition: given the parents X1 and X2,
X3 is conditionally independent of its non-descendant X4.

have been some notable contributions to the BN structure from
automatically-generated observational data [6]–[8], little has
been done to integrate BN learning with AM domain knowledge.

In this paper, we develop an ontology-based Bayesian network
modeling framework for extracting causal relationships among
AM parameters, as a key function for the Learning layer in Fig. 1.
BN modeling contains two steps: namely structure learning and
parameter learning. The structure of BN represents the qualita-
tive relationships between variables, and parameter values help
quantify the interconnections from probability distributions. In
this study, we leverage an AM ontology to provide necessary and
prior domain knowledge for modeling the causal connections
in BN learning. Specifically, we integrate the domain knowl-
edge from our specialized process-based AM ontology with
parameter-based data processing and structure learning (i.e., to
learn the skeleton of a BN) to create a causal network. Early
experimental results demonstrate that our ontology-based BN
modeling methodology is capable of extracting important causal
relationships on which process control can be predicated.

The rest of the paper is organized as follows: Section II re-
views related literature on BN and ontology. Section III presents
the experimental setup, quantifier extraction, and the proposed
ontology-based BN modeling methodology. Experimental re-
sults are provided in Section IV. Section V summarizes this
study.

II. RESEARCH BACKGROUND

Bayesian networks, also called Bayesian belief networks or
causal probabilistic networks, emerged from probabilistic rea-
soning in artificial intelligence and has been applied to a wide
range of problems, ranging from text analysis [9] to medical
diagnosis [10]. A Bayesian network is a directed acyclic graph
(DAG) G, in which nodes V = {X1, X2. . ., Xn} denote the set
of random variables of interests and edgesE represent the causal
influences among the n variables in V [5]. As shown in Fig. 2,
a BN must satisfy the Markov condition where every variable
Xi ∈ V is independent of any subset of its non-descendant
variables conditioned on the set of its parents Pai. Note that the
directed edge from Pai to Xi indicates a direct causal influence
that Pai has on Xi.

BN gives a structural means to learn and represent causality
which helps in capturing causal relationships in a given domain.
Ontology, on the other hand, helps to build the conceptual
relationships between various entities in a domain of study. At
the lowest level of abstraction, it helps to understand measurable
(direct or indirect) variables in a system. In principle, both

BN and ontology result in the information, navigation, and
analysis of networks. However, little has been done to integrate
ontology networks with automated Bayesian learning for AM
QA/QC. Li and Shi [11] proposed a causal modeling approach
to improve the existing causal discovery algorithm by integrating
manufacturing domain knowledge (i.e., rolling processes) with
the BN learning. Specifically, they combined domain knowledge
with variable selection and variable discretization to reduce the
search space. Mokhtarian et al. [12] constructed the structure of
a BN based on physical relationships between variables. An an-
alytical hierarchy process is utilized to collect preferences from
experts. Wang et al. [13] proposed a knowledge management
system using BN to model AM knowledge in the presence of
uncertainty and fill the knowledge gap between designers and
AM technologies. Similarly, the BN structure is generated solely
from the domain knowledge. Hertlein et al. [14] proposed a BN
model with four process parameters and five quality character-
istics for AM, which is a conditional linear Gaussian BN where
nodes can be both discrete and continuous. However, parametric
assumptions for mixed data (i.e., continuous and discrete) tend to
have practical limitations, as they impose constraints on arcs. For
example, a continuous node cannot be the parent of a discrete
node. Jing and Ma [15] proposed a fuzzy Bayesian Network
to study the AM’s adaptiveness. Bacha et al. [16] and Verma
et al. [17] utilized the BN for fault diagnosis, but network
structures are assumed to be known in the prior knowledge.
In addition, Tran et al. [18], [19] investigated the inference of
sparse networks from noisy and nonstationary processes, studied
the latent connectivity in the sparse network, and further leverage
the dynamic network for change detection. In the present paper,
we instead focus on the integration of manufacturing ontology
networks with BN learning and modeling for AM QA/QC.

