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Abstract—While the existence of many security elements in 
software can be measured (e.g., vulnerabilities, security controls, 
or privacy controls), it is challenging to measure their relative 
security impact. In the physical world we can often measure 
the impact of individual elements to a system. However, in 
cyber security we often lack ground truth (i.e., the ability to 
directly measure signifcance). In this work we propose to solve 
this by leveraging human expert opinion to provide ground 
truth. Experts are iteratively asked to compare pairs of security 
elements to determine their relative signifcance. On the back 
end our knowledge encoding tool performs a form of binary 
insertion sort on a set of security elements using each expert 
as an oracle for the element comparisons. The tool not only 
sorts the elements (note that equality may be permitted), but 
it also records the strength or degree of each relationship. The 
output is a directed acyclic ‘constraint’ graph that provides a 
total ordering among the sets of equivalent elements. Multiple 
constraint graphs are then unifed together to form a single graph 
that is used to generate a scoring or prioritization system. 

For our empirical study, we apply this domain-agnostic mea-
surement approach to generate scoring/prioritization systems in 
the areas of vulnerability scoring, privacy control prioritization, 
and cyber security control evaluation. 

Index Terms—software, measurement, security, scoring, prior-
itization 

I. INTRODUCTION 

The existence of many software security properties can 
be measured. For example, we can measure the presence of 
vulnerabilities, security controls, and privacy controls on a 
system. But it is challenging to measure the signifcance of 
any one element compared to another; ad hoc approaches 
have been developed (e.g., [1], [2], [3], [4], [5], [6], [7], [8], 
[9], and [10]), but it is not usually possible to demonstrate 
that any particular methodology is correct (or even useful on 
occasion). However, in many hard sciences there is ground 
truth (measurements obtained through observation) to enable 
such comparisons. For example, in an electrical circuit two 
unlabeled resistors could be compared by measuring their 
effects on voltage. One could then empirically determine an 
ordering among a set of unlabeled resistors. Even better, a 
scoring system could be developed that would label each 
resistor with the exact resistance it provided. How can this 
be done for a set of security properties to order or score them 
as to their signifcance? How do we measure their relative 
’security’ to each other? 

Unfortunately, often what prevents us is a lack of ground 
truth (the ability to directly measure the signifcance of a 
security element). One possible solution path is to tie security 
elements to expected dollar losses or probability of intru-
sion/vulnerability (e.g., [11] and [12]), but in general such 
data is not available. Yet rating the security signifcance of a 
discovered vulnerability or security control that needs to be 
implemented is an operational necessity; these determinations 
are made every day on networks using ad hoc approaches. 
What is needed is some form of ground truth that will enable 
the measurement of the relative security between security 
properties. 

In this work, we answer such questions through leveraging 
human experts. Experts are iteratively asked to compare pairs 
of security elements to determine their relative signifcance 
(e.g., less than, much greater than, or equal to). They are 
asked O(nlogn) questions where n is the number of security 
elements to be compared. On the back end our knowledge 
encoding tool performs a form of binary insertion sort on a 
set of security elements using the human as an oracle for each 
element comparison. The tool not only sorts the elements (note 
that equality may be permitted), but it also records the strength 
or degree of each relationship (e.g., greater than or much 
greater than). The relationships are recorded in a directed 
acyclic graph where each node represents an element, and 
the edges represent the degree of the recorded relationship 
between two elements. Edges of degree 0 are used to group 
equal elements; this enables us to place each element in an 
equivalency set (possibly of size 1). We call these output 
graphs ‘constraint graphs’. The constraint graphs produced by 
the knowledge encoding tool will provide a total ordering of 
the associated equivalency sets. 

Multiple experts may each use the knowledge encoding 
tool multiple times to produce a set of constraint graphs. We 
measure the differences between constraint graphs to 1) ensure 
that each expert provides consistent input and 2) detect outlier 
constraint graphs. Sets of constraint graphs are then unifed 
through a voting procedure. The voting works by evaluating 
the defned relationship between all pairs of security elements 
in each input graph. The pairs are ordered based on how 
strongly the experts agreed with respect to the relationship 
between any two elements. Note that often experts will not 
have explicitly compared a pair of elements; thus, we rely on 
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the transitivity of the total ordering of the equivalency sets 
to determine the relationship from the constraint graph. The 
output is a single unifed constraint graph (that is directed 
and acyclic but that may have lost its total ordering of the 
equivalency sets due to disagreements among the experts). 

