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ABSTRACT

Building prototypes of heterogeneous hardware systems based on
emerging electronic, magnetic, and photonic devices is an important
area of research. The novel implementation of these systems for
artificial intelligence poses new and unforeseen challenges in mixed
signal data acquisition, hyperparameter optimization, and hardware
co-processing. Many emerging devices exhibit unpredictable and
stochastic behavior as well as poorly repeatable hysteretic effects
or performance degradation. Dealing with these device challenges
on top of more traditional hardware problems, like quantization
errors, timing constraints, and even hardware and software bugs
is an enterprise fraught with pitfalls. Equally important to the
construction of the physical prototype is the co-development and
integration of a design verification framework that can extensibly
allow for predictable behavior of not only the entire system but also
all of its parts in a modular way, allowing for seamless integration in
both simulation and implementation. This work discusses Daffodil-
lib, a Python based prototyping framework which, from hardware
to software, enables everything from a script-based simulation to a
compiled hardware-timed experiment, to everything in between
with no syntactical changes for the end user.
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1 INTRODUCTION AND BACKGROUND

Increasing numbers of novel neuromorphic prototypes are becom-
ing available. These include traditional silicon technologies that
span from implementing novel architectures, such as Loihi, to more
conventional deep neural networks [9, 18]. These conventional
hardware systems benefit from a long history of design verification,
which includes industry practice in classic digital system design, as
well as practice in software development [4, 11, 12, 20]. Tradition-
ally, design verification took place within the space of commercial
electronic design automation tools, but now a growing number of
open source tools — especially those based on Verilator!, a tool for
compiling (“verilating”) Verilog into accessible C++ libraries — have
facilitated an explosion of alternatives. These alternatives have pri-
marily been used for hardware description and verification using
high-level languages [3, 8, 13, 17, 22]. These recent advancements
have expanded the utility and interoperability of digital system
design with high-level modeling, making it easier to simulate the
interaction of a digital system with the world or an analog system.
In parallel to these advancements, interest has grown in the de-
velopment of analog systems based on both conventional silicon as
well as on unconventional devices like resistive memories (ReRAM),
phase change memories (PCM), magnetic tunnel junctions (MTJs),
and even photonic modulators [1, 5, 10, 14]. In addition to an ex-
panding number of prototypes, there have also been new high-level
modeling and simulation tools being developed, but these have only
just begun to grow into design verification frameworks [2, 6, 19, 21].
In general, design verification for analog hardware systems is not
as mature as it is for digital systems [7], and this is doubly the case
for systems that must also incorporate complex dynamics such as
weight updates or spike timing dependent plasticity [5].
Consequently, as prototypes develop, it is important to evolve
in parallel the tools, methodologies, and software frameworks nec-
essary to ensure that the system functions correctly, accurately
predicts a system’s performance, and encompasses the total span
of hardware/model isomorphisms required for a prototype to be
directly translated into an integrated system on a chip. To that end,
we introduce Daffodil, a modular end-to-end system capable of
simulating and executing experiments on arrays of up to 20,000
resistive devices. The system is composed of an integrated circuit,
a mixed-signal daughterboard, a field-programmable gate array
(FPGA) development board, and a software framework including a
compiled CPU, embedded Linux distribution, FPGA hardware dri-
vers, and Python-based application programming interfaces (APIs).

Uhttps://www.veripool.org/verilator/


https://doi.org/10.1145/3477145.3477260
https://doi.org/10.1145/3477145.3477260

ICONS 2021, July 27-29, 2021, Knoxville, TN, USA

XXX

Figure 1: Details of prototyping platform. a) GDS file of the
20,000 device chip. b) 20,000 devices fabricated on the chip.
c) Micrograph of a smaller subarray. d) Custom ADC/DAC
daughterboard and packaged chip interfacing to an FPGA
unit.

The system design leans heavily on conforming to modular in-
terfaces, software-hardware polymorphisms within the APIs, and
functionally exact reconstructions of the hardware operations in
simulation [12]. The goal of the verification framework is not only
to model the system’s behavior, but also to model the behavior
of programming and algorithmic mistakes so that the simulation
predicts even unintended side effects.

