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Materials researchers are generating data in ever-increasing 
volumes, and these data are, in turn, fueling the discov-
ery and design of new materials. These changes are en-

abled by advances in data capture via laboratory information 
management systems (LIMS), high-throughput experiment and 
computation, improved data collection capabilities, automated 
experiment selection and execution, and new analytical meth-
ods based on artificial intelligence (AI) and machine learning 
(ML) approaches. Data infrastructure is being developed with 
increasing numbers of repositories as well as data-sharing and 
standardization efforts.

Incorporating materials theory and knowledge is an excit-
ing and complex area where expertise in data analytics and sig-
nal processing can make an impact in real-world applications. 
These combined techniques in data science and the materials 
domain provide many opportunities to apply sophisticated data 
processing and analysis approaches to materials data and its 
attendant design and discovery problems.

Introduction and motivation
Materials are all around us. Most human-made materials are “de-
veloped” from more basic raw materials and are a critical part of 
everything from aircraft and buildings to medical devices and con-
sumer electronics. While most materials development has been 
done empirically (for millennia) due to the complexity of materi-
als and their processing behaviors, there are strong motivations 
to incorporate newer approaches that better integrate computa-
tion, data science, and theory in the form of physical and chemi-
cal laws. Integrating these strategies is one approach to designing 
new materials faster, more cheaply, and with greater confidence, 
which is a key focus of the Materials Genome Initiative (MGI) 
[1]. The development of new materials is crucial to addressing a 
wealth of global challenges in health care, the environment and 
sustainable growth, energy production, and communication.

Materials research and development (MR&D) is inher-
ently very broad in scope, heterogeneous, and cross-disciplin-
ary. This is both an opportunity and a challenge. Numerous 
types of materials exist (e.g., metals, ceramics, plastics, and 
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semiconductors) with very different associated properties, such 
as strength, viscosity, elasticity, electrical resistance, and so on. 
The type of material data and relevant models, with associated 
physical underpinnings, are important considerations for use in 
materials design. Additionally, materials physics and chemis-
try have been extensively addressed by theory, so these insights 
can be applied to gain understanding where data may be more 
sparse. This feedback between experimental data and model-
ing also creates opportunities to contribute to the theories with 
new data being acquired. As part of this process, there is a 
need/role for expertise in signal and other sophisticated data 
processing approaches.

As an example to make these issues more transparent, we 
consider in some detail the additive manufacturing (AM) pro-
cess, which is related to 3D printing. During AM, parts are 
often built by adding heated layers of material, generally metal-
lic or polymeric, which then cool and solidify. A recent review 
of these approaches and applications can be found in [2]. While 
AM has recently been applied to various industrial problems of 
importance, including aerospace and biomedical, there are still 
considerable challenges to be addressed as it becomes more 
widely used. These include manufacturing process reliability, 
data acquisition, material and part characterization, validation, 
certification for use, and tracking of additional testing or char-
acterization throughout the life of the material [2], [3].

In one of the common approaches to AM, laser powder bed 
fusion, a laser is used to raster over a 
freshly deposited thin layer of metal 
powder, locally melting and then solid-
ifying the powder to create a new level 
of solid material in a part [2]. In many 
ways, the part can be considered a 
large number of welded particles. After 
many passes of depositing powder and 
scanning the laser, an entire part is cre-
ated. Once it is made, there may be 
additional processing, such as heating, 
to improve the performance by mak-
ing the composition, or distribution of 
elements, more consistent. These heat 
treatments can also improve the spatial 
distribution and sizes of pores or voids 
that occur when particles join and leave 
spaces between them. Heating can also 
relieve stresses that result from the 
materials not having time to relax fully 
before solidifying completely. 

These steps are important since 
processing and structure are key to the 
material and part properties, which 
determine whether a part can be used 
in a particular application. Properties 
of interest include (among others) the 
so-called “melt pool” dimensions, i.e., 
the region where the metal has been 
liquified by the laser and then reso-

lidified; local structure of the materials on the scale of microm-
eters; and final part geometries on the order of centimeters. 