While BNs are graphical structures for representing the prob-
abilistic relationships among variables and doing probabilis-
tic inference with those variables, ontology describes domain
concepts and their semantic relationships that can represent
causality. Our previous work developed ontology models to
support AM process model development and reuse [20], [21].
The AM process ontology captures a network of variables that
can be visualized in a graph, and allows users to navigate
complex relationships and understand the connections between
different process parameters, microstructural characteristics,
and mechanical properties of AM parts. Ontology shows strong
potential to support the construction of Bayesian networks [22].
However, most of the existing works focus on utilizing ontology
to select variables, identify relationships, and assign conditional
probability distributions. Little has been reported on how to
integrate ontological representation with automated BN learning
algorithms. At the same time, automated BN structure and
parameter learning from data are often insufficient in practice
due to the limited availability of data. In this study, we utilize
AM ontology to extract the causal connections among variables.

III. METHODOLOGY

This paper presents an ontology-driven Bayesian network
modeling for AM design-process-structure-property causal
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Fig. 3. The flow chart of the proposed research methodology.

Fig. 4. Thin-wall parts fabricated with three orientations with respect to the
travel direction of recoater blade (i.e., indicated by the arrow on each part).

analysis on which future process control analytical methods
can be developed. As shown in Fig. 3, the modeling procedure
has four steps. First, we obtain pre-processing computer-aided
design (CAD) slices and post-processing X-ray computed to-
mography (XCT) data. Then, we register the data and extract
important features from them. Next, by integrating AM on-
tology, we perform hybrid structure learning (i.e., combining
the conventional score-based algorithms and constraint-based
algorithms) to study the causal relationships between the fea-
tures. Note that the BN modeling is performed in an inherently
Bayesian fashion. Finally, we perform predictive inference and
diagnostic inference to navigate on the constructed BN.

A. Offline Quantification of Build Quality Using Layer-Wise
XCT Scan Images

In this experiment, thin-wall parts were built with the powder
bed fusion (PBF) technology from Spherical ASTM B348 Grade
23 Ti-6Al-4 V powder with a size distribution of 14-45 μm on
an EOS M280 machine. PBF refers to a family of AM processes
in which thermal energy selectively fuses regions of a powder
bed [23]. During the PBF fabrication, a layer of metal powder is
first spread across a build plate, then a certain area is selectively
melted (fused) with an energy source, such as an electron beam.
This procedure continues until the top layer of the build is fused.

As shown in Fig. 4, thin-wall builds are fabricated in three
orientations (i.e., 0◦, 60◦, and 90◦) with respect to the travel
direction of the recoater blade (i.e., indicated by the arrow on
each part). Standard EOS M280 processing parameters for 60-
μm layers were used in the experiments, i.e., the laser power and
velocity settings are 340 W and 1250 mm/s, respectively. Each
build consists of 25 thin-walls with a height/width ratio of 10.
The width of thin-walls increases from 0.06 mm, with a step size

TABLE I
THE VARIATIONS IN CONTOUR SPACES WITHIN CONTOUR FROM

THIN-WALL 1 TO THIN-WALL 25

Fig. 5. (a) Top view of the XCT slice in the thin-wall 5 at layer 70 of 0◦ build,
with quality issues such as edge roughness, discontinuity, and porosity; (b) side
view of the XCT slice in the thin-wall 5 at layer 70 of 0◦ build, with quality
issues such as separation and vertical deviation.

of 0.01 mm, to 0.3 mm. Information related to contour space is
summarized in Table I. Note that contour space is defined as the
width between inner contours in each thin-wall, and there is a
67-degree rotation for the hatching paths on each layer by the
default setting of the EOS 280 machine.

Post build XCT data are obtained on a General Electric V
| tome|X system with a voxel size of 14 μm3. XCT slices are
obtained through the volume graphics viewer myVGL. Several
defects can be seen from XCT slices after image registration.
For the detailed information related to registration, please refer
to our previous work in [24]. As shown in Fig. 5 (a), we can
detect discontinuity, edge variation, and porosity from the top
view. In addition, we can observe vertical deviation as well as
separation on the top of each thin-wall. Note that larger defects
run down the center of thin-walls according to Fig. 5 (b). The
following features are extracted from the XCT scan to quantify
the quality of fabricated parts.
� Edge roughness: this feature measures how much the

printed edge deviates from the CAD design. For example,
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Fig. 6. Feature extraction from thin-walls from XCT slices.

the edge roughness of the upper edge in Figure. 6 is
calculated as:

σe =

√∑N
i=1(x

u
i − ui)2

N
(1)

where xu
i is the ith pixel in the upper printed edge, ui is the

ith pixel in the upper CAD edge, and N is the total length
of the thin-wall.