Finally, we use the unifed constraint graph to generate 
either a prioritization or scoring system (depending upon the 
security domain being evaluated). The generation of prioriti-
zation systems is trivial provided that the total ordering was 
maintained in generating the unifed graph (if not, that must be 
resolved). The generation of a scoring system is more involved. 
First, the human operator must choose minimum required 
distances between generated scores given the differing degrees 
between the security elements specifed by the unifed graph. 
Most valid settings will allow for an infnite number of 
‘rational’ scoring systems to be constructed. We say that a 
scoring system is rational if it does not violate any edge in the 
associated unifed constraint graph. Next, the human operator 
may optionally ‘peg’ certain elements to specifc values. After 
that, our scoring generation tool suggests a rational scoring 
system using a straightforward greedy algorithm that takes 
into account the unifed constraint graph as well as any pegged 
values. Further customization can be done by the human editor 
pegging additional values (within the constraints defned) and 
then recomputing suggested scores for the remaining unpegged 
security elements. 

For the empirical portion of our research, we applied our 
approach to two security domains. We used the Forum of 
Incident Response and Security Teams’ (FIRST) Common 
Vulnerability Scoring System (CVSS) vectors to generate an 
alternate scoring system [13]. We also used the National Insti-
tute of Standards and Technology (NIST) Privacy Framework 
(PF) to generate a prioritization of privacy controls [14]. We 
also implemented an interface to analyze the NIST Cyber 
Security Framework (CSF) but did not do a signifcant study 
in this domain [15]. 

The remainder is of this paper is organized as follows. 
Section II presents the design of the system. Section III 
presents our two empirical studies using the CVSS and PF. 
Section IV then highlights the limitations of this approach, 
and Section V explains planned future work. Section VII 
concludes. 

II. SCORING GENERATOR SYSTEM DESIGN 

Our scoring generator system is composed of three tools: the 
knowledge encoding tool, the constraint graph unifcation tool, 
and the scoring generation and prioritization tool. Each tool 
feeds its output into the next tool and thus each tool represents 
a stage in the scoring generation process. 

A. Knowledge Encoding Tool 

The knowledge encoding tool is a domain-agnostic tool for 
representing human knowledge as directed acyclic graphs; in 
particular it represents degrees of signifcance between a set 
of elements within a knowledge domain. In our experiments, 
the elements are taken from a chosen security domain; our 

tool currently has modules to represent the CVSS, PF, and 
CSF. The tool iteratively presents a human expert with pairs of 
security elements to be compared. The expert then designates 
which is more severe, signifcant, or important (depending 
upon the security domain being analyzed). Optionally, the tool 
may be confgured to allow the expert to express the degree 
of inequality (e.g., less than or much less than) and/or to 
express equality. After answering a series of questions that 
include all the domain elements at least once, the tool outputs 
a representation of the expert’s knowledge. 

On the back end, the answers provided by the expert are 
used to generate a directed acyclic graph where the nodes 
represent individual security elements and the edges repre-
sent the relationships between elements. The edges represent 
‘greater than’ relationships (or equality if permitted by the tool 
confguration). For the ‘greater than’ relationships, the degree 
of minimum distance may be represented (e.g., greater than or 
much greater than). These degrees are represented using the 
natural numbers (with 0 representing equality). 

The algorithm used to construct the graphs is a modifed 
binary insertion sort. Unprocessed elements are iteratively 
added to the graph using a binary insertion sort algorithm 
(leveraging an O(log n) binary search to fnd the correct 
location for the new element). However, the human expert 
is used to calculate the comparisons instead of the computer. 
An edge is added to the output graph after every comparison, 
showing the degree of the ‘greater than’ relationship (or 
equality if that is permitted). 

Newly introduced elements that are designated as equal to 
an already processed element are added as children to the 
already processed element (using an edge of degree 0). No 
further comparisons are done using these child nodes; the 
parent represents this particular ‘equivalency set’ of elements. 
Thus, each equivalency set is a collection of nodes defned by 
the human as equally signifcant, having a single parent with 
zero or more children. When identifying a node within an 
equivalency set to use for a comparison we considered taking 
a random node, but this could cause an unintentional shift in 
interpretation of the equivalency set by the human. This is 
because even though the elements are marked as equal they 
may not actually be exactly equal. 

The last important point is that when adding an unprocessed 
element, the frst comparison made is done against a random 
equivalency set. This is done to more evenly distribute edges 
throughout the graph; otherwise the binary insertion sort, 
always starting with the middle node, generates graphs where 
the edges mostly bifurcate the set of nodes into two highly 
connected clusters. 