One example can be seen in Figure 1 (from [4]), which 
shows the local structure for one of the materials studied 
(IN625, a nickel-based superalloy). Nickel-base superalloys 
have an internal microscopic structure (microstructure) in 
which cuboidal precipitates of one composition are surrounded 
by channels of the same material with a different composition. 
This type of microstructure helps provide strength to the mate-
rial; thus, understanding both how these structures arise and 
what determines their properties is essential to predicting and 
controlling the behavior of the final part.

Even if the same manufacturing procedures are used, there 
can be large variability within parts, including some that break 
before being completed. Models can help researchers under-
stand why parts fail or how to optimize the manufacturing pro-
cesses used, part geometries, or materials employed but only 
if the models are sufficiently accurate. For example, models 
could be used to examine processing and property relationships 
(e.g., how does the speed of the laser relate to the strength of the 
part?). Additionally, there is a need to define what certifications 
are necessary to approve a part for use in a critical application 
and how to track individual samples and parts, with associated 
data and metadata, throughout their lifecycles.

Generating accurate models and benchmarking them gen-
erally requires substantial amounts of experimental data. The 
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FIGURE 1. The local crystal orientations in a nickel-base superalloy used in AM as determined by electron 
backscatter diffraction. MR&D provides many interesting and challenging data analytics problems. IPF: 
inverse pole figure (X, Y, and Z referring to coordinates used for the AM build). (Source: [4], which 
contains additional descriptions of characterization methods and other metadata; used with permission.) 
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Additive Manufacturing Benchmark Test Series (AM-Bench) 
effort [3] is working to address these issues via highly character-
ized and instrumented part builds and the release of curated data 
(https://ambench.nist.gov and https://www.nist.gov/AMBench) 
in support of model validation. Samples are built with specific 
geometries and then characterized in detail. Characterization 
methods include microscopy, X-ray analysis, thermography, and 
others [3], [4]. This requires signals from multiple sources and 
instruments plus the ability to process and collate multiple sets of 
data that are not necessarily well aligned in time or space. 

Some of these issues are discussed as related to Challenge 4 of 
the Air Force Research Laboratory (AFRL) AM Modeling Chal-
lenge, which addressed 3D microstructure reconstructions based 
on high-energy diffraction microscopy [5]. That work also high-
lights the importance and challenges of automation (serial sec-
tioning) and image analysis in these systems as well as decisions 
about when to use various experimental techniques (destructive 
and nondestructive) and data fusion approaches. It also discusses 
challenges related to data acquisition, storage, and processing.

By making the data available in a curated form and supporting 
modeling challenges that make use of the data, the AM-Bench 
and AFRL efforts demonstrate the types of impact that the distri-
bution of well-characterized data can have as well as where there 
may be opportunities for new types of analysis to further materi-
als understanding. If models, such as those used in AM, are gen-
erated and validated, this can reduce the number of experiments 
required to design or optimize a new material or part by select-
ing those to perform that give the most information. This could 
be done with significant human involvement or, increasingly, by 
using automated approaches. 

Also, models (physical and/or numerical) can be used as sur-
rogates for experiments if they are sufficiently trusted. Finite ele-
ment analysis is a good example of this at the continuum scale 
for designing parts—materials properties and equations are 
employed instead of having to create a new experiment for each 
small change in a design. This results in faster and more reliable 
materials development and use. However, the accuracies of the 
models are dependent on factors including the representation of 
the equations governing materials properties and the underlying 
data used to fit the models.

As an example of the use of AM-Bench data, Zhu et al. [6] 
developed a physics-informed neural network model that inte-
grates momentum, mass, and energy conservation laws as part 
of the learning process and subsequently examined temperature 
profiles and the fluid dynamics of melt pools to better predict 
solidification behavior. ML in AM more generally is reviewed 
in [7] and [8] with a particular focus on the geometric design, 
process parameters, and in situ detection of anomalies that could 
adversely affect performance.

Data for materials discovery and design
The AM example described highlighted one major area of data 
in materials R&D, which is focused on understanding, model-
ing, and utilizing models and data to develop and refine materials 
manufacturing processes. Another major area of application is in 
materials discovery and design. This topic has been reviewed in 

more detail elsewhere, e.g., [1] and [9]–[13], and interested read-
ers can find considerably more discussion than is covered here.