� Thickness: the thickness t̄ of each thin-wall is calculated
as:

t̄ =
ΣN

i=1||xu
i − xl

i||
N

(2)

where xl
i is the ith pixel in the lower printed edge.

� Vertical deviation: this feature quantifies how far the
center of each thin-wall deviates from the designed center.

v̄ =
ΣN

i=1(x
m
i −mi)

N
(3)

where mi is the middle point of xu
i and xl

i.
� Discontinuity: discontinuity is calculated as the length

between two pixels on the centerline of the border.

d = ||xmk − xm′k || (4)

where xmk and xm′k are the kth and k′th pixel in mi,
respectively.

� Number of pores: this feature counts the number of pores
in each layer of the thin-wall. The number of 8-connected
binarized XCT pixels over a layer translates to the pore
count [25].

� Density: this feature is represented by

ρ =
ΣN

i=1Σ
M
j=1I(i, j)

NM
(5)

where I(i, j) is the intensity value of the binarized XCT
pixel.

B. Learning a Bayesian Network From Data

As shown in Fig. 3, BN modeling can be performed with two
steps in an inherently Bayesian fashion:

P (G,Θ|V) = P (G|V) · P (Θ|G,V) (6)

where G denotes the structure of the DAG, and Θ represents
parameters of the BN given the G obtained from structure
learning. V is the observational data.

Three types of algorithms are commonly utilized to learn
the structure of BNs from the observational data: namely
constraint-based algorithms, score-based algorithms, and hybrid

algorithms. While constraint-based algorithms (e.g., PC [6]) are
based on causal graphical models by Verma and Pearl [17],
score-based algorithms (e.g., Greedy Equivalent Search [26])
are general-purpose optimisation techniques for structure learn-
ing. Specifically, constraint-based methods leverage condi-
tional independence tests to construct the oriented graph, and
score-based algorithms maximize the goodness-of-fit scores of
the DAG structure. Hybrid algorithms (e.g., Max-Min Hill-
Climbing [7]) first construct the skeleton of a DAG, and then
utilize score-based functions to determine the orientation of
edges, which combine the advantages from two approaches.
In this paper, we integrate the hybrid learning algorithm (i.e.,
H2PC [27]) with the ontology graph to identify the causal
relations between variables in AM. Specifically, the domain
knowledge of AM ontology is incorporated into the following
steps: (1) discretization of continuous data, and (2) adding
constraints between variables from the ontology graph.

Algorithm 1: The Proposed Ontology-based Structure
Learning for Bayesian Network.

Input: a variable set V, an empty DAG G
1: discretize each continuous variable Xi ∈ V
2: Go ← ontology graph
3: PC← HPC(V,Go) // identify the parents and

children set of each variable through HPC algorithm
4: For each pair of (X1, X2) ∈ PC:
5: G ← HC(PC,G,Go) // begins with an empty

graph, add, delete, remove edge that leads to the
largest increase in score from greedy hill-climbing
search

Output: DAG G

The H2PC algorithm learns the BN in two steps. First, it con-
structs the structure or the skeleton of BN through the constraint-
based algorithm. Then, it performs a Bayesian scoring greedy
search to add, delete, and change the direction of the edges. In
the proposed Algorithm 1, we integrate the ontology information
(i.e., G0) into several steps of HPC and H2PC algorithms. In
the first step, the HPC algorithm combines the advantages of
incremental and divide-and-conquer methods, targets for the
parent-children discovery and contains three sub-algorithms,
namely Data-Efficient Parents and Children Superset (DE-PCS),
Data-Efficient Spouses Superset (DE-SPS), and Incremental As-
sociation Parents and Children with false discovery rate control
(FDR-IAPC), respectively. Specifically, DE-PCS and DE-SPS
search for supersets of parent, children, and spouses of nodes.
In the second step, the H2PC performs a greedy hill-climbing
search in the space of BN. The search starts with an empty
graph and further adds, deletes, or reverses the edge direction
that increase the score. Note that the search only adds the edges
that are obtained in the previous step, which is the key difference
between the greedy hill-climbing search in the H2PC algorithm
and the direct utilization of greedy search to learn a BN structure.
As shown in Algorithm 1, we first search the parent-children sets
PC for every node in the network through HPC. Then, for all
pairs of (Xi, Xj) ∈ V, addXi inPCXj

and addXj inPCXi
if
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Fig. 7. The visualization of an AM ontology graph.