2 HARDWARE AND OPERATING SYSTEM

2.1 Integrated Circuit

The integrated circuit, called the Daffodil Chip, is a flexible-interface
platform specifically designed for the research and development of
two-terminal resistive memory and selector devices. It is designed
in a commercial 3.3 V, 180 nm complementary metal oxide semicon-
ductor (CMOS) process and contains via and access points for direct
integration of 20,000 resistive devices in a research foundry. The
chip is accessed by 403 pads, including three digital CMOS logic
configuration pads, 50 gate-access pads, 50 column-access pads,
and 200 row-access pads for each side of a double connected row.
The remaining pads are for electrical power. Two of the digital pads
are used for accessing internal 4:1 multiplexers, which allow for
access to one of four internal 50x100 2T-1R arrays. Consequently,
the maximum number of devices accessed at a time is 5,000.

2.2 Mixed Signal Daughterboard

The chip interfaces with a mixed-signal daughterboard, which we
call the Daffodil Board. The Daffodil Board is designed to access
any of the up to 32 unique subarrays, or kernels, within the 20,000
array chip. Each kernel, which can be considered as a 25 x 25 2T-
1R crossbar, is accessed with 75 unique digital-to-analog converter
(DAC) channels, giving each of the rows, columns, and gate columns
a unique bias. For read operations, the row or column DACs can
be replaced with tunable transimpedance amplifiers feeding to an
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array of 25 analog to digital converter (ADC) channels. Negative
current biases can be emulated in the transimpedance amplifiers by
raising their reference inputs from ground using one of the DAC
channels. For diagnostic purposes, the rows, columns, and gates can
also be globally or individually connected to ground or an external
source through coaxial connectors. Logically, the board’s selection
amongst the 32 kernels is mediated by five external CMOS logic
signals. Individual rows and columns can be activated by any of
50 unique CMOS logic signals. Three sets of three CMOS logic
signals configure the DAC, ADC, ground, external configurations,
or disable the access configuration multiplexers completely. All
the 96 CMOS logic configuration signals, the ADC and DAC serial-
peripheral interface (SPI) lines, clock signals, and the board power
are sourced from a 400-pin FPGA mezzanine connector (FMC).
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Figure 2: Logical diagram of the prototyping architecture.
Five CMOS logic signals access any of 32 ReRAM Kkernels.
Each of the 25 rows, columns, and gates can be indepen-
dently biased with DACs, accessed externally, or grounded.
Transimpedance amplifiers allow for readout of the array.

3 SOFTWARE

3.1 Operating System and Drivers

The Daffodil Board is designed to be plugged into a commercial
FPGA development board to act as the online host. The FPGA
host operates primarily from a compiled Xilinx Microblaze? soft-
processor which interfaces to the board drivers and to a superhost
Linux PC via Ethernet. The processor operates with a custom em-
bedded Linux distribution, Daffodil Linux, built from the Yocto
Project toolset>. All of the digital control signals on the Daffodil
Board, driven by 1.8V CMOS logic, are accessible as general pur-
pose input/output (GPIO) signals from the Daffodil Linux operating

2Certain commercial processes and software are identified in this article to foster
understanding, and. Such identification does not imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply that the
processes and software identified are necessarily the best available for the purpose.
Shttps://www.yoctoproject.org/
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system and can be asserted individually. This allows for the DACs
and ADCs to be controlled using off-the-shelf drivers.

In addition to the hardware drivers, the Daffodil Linux distribu-
tion contains hooks to call any hardware compiled function on the
FPGA. These functions can control any precise, hardware timed
operation including pulse generation, read operations, kernel selec-
tion, random number generation, random number generation, or
algorithmic coprocessing of batch and gradient information.