The produced graph is guaranteed by the use of the binary 
insertion sort to have a longest path that includes all nodes 
that are parents of equal children or that have no children. 
As mentioned previously, each of these nodes represent an 
‘equivalency set’ (set of elements that are marked as equal), 
possibly of size 1. The outputted directed acyclic graph then 
totally orders the equivalency sets. Note however that it does 
more than totally order, because it may provide the minimum 



Fig. 1. Example Output Graph (for Section III-A, this is a Unifed CVSS 
Graph of 9 Constraint Graphs from 3 Experts) 

degree of distance between each equivalency set. 
An example graph is shown in Figure 3. The black nodes 

on the longest path represent a set of elements that are totally 
ordered. The green edges represent ‘greater than’ relationships 
and the black edges represent ‘much greater than’ relation-
ships. The yellow child nodes are those marked by the expert 
as being equal to their parents. This parent to child equivalency 
is represented by a very light blue edge. 

B. Constraint Graph Unifcation Tool 

The constraint graph unifcation tool merges multiple con-
straint graphs into a single directed acyclic graph. This can 
be used to unify the knowledge representations of multiple 
experts. It can also be used to better represent the knowledge 
of a single expert by the expert evaluating a security domain 
multiple times and then unifying their resultant constraint 
graphs. 

Note that all graphs to be unifed must have the same set of 
security elements. Thus, they have the same number of nodes 
but likely a different set of edges (including a different number 
of edges) due to our use of our modifed human-directed 
binary insertion sort graph generation algorithm. However, 
since they are guaranteed by construction to be directed and 
acyclic, every input graph provides the relationship between 
every pair of nodes (using edge transitivity). The nodes are 
totally ordered (while optionally allowing for equality). 

The unifcation algorithm starts by enumerating all pairs 
of nodes. Each two nodes x and y could form the pairs 
(x,y) and (y,x), but only one will be chosen (which one is 
arbitrary). For each chosen pair, there will be a directed path 
in each input graph between the parent nodes representing the 
equivalency sets in which x and y reside. If parent(x) is equal 
to parent(y), then x and y are equal because they reside in the 
same equivalency set. If there is a path from parent(x) to y, 
then the relationship is ‘greater than’ (we do not use the degree 
of the edges until the fnal scoring generation). Likewise, if 
the path is from parent(y) to x then the relationship is ‘less 

than’. For each input graph and for each chosen pair x and 
y, we record the number of times we observe ‘less than’, 
equal, and ‘greater than’. The pair (x,y) is labeled with these 
measurements, which represent human expert votes for each 
relationship. 

Next we adjust the votes for each pair as follows. For each 
vote for both ‘less than’ and ‘greater than’, we subtract 1 vote 
from both ‘less than’ and ‘greater than’ and we increase the 
votes for equal by 1. Thus, two votes that disagree on the 
direction of the relationship get consolidated into one vote for 
equal. The intuition is that if two experts can’t agree on the 
direction of a relationship, then the two elements are more 
likely to be equal. 

Each pair is then labeled with the maximum number of votes 
for any particular relationship and all the pairs are ordered by 
this maximum value from highest to lowest. This ordering is 
the priority that will be used to process the pairs and add 
them to the output graph. The idea is that if a pair receives a 
large number of votes for any particular relationship, that pair 
should receive priority over other pairs (with fewer votes) in 
being added to the constructed output graph. 

The pairs are then processed in priority order and the nodes 
of each pair and the designated maximum relationship are 
added to the, initially empty, output graph. If a pair to be added 
has two relationships tied for maximum (equal combined with 
either ‘less than’ or ‘greater than’), this this pair is not added 
to the output graph; it is marked as disputed. If the addition 
of a pair would cause the output graph to have cycles (thus 
creating a contradiction with previously added higher priority 
and higher confdence pairs), it is not added; it is marked as 
contradictory. In this way we process all (n2)/2 − n chosen 
pairs, adding to the output graph frst those with higher votes 
(representing more confdence). 

One fnal complexity is that the output graph generation 
algorithm will change the specifc edges but preserve the 
encoded logic. It does this to simplify the output graph. All 
nodes that are equal will be constructed as children of one 
particular parent node. All edges that would have connected 
to the children are changed to connect to the parent (since the 
parent represents that equivalency set). 

The result is an output graph that unifes the input con-
straint graphs. By construction, it will be directed and acyclic. 
However, unlike the input graphs it is not guaranteed to totally 
order the nodes. This is because experts may disagree, and the 
resulting votes may not provide enough information to totally 
order the nodes. The visual artifact of this loss of total ordering 
is that there will not exist a single longest path that includes the 
parent node for each equivalency set. Fortunately, this will not 
cause an issue for our scoring generation algorithm. For our 
prioritization algorithm, however, we had to develop heuristics 
to address this possibility. 

C. Scoring Generation and Prioritization Tool 

The scoring generation and prioritization tool takes as input 
a single unifed constraint graph and outputs either a scoring 
system or a prioritization of the inputted security elements. 