TABLE II
PROCESS VARIABLES AND QUALITY VARIABLES

Xi ∈ HPC(Xj) and Xj ∈ HPC(Xi). Next, starting from an
empty graph, we only perform the operator add edge Xi → Xj

if Xj ∈ PCXi
.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate and validate the proposed
ontology-based BN modeling methodology with real-world data
and then benchmark the performance of obtained BN models
with and without AM ontology. As shown in Fig. 7, data
obtained from AM processes can be classified into five cat-
egories, namely process parameter, design parameter, process
signature, structured properties, and mechanical properties. In
the ontology graph, process signatures can cause variations in
structural properties and mechanical properties, process param-
eter can also lead to changes in process signature. However, BN
obtained structural properties and mechanical properties cannot
cause either process parameters or process signature. Note that
there are important temporal relationships between variables.
For example, the shapes of melt pools can be different due to
variations in the recoating orientation (e.g., tails caused by the
travel direction of the laser). Low laser power can cause porosity
in the part, and further impact the mechanical properties (e.g.,
tensile strength) of the final product. Causal connections show
that process related parameters influence the mechanical and
structural properties.

As mentioned in Section III-A, we extract a total of 12
variables from different parameter groups (see Table II). We
discretize features based on domain knowledge as described

Fig. 8. (a) The constructed BN with knowledge from AM ontology; (b) the
constructed BN without knowledge from AM ontology. Dashed arrows in pink
shows edges that are not learned, solid yellow arrows indicate the edges that
are not supposed to be learned, solid green arrows denote edges learned in the
wrong direction.

below. Note that each level of the feature should contain a similar
number of observations to avoid bias.
� Contour space: is the measured width between the hatches

of the inner rectangle for each thin-wall. We discretize the
contour space into three groups based on the melt pool
diameter (i.e. 110 μm) and laser diameter (i.e. 80 μm).

� Scan path: there is a 67-degree rotation for the hatching
paths on each layer by the default setting of the EOS 280
machine. Therefore, the scan path is batched into three
groups.

� Orientation: orientation has three levels because three
parts are built under three directions (i.e., 0◦, 60◦, 90◦).

� Width: width is divided into four balanced groups.
� Height: height is grouped into four levels according to

the height/width ratio of each layer. For example, if the
height/width ratio of a layer is 10, and the width of the
thin-wall is 0.3 mm, then the height is 3.0 mm.

� Edge roughness: edge roughness has three levels accord-
ing to warning limits of the distribution.

� Thickness: thickness is partitioned into three groups, i.e.,
within 10% tolerance, above 10% tolerance, and below
10% tolerance.

� Vertical deviation: binary variable which indicates the
direction of deviation, i.e., deviates towards left or right.

� Discontinuity: discontinuity is divided into three groups
where each group consists of a similar number of data.

� Number of pores: this feature counts the number of pore
with a diameter greater than 100 μm [28].

� Separation: binary variable where X11 = L1 stands for
there is a separation of the top of the fin, and X11 = L2
denotes there is no separation.

� Density: in our experiment, we set X12 = L1 when the
density of the thin-wall is greater than or equal to 95%,
and X12 = L2 when is less than 95% [29].

We separate 80% of our data for training and 20% for testing
in our analysis. For the construction of BN, we performed the
model averaging for the structure learning. Note that structures
were slightly different among each of the 50 runs. Therefore,
we kept arcs that are learned for more than 80% of the time.
Figure. 8 compares two BN structures learned with and without
AM ontology. Note that the dashed arrows in pink show edges
that are not learned, solid yellow arrows indicate the edges that
are not supposed to be learned, solid green arrows denote edges
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Fig. 9. (a) Conditional distribution plots ofσe = L1 given orientation and width at different levels, (b) conditional distribution plots ofσe = L2 given orientation
and width at different levels, and (c) conditional distribution plots of σe = L3 given orientation and width at different levels.