3.2 Daffodil-lib Base and Simulation Classes

Once the physical structures of the Daffodil Chip and Board are set
and all driver definitions are encoded, the Daffodil library (Daffodil-
lib) operates as the system’s simulation engine, control software,
and design verification framework. Written in Python, the library is
engineered to describe the board operation in a predictive and a de-
scriptive manner. It is descriptive in the sense that the code written
under Daffodil-lib must set the relevant 1.8V logic lines, modeled by
integers or Booleans, to select a kernel or specify inputs/outputs—
but it is also predictive in the sense that the system must check
what the existing logic lines are set to before executing a simulation
of the expected behavior. The key action of the predictive behaviors
is to set the correct simulated values into the DACs and ADCs as
well as the correct voltages and currents in the ReRAM memory.

In the case of the DACs and ADCs, each is modeled with a
part class that reproduces the specified transfer functions from the
digital to the analog domain, which, in the case of the Daffodil board,
is 12-bit digitization. Consequently, any mapping from floating
point abstract layers down to the analog layers are automatically
rounded and any communication from analog to the abstract neural
net layers are also digitized.

The ReRAM memory model interface exposes only input volt-
ages, output currents, and time values as accessible parameters.
Consequently, the internals of the model could be anything: a
Python model, a C model, or a full SPICE simulation of the system
including noise, or even commands to execute operations on a real
device. In this section, we discuss both a Python simulation class
and a physical operation class. Our implemented ReRAM model
and interface does not distinguish between inference and learning
operations, and so automatically checks for the possibility of device
conductance changes based on the inputted biases. One concrete
class descended from the base class is our Python model, named the
simulation class. As a child of the base class, the simulation class
retains the descriptive ADC and DAC models, e.g., it considers the
12-bit. Additionally, the class implements its predictive behavior
through a Python wrapped ReRAM model.

The key operation of the simulation is the event operation, which
maps the correct biases to and from the DACs and ADCs to the
ReRAM memory model. Using the input pulse time duration, the
simulator predicts the ReRAM behavior, including operationally
erroneous behaviors that a user might invoke in higher level code.
For example, an inference operation with too-high bias is indistin-
guishable from a write operation, and improperly set gate biases
will not generate any current. Improperly set CMOS logic lines
would generate the wrong behavior in the simulation exactly as
they would in the experiment. The potential to capture mistakes
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introduced in the higher level code that would occur in the experi-
ment is the critical element of the predictive/descriptive model that
is crucial for the design verification utility of the base class.

3.3 Daffodil-lib Hardware Class

Of the many concrete classes derived from the Daffodil-lib base
class, one of them is uniquely privileged in that it controls the
hardware directly, rather than running simulations. We call this
the hardware class. The Daffodil-lib hardware class, like the sim-
ulation class, inherits its interface from the base class and keeps
the descriptive behaviors. The predictive behaviors, such as the
routing of signals, placement of voltages on the DACs/ADCs, or
ReRAM response characteristics are now spontaneous reactions of
the physical system rather than mathematical models.

The descriptive behaviors, such as setting the CMOS logic signals,
programming the DACs/ADCs, and timing the operation of events
must each invoke either individual GPIO lines or otherwise call
device drivers from the device tree, which may either access individ-
ual components or orchestrate a complex series of hardware-timed
actions. To avoid confusing syntax, Python’s operator overloading
features are used to expand the get attribute and set attribute ac-
tions of the base class to also simultaneously invoke the associated
driver calls. Critically, none of the software interfaces between the
hardware class and the base class are changed, allowing the higher
level functions to operate with either the Daffodil-lib base or hard-
ware class without modification. In addition, any programming
errors that would lead to undesired behavior in the hardware class
are predicted by the operations of the base class, allowing both
model and simulation to co-verify one another.

Base class

DAC ReRAM ADC
Model API Model

Daffodil-lib Scoring &
assertion Comparison

DAC SPI Physical ADC SPI
Interface event Interface

Hardware class

Figure 3: Polymorphism allows for commands to interface
either to a simulation of the prototyping hardware or to be
routed to the interface drivers.