Various materials data resources are available from experi-
mental and computational sources, and there are both specialized 
and general repositories to support data archiving and distribu-
tion, with examples reviewed in references such as [9] and [11]. 
Computational databases and repositories include the results 
of simulations and theory, modeling, and AI/ML. Repositories 
based on quantum mechanical simulations are particularly com-
mon and increasingly being used to filter very large materials 
parameter spaces (e.g., composition ranges) to find optimal can-
didates for experimental study. Many of these are based on high-
throughput methods that can be used to generate large numbers 
of data points or records using scripts and automated approaches. 
The majority of them have application programming interfaces 
(APIs) to facilitate integration with other data sources. 

Experimental sources come from a wide variety of techniques, 
such as scattering, microscopy, and many different characteriza-
tion methods. These approaches can produce massive amounts of 
data, which are increasingly available to downstream researchers 
via databases and repositories. The available data sets and reposi-
tories have been used with varying degrees of success in materi-
als discovery and design problems, as discussed in [1] and [10]. 
In particular, there are far more computational (e.g., quantum 
mechanical calculations) than experimental data available due to 
the relative difficulty of acquiring, annotating, and sharing them.

Experimentally, high-throughput methods have been grow-
ing in use as a way of increasing the volume of data collected 
[1], [10], [14]. Combinatorial methods, for example, can generate 
data on a wide range of systems in a relatively quick manner by 
allowing a range of material compositions to be simultaneously 
created and then tested. These approaches have varying degrees 
of human involvement, as Bayesian optimization and similar 
approaches can be used to guide the selection of experiments by 
people or robots.

Autonomous workflows are considerably expanding the 
amount of data collected and made available in structured forms 
appropriate for deeper analysis [15]–[18]. In particular, they are 
increasingly being adopted to optimize experimental designs and 
reduce the need for researchers and technicians to be involved in 
all steps of the design, execution, and analysis of a given effort. 
One example of the combination of autonomous experimentation 
and Bayesian optimization is in the discovery of a new material 
for use in photonic switching devices [15]. However, human-in-
the-loop approaches allow people to provide decision-making 
capabilities and provide critical checks, which can give better 
results overall [10].

One significant challenge is in acquiring and managing scien-
tific data, particularly when they are produced in large volumes 
and quickly (high velocity). This includes the basic infrastruc-
ture necessary to capture the raw or minimally processed data as 
well as file formats (including some that are closed and proprie-
tary). The volume of data may be too large for storage, and, thus, 
preprocessing may be required. Once data have been acquired, 
they need to be organized and labeled with metadata that can be 
later used for analysis and sharing. These activities can require 
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considerable time and effort on the part of researchers. Backups 
and long-term archiving are also considerations, both techni-
cally and from a cost perspective. Some of the issues related to 
transmission electron microscopy in particular are discussed by 
Spurgeon et al. [19].

Scientific data ecosystems are emerging to more effectively 
address these challenges [9], [20]–[22] with supporting infra-
structure. For example, LIMS efforts, such as NexusLIMS [23], 
support automated data and metadata capture for electron micros-
copy. Metadata associated with microscopy sessions are logged 
and made available along with the images themselves. Reposito-
ries, such as the Materials Data Facility [22] and similar, are also 
accessible for data distribution and archiving, and they house data 
of many different types. These kinds of repositories also provide 
a place for data supporting publications that augment the supple-
mentary material.

Advanced computing approaches are also supporting the 
growth in materials data. Butler et al. [12], for example, include 
various listings of software packages and tools available for data 
analytics and ML. Exascale computing is on the horizon and 
will provide powerful new computing and analysis capabilities.  
Efforts such as SciServer are also enabling collaborative data 
access and analysis [24], which allows experts to interact and 
work together in new and exciting ways.

Increasingly, the availability of high-quality materials data is 
also enabling improved materials design approaches. Materials 
design is the creation of new or improved materials with a par-
ticular set of target properties [1], [14]. While there can be over-
lap with materials discovery efforts, design is really more about 
optimization to solve particular problems. New and optimized 
materials can then be integrated into new products. Data and, 
increasingly, computation underpin these approaches. Materials 
design is currently an area of great interest, including the appli-
cation of AI/ML approaches. These techniques within materials 
science are reviewed in a number of papers, including [1], [9]–
[13], and [25]. One consideration in materials research is that data 
collection is often difficult and expensive, so there is a particular 
need for methods that can work with smaller data sets [26].