Fig. 10. (a) Conditional distribution plots of orientation at different levels given discontinuity = D1, (b) conditional distribution plots of width at different levels
given discontinuity = D1, and (c) conditional distribution plots of height at different levels given discontinuity = D1 and density = S2.

learned in the wrong direction. In Figure. 8 (b), the contour space
is linked to width, showing that there is a causal relationship
between the two nodes. However, design parameters cannot be
causal factors of process parameters according to the ontology
knowledge, and vice versa. In addition, the structure indicates
that thickness is the causal factor of width, structure properties if
not the causal factor of design parameters based on the temporal
relationships between nodes in the ontology graph. In addition,
some of the edges (i.e., two arcs in pink) cannot be learned
without domain knowledge.

As shown in Fig. 8 (a), the causal relationships among
variables can be identified qualitatively through the learned
structure, and quantitatively through predictive inference and
diagnostic inference. Note that we predict from cause to ef-
fect, and we diagnosis from effect to cause. For example,
P (σe|orientation, width) can be obtained by conditional distri-
bution plots in Fig. 9. Note that orientation (node 1) has three
levels, width (node 4) has four levels, and the edge roughness
(i.e., σe) has three levels. Based on the results of predictive
inference, it is more likely to have a higher probability of
severe edge roughness (i.e., σe = L3 when thin-walls have
a width of L2 (i.e., (0.16 mm, 0.21mm]) and orientation L1
(i.e., 0◦). Further, we obtained the prediction accuracy through
20% testing dataset. For example, the prediction accuracy for
thin-wall LWR, thickness, and density are 78.70%± 0.012,
87.77%± 0.011, and 96.79%± 0.005, respectively. The pro-
posed ontology-driven BN modeling helps integrate the AM
engineering knowledge with network learning to discover causal

relationships among variables. As a result, BN results can be
utilized by AM engineers and technicians for backward diag-
nosis and the interpretation of causal relationships in PBF AM
processes.

The example of diagnostic inference is shown in Fig. 10.
Fig. 8(a) shows that contour space, width, orientation, and height
are causal factors of the discontinuity. Therefore, we can deter-
mine which state of these causal factors has the least probability
to cause the discontinuity issue in the thin-wall builds. For
example, when discontinuity is D1 (i.e., no discontinuity), we
should build the part under orientation O1 with width in the
range of W2 according to Fig. 10 (a) and (b), respectively.
In addition, height is the causal factor of both density and
discontinuity, so we can perform the diagnostic inference for
P (height|discontinuity, density). In Fig. 10 (c), when the height
of the thin-wall is atH3 (i.e., height/width ratio is in (5, 7.5]), the
part has better quality because the discontinuity is at D1 (i.e., no
discontinuity) and density is at S2 (i.e., density is greater than
95%).

V. DISCUSSIONS AND CONCLUSIONS

With the rapid development of sensing capabilities, a variety
of sensors are being installed on different AM systems to collect
data, increase performing visibility, as well as to improve the
QA/QC of AM builds. The challenge now lies in integrating all
the data and information into useful AM knowledge, and making
this process more repeatable and reliable.
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In this paper, we propose an ontology-based BN model for the
representation of causal relationships between AM parameters
(i.e., design parameters and process parameters) and QA/QC
requirements (e.g., structure properties and mechanical prop-
erties). We leverage the real-world data from thin-walls to
demonstrate the prediction inference and diagnostic inference
from the constructed BN model. The proposed methodology
facilitates both forward prediction and backward diagnosis. We
illustrated two quantitative results for predicting the quality as
well as root cause diagnosis with two examples, respectively.
In addition, we compared experimental results between BN
learning methods with and without AM ontology. The proposed
methodology enables engineering interpretations of causality
interrelations in AM and can further facilitate AM process
monitoring and control. Although BN learned is aimed at the
PBF AM process in this work, the proposed ontology-based BN
modeling methodology can be further extended and generalized
to other AM processes. However, because there are variations in
process parameters and materials in different AM processes, it is
necessary to incorporate newly added domain knowledge (i.e.,
ontology networks) and introduce more nodes (e.g., material,
design variables, process parameters, sensors) in the model
generalization. The proposed algorithm may also need slight
modifications for different data types, but the structure and
parameter learning process is generally applicable. Future work
will continue to investigate the dynamics between empirical
observations and their physical counterparts, with the goal of
a methodology that does not “ground” one with the other but
instead supports reciprocated learning in the identification of
key variables and causal relationships.
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