
A System for Validating Resistive Neural Network Prototypes
Brian Hoskins, Mitchell Fream,
Matthew Daniels, Jonathan
Goodwill, Advait Madhavan,

Jabez McClelland
National Institute of Standards and

Technology
Gaithersburg, Maryland, USA

Osama Yousuf, Gina Adam
George Washington University

Washington, DC, USA

Wen Ma, Tung Hoang, Mark
Branstad, Muqing Liu, Rasmus
Madsen, Martin Lueker-Boden

Western Digital Research
San Jose, California, USA

ABSTRACT
Building prototypes of heterogeneous hardware systems based on
emerging electronic, magnetic, and photonic devices is an important
area of research. The novel implementation of these systems for
artificial intelligence poses new and unforeseen challenges in mixed
signal data acquisition, hyperparameter optimization, and hardware
co-processing. Many emerging devices exhibit unpredictable and
stochastic behavior as well as poorly repeatable hysteretic effects
or performance degradation. Dealing with these device challenges
on top of more traditional hardware problems, like quantization
errors, timing constraints, and even hardware and software bugs
is an enterprise fraught with pitfalls. Equally important to the
construction of the physical prototype is the co-development and
integration of a design verification framework that can extensibly
allow for predictable behavior of not only the entire system but also
all of its parts in a modular way, allowing for seamless integration in
both simulation and implementation. This work discusses Daffodil-
lib, a Python based prototyping framework which, from hardware
to software, enables everything from a script-based simulation to a
compiled hardware-timed experiment, to everything in between
with no syntactical changes for the end user.

CCS CONCEPTS
• Hardware → Emerging tools and methodologies; Memory
and dense storage; Emerging simulation.

KEYWORDS
design verification, neural networks, prototyping, hardware

ACM Reference Format:
Brian Hoskins, Mitchell Fream, MatthewDaniels, Jonathan Goodwill, Advait
Madhavan, Jabez McClelland, Osama Yousuf, Gina Adam, and Wen Ma,
Tung Hoang, Mark Branstad, Muqing Liu, Rasmus Madsen, Martin Lueker-
Boden. 2021. A System for Validating Resistive Neural Network Prototypes.
In International Conference on Neuromorphic Systems 2021 (ICONS 2021),
July 27–29, 2021, Knoxville, TN, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3477145.3477260

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICONS 2021, July 27–29, 2021, Knoxville, TN, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8691-3/21/07.
https://doi.org/10.1145/3477145.3477260

1 INTRODUCTION AND BACKGROUND
Increasing numbers of novel neuromorphic prototypes are becom-
ing available. These include traditional silicon technologies that
span from implementing novel architectures, such as Loihi, to more
conventional deep neural networks [9, 18]. These conventional
hardware systems benefit from a long history of design verification,
which includes industry practice in classic digital system design, as
well as practice in software development [4, 11, 12, 20]. Tradition-
ally, design verification took place within the space of commercial
electronic design automation tools, but now a growing number of
open source tools – especially those based on Verilator1, a tool for
compiling (“verilating”) Verilog into accessible C++ libraries – have
facilitated an explosion of alternatives. These alternatives have pri-
marily been used for hardware description and verification using
high-level languages [3, 8, 13, 17, 22]. These recent advancements
have expanded the utility and interoperability of digital system
design with high-level modeling, making it easier to simulate the
interaction of a digital system with the world or an analog system.

In parallel to these advancements, interest has grown in the de-
velopment of analog systems based on both conventional silicon as
well as on unconventional devices like resistive memories (ReRAM),
phase change memories (PCM), magnetic tunnel junctions (MTJs),
and even photonic modulators [1, 5, 10, 14]. In addition to an ex-
panding number of prototypes, there have also been new high-level
modeling and simulation tools being developed, but these have only
just begun to grow into design verification frameworks [2, 6, 19, 21].
In general, design verification for analog hardware systems is not
as mature as it is for digital systems [7], and this is doubly the case
for systems that must also incorporate complex dynamics such as
weight updates or spike timing dependent plasticity [5].

Consequently, as prototypes develop, it is important to evolve
in parallel the tools, methodologies, and software frameworks nec-
essary to ensure that the system functions correctly, accurately
predicts a system’s performance, and encompasses the total span
of hardware/model isomorphisms required for a prototype to be
directly translated into an integrated system on a chip. To that end,
we introduce Daffodil, a modular end-to-end system capable of
simulating and executing experiments on arrays of up to 20,000
resistive devices. The system is composed of an integrated circuit,
a mixed-signal daughterboard, a field-programmable gate array
(FPGA) development board, and a software framework including a
compiled CPU, embedded Linux distribution, FPGA hardware dri-
vers, and Python-based application programming interfaces (APIs).