Available data facilitate better analysis, including verification 
and validation as well as uncertainty quantification (UQ), a grow-
ing part of MR&D. This topic is treated in depth in [27], which 
includes discussions of epistemic and aleatoric uncertainties, that 
is, uncertainties stemming from imperfect knowledge and ran-
dom fluctuations, respectively, as well as methods for propagating 
uncertainties (including the Monte Carlo analysis). In the context 
of ML, model error assessment is discussed in, e.g., [10]. UQ con-
siderations are especially important when linking data and mod-
els across length and timescales, a critical component of materials 
design where behaviors at the macroscale (e.g., failure) can be 
controlled by atomic-level defects. 

In addition to formal UQ, data being considered for reuse must 
also be assessed for physical relevance and correctness, which can 
be challenging in a multidisciplinary effort. For example, spuri-
ous results/predictions may be misleading when incorporated into 
another effort that then relies on those “wrong” results. Extrapo-
lating from areas of reliable application is also a risk [28]. Thus, it 

is necessary to account for the underlying physics where possible 
and develop minimal standardized benchmarks for materials sys-
tems [9]. Also important is to consider how representative the data 
are for the system. Do they represent an edge case or something 
that is broadly true? The significance of these questions highlights 
the need for metadata to document what the data represent, how 
they were acquired and processed, and information to facilitate 
appropriate reuse. 

Trends and outlook
Many of the trends related to data in MR&D are similar to other 
fields. These include AI/ML and the automation of computation 
as well as experimentation with attendant larger volumes of data 
[12]. Given the tremendous impact such methods can have on all 
of MR&D, these trends represent especially fertile ground for in-
terdisciplinary collaboration.

Data (databases, repositories, and so on) and software are 
now being distributed by many projects, which increases the 
need for data fusion approaches. With increasing availability, 
there are also important considerations around data reuse. One 
that is especially important for MR&D is the requirement that 
disparate research communities must understand what data gen-
erated outside their own community represent and how to work 
with them. Domains often use similar words to describe different 
concepts, and vice versa. 

This is true even within the field of MR&D, and it applies 
even more broadly between MR&D and other domains. As a 
specific example, “registry” could mean alignment (as in data 
sets being aligned in space) or a system for federated data cata-
loging and access (such as the National Institute of Standards 
and Technology Materials Resource Registry). Experts in dif-
ferent domains, even those working on the same project, may 
default to their own preferred use of the term and need to work 
together to develop common understandings. When data are 
used across disciplines, it becomes crucial to employ metadata 
to document the context and any conversions or transformations 
that have been applied.

The application of findable, accessible, interoperable, and 
reusable (FAIR) concepts [29] into systems and data design can 
help with this, especially via common formatting, metadata, 
and documentation. The Open Databases Integration for Mate-
rials Design (OPTIMADE) consortium [30] is one example of 
this in which common APIs are being developed to facilitate the 
exchange and reuse of density functional theory calculations. 
Acquiring data and metadata from machines in formats that can 
be readily used and reused supports FAIR, and well-documented 
APIs are critical for developing automated approaches.

While FAIR is an important approach, there are also consid-
erations that might prevent data from being made available (e.g., 
proprietary or access-control concerns), which complicate efforts 
to manage them. Recently, the field of MR&D has been paying 
greater attention to all of these and developing efforts to address 
them. Groups, such as the Research Data Alliance (RDA), Mate-
rials RDA (MaRDA), professional societies, and similar associa-
tions, are fostering communities to establish norms and standards, 
including guidelines, software, and so on, for data and metadata 
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management. This will make it easier to utilize the data via 
advanced analysis techniques.

To effectively solve the challenge of a data infrastructure that 
integrates materials domain expertise, signal processing method-
ologies may be applied along with tools from other disciplines. 
AI/ML is being used to both accelerate existing efforts and devel-
op insights, though the physical relevance of the results is critical 
in the application to MR&D. To support these goals, new plat-
forms are being developed for curation and storage, computation, 
and access. Numerous approaches include working together to 
optimize data acquisition, analysis, and use as well as identify-
ing commonalities in streams of data from a numerical viewpoint. 
However, with the growth in data volume and automation, the 
opportunities are greater than ever.
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