4 DAFFODIL-APP, VERILATOR, AND NEURAL
NETWORK RESULTS

The highest level code is composed of Daffodil-app, a separate li-
brary which takes all of the primitives in Daffodil-lib and maps it
into dimensionless network operations. These include constructing
network layers from multiple kernels, performing outer-product
operations on arbitrarily sized layers constructed from kernel-level
operations, and running inference/backpropagation operations. The
library has predefined values for read and write voltages; algorith-
mic hyperparameters are the only user-tunable values required. In
addition to providing a consistent interface between the simulation
and hardware classes that renders them indistinguishable, the app
also uses pybind11 to produce a consistent Python interface be-
tween C-code, C++ libraries generated from verilated SystemVerilog
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Figure 4: Depiction of the verification framework. The
framework can be run from a simulation-only host, run
within the FPGA CPU on the embedded OS, be partially syn-
thesized on the FPGA, or interfaced into the physical hard-
ware for the experiment. Solid arrows indicate dataflow;
dashed arrows represent the derivation source/destination.
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(which model the activity of our own custom compute accelerator
or coprocessor modules), and compiled application-level drivers
on the FPGA. Consequently, in addition to modeling/operating
mixed signal computing, the Daffodil-app enables simulation of a
hardware coprocessor from Python script models to a synthesized
ASIC model. Using the Daffodil-app, we are able to engage with
predictive modeling of network training on our hardware platform.
In one model, we used 28 of the 32 available kernels to create a
324 x 50 X 10 network to study a reduced-MNIST problem. Using
an ideal ReRAM model with conductance from 1 pS to 100 pS, we
show that an operationally exact hardware model of our system
can train to acceptable accuracy. In addition to running basic mini-
batch gradient descent, we simulate the operation of coprocessors
implementing reduced-rank, stochastic training [15, 16].

5 DISCUSSION AND FUTURE WORK

Constructing a design verification platform requires not only build-
ing a model of the hardware system, but also a model which is
operationally faithful across multiple layers of abstraction. Disci-
plined end-to-end isomorphism is critical to the tracking of errors
and side effects which otherwise might be untraceable when com-
paring a hardware model to an entirely external reference model.
Daffodil-lib does this through every layer of abstraction. The
code models coprocessor operations that describe signals on the
board. The ReRAM API includes only details of time and voltage,
and does not presuppose any mode of operation in which any of
its side effects may be absent. By building and exploiting polymor-
phism between simulation-control and hardware-control codebases,
experimental errors are avoided. Imbuing hardware-control code
with syntax identical to that of its simulation not only establishes
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Figure 5: Plots of the simulated training on MNIST. Each
point represents the test set accuracy for a single training,.
The networks were trained using a low rank training algo-
rithm using both round nearest and stochastic rounding. a)
Epochal performance of the training. b) Performance as a
function of increasing the number of ranks.

this link for catching errors, but also reduces the cognitive load of
moving from the modeling phase to implementation.

This system brings many advantages even though simulations
are slower than they could otherwise be. Modelling the ReRAM
interactions as mixed-signal quantities in this co-simulation envi-
ronment allows the system to debug errors in the hardware drive
routines, or in the application loops. In trouble-shooting bad results,
such mistakes can be distinguished from, higher-level problems
such as poorly optimized hyperparameters.

The strong organizational correspondence between the hardware
architecture and the python code is meant to facilitate a staged de-
sign process. Once an algorithm has been validated in simulation
and with real devices, the whole design can be streamlined. Individ-
ual methods can be replaced with FPGA hardware co-processors
with the end goal of completely realizing the end-to-end training
data-path in RTL hardware. This top-down design approach can be
repeated many times, and adapted to handle idiosyncracies intro-
duced by adjustments in media processing, choice of material, or
even experiments using a different memory technology.

6 CONCLUSION

In the context of the Daffodil-lib and associated components, we
have discussed a developed operation exact design for verification
framework for a resistive neural network prototype. The concepts
proposed in it, based on decades of research into design verification
and project management, from interfaces, to descriptive modeling,
to synaptic polymorphism, can be used to thoughtfully grow a
neuromorphic concept from a model to a working experiment.
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