1https://www.veripool.org/verilator/

https://doi.org/10.1145/3477145.3477260
https://doi.org/10.1145/3477145.3477260


ICONS 2021, July 27–29, 2021, Knoxville, TN, USA B. Hoskins et al.

5 Õm5 Õm

ŀύ

ōύ

Ŏύ

Řύ

Figure 1: Details of prototyping platform. a) GDS file of the
20,000 device chip. b) 20,000 devices fabricated on the chip.
c) Micrograph of a smaller subarray. d) Custom ADC/DAC
daughterboard and packaged chip interfacing to an FPGA
unit.

The system design leans heavily on conforming to modular in-
terfaces, software-hardware polymorphisms within the APIs, and
functionally exact reconstructions of the hardware operations in
simulation [12]. The goal of the verification framework is not only
to model the system’s behavior, but also to model the behavior
of programming and algorithmic mistakes so that the simulation
predicts even unintended side effects.

2 HARDWARE AND OPERATING SYSTEM
2.1 Integrated Circuit
The integrated circuit, called the Daffodil Chip, is a flexible-interface
platform specifically designed for the research and development of
two-terminal resistive memory and selector devices. It is designed
in a commercial 3.3 V, 180 nm complementary metal oxide semicon-
ductor (CMOS) process and contains via and access points for direct
integration of 20,000 resistive devices in a research foundry. The
chip is accessed by 403 pads, including three digital CMOS logic
configuration pads, 50 gate-access pads, 50 column-access pads,
and 200 row-access pads for each side of a double connected row.
The remaining pads are for electrical power. Two of the digital pads
are used for accessing internal 4:1 multiplexers, which allow for
access to one of four internal 50x100 2T-1R arrays. Consequently,
the maximum number of devices accessed at a time is 5,000.

2.2 Mixed Signal Daughterboard
The chip interfaces with a mixed-signal daughterboard, which we
call the Daffodil Board. The Daffodil Board is designed to access
any of the up to 32 unique subarrays, or kernels, within the 20,000
array chip. Each kernel, which can be considered as a 25 × 25 2T-
1R crossbar, is accessed with 75 unique digital-to-analog converter
(DAC) channels, giving each of the rows, columns, and gate columns
a unique bias. For read operations, the row or column DACs can
be replaced with tunable transimpedance amplifiers feeding to an

array of 25 analog to digital converter (ADC) channels. Negative
current biases can be emulated in the transimpedance amplifiers by
raising their reference inputs from ground using one of the DAC
channels. For diagnostic purposes, the rows, columns, and gates can
also be globally or individually connected to ground or an external
source through coaxial connectors. Logically, the board’s selection
amongst the 32 kernels is mediated by five external CMOS logic
signals. Individual rows and columns can be activated by any of
50 unique CMOS logic signals. Three sets of three CMOS logic
signals configure the DAC, ADC, ground, external configurations,
or disable the access configuration multiplexers completely. All
the 96 CMOS logic configuration signals, the ADC and DAC serial-
peripheral interface (SPI) lines, clock signals, and the board power
are sourced from a 400-pin FPGA mezzanine connector (FMC).

Figure 2: Logical diagram of the prototyping architecture.
Five CMOS logic signals access any of 32 ReRAM kernels.
Each of the 25 rows, columns, and gates can be indepen-
dently biased with DACs, accessed externally, or grounded.
Transimpedance amplifiers allow for readout of the array.

3 SOFTWARE
3.1 Operating System and Drivers
The Daffodil Board is designed to be plugged into a commercial
FPGA development board to act as the online host. The FPGA
host operates primarily from a compiled Xilinx Microblaze2 soft-
processor which interfaces to the board drivers and to a superhost
Linux PC via Ethernet. The processor operates with a custom em-
bedded Linux distribution, Daffodil Linux, built from the Yocto
Project toolset3. All of the digital control signals on the Daffodil
Board, driven by 1.8V CMOS logic, are accessible as general pur-
pose input/output (GPIO) signals from the Daffodil Linux operating

2Certain commercial processes and software are identified in this article to foster
understanding, and. Such identification does not imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply that the
processes and software identified are necessarily the best available for the purpose.
3https://www.yoctoproject.org/


	Abstract
	1 Introduction and Background
	2 Hardware and Operating System
	2.1 Integrated Circuit
	2.2 Mixed Signal Daughterboard

	3 Software
	3.1 Operating System and Drivers
	3.2 Daffodil-lib Base and Simulation Classes
	3.3 Daffodil-lib Hardware Class

	4 Daffodil-app, Verilator, and neural network results
	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