Fig. 2. Valid Degree 2 Values (Minimum Score=0, Maximum Score=10) for 
Graph in Figure 1 

1) Scoring Generation: As discussed previously, the 
knowledge encoding tool may require experts to specify the 
degree of distance between pairs of security elements (e.g., 
specifying ‘much less than’, ‘less than’, equal, ‘greater than’, 
and ‘much greater than’). These get translated into edges that 
are labeled with degrees of distance (e.g., 0, 1, and 2 for equal, 
‘greater than’, and ‘much greater than’ respectively). There are 
no negative distances as, for example, ‘less than’ simply maps 
to degree 1 with the edge having a reversed direction. 

To generate scores for a particular input graph, a human 
operator must then specify the minimum scoring distance 
required for each degree of distance. They also must specify 
bounds on the minimum and maximum scores to be produced. 
Given a set of minimum distance values and bounds, there 
may be no valid solutions, one solution, or an infnite number 
of solutions. If the scoring requirements limit the number of 
decimal places used in produced scores, there may be a fnite 
number of valid solution sets instead of an infnite number. A 
valid solution set is one that is rational (i.e., each node in the 
constraint graph can be labeled with the score of its security 
element without violating any edge constraints). 

We wrote a tool to calculate the set of valid minimum 
distance values that may be chosen. It works by evaluating the 
different combinations of edges that can be used to traverse 
a constraint graph. For graphs with edges of both degrees 
1 and 2, it iterates over the possible degree 1 values and 
then calculates the associated maximum degree 2 value (the 
minimum degree 2 value is simply equal to the chosen degree 
1 value). An example output is shown in Figure 2. The x-
axis provides the possible degree 1 values that may be chosen 
(the minimum scoring distance for ‘greater than’). The top 
red line represents the maximum degree 2 value that may be 
chosen (the minimum scoring distance for ‘much greater than’) 
and the lower blue line represents the minimum. Note that 
choosing a degree 2 value on the red line will result in exactly 
1 scoring solution set being available, since the maximum 
range of scoring values will be needed in order to satisfy 
the edges in the constraint graph. This can be implemented 

in O(n2) time. 
Next, an algorithm is executed on the input constraint 

graph that determines the minimum and maximum scoring 
assignments possible for each node. The outputted score for 
each security element is the mean of the maximum and 
minimum scores determined for each node. Minimal scores 
can be assigned by fnding nodes whose parents have all 
been scored and assigning their score minimally based on the 
minimum distances specifed by the parent to child edges. If 
a node has no parents, then it gets assigned the minimum 
valid score (usually 0). If a node has some parents that have 
been scored and others that have not, it waits to be processed 
until all its parents have been scored. For a node with a single 
parent, the node’s score is the parent’s score plus the minimum 
distance required by the edge degree (discussed previously). 
For a node with multiple parents, the node’s score is calculated 
individually relative to each parent (as if the node had only 
one parent). Then the maximum value calculated is used for 
the node’s minimum score. The node’s maximal scores can be 
calculated with a slightly more complicated variant; both can 
be implemented in O(n2) time. 

Usually more than one rational scoring system can be 
generated; our algorithm outputs one of them. We do not 
claim that the outputted solution is necessarily superior to 
the others. Our algorithm spreads the scores out within the 
range of possible scores (as defned by the operator inputted 
minimum and maximum scores). This results in the less 
signifcant equivalency sets having scores assigned close to 
their minimums, while the more signifcant equivalency sets 
have scores assigned closer to their maximums. 

Another important note is that the human operator may 
choose to peg certain nodes to certain values. Our algorithm 
can take this pegging into account when generating scores. 
Once a scoring system is generated, the operator may change 
a score within the defned range of maximum and minimum 
values for the corresponding node. This pegs the score within 
the system and the algorithm is then re-run to generate a 
new proposed scoring system. In this way a human operator 
can customize the scores and, through that customization 
capability, generate any of the possible rational solutions. 

An example scoring output graph along with the minimal 
and maximal values are shown in Figure 3. The x-axis values 
represent the different equivalency sets defned in the con-
straint graph (13 in this case). The size of each dot represents 
the size of the corresponding equivalency set (the number of 
security elements defned to have the same signifcance). The 
top blue nodes represent the maximal possible values. The 
bottom red nodes represent the minimal possible values. The 
green middle nodes represent the chosen values. 

2) Prioritization: As discussed previously, the constraint 
graphs produced by the knowledge encoding tool will have a 
unique longest path that will contain exactly one node from 
every equivalency set. Thus, such graphs totally order the 
equivalency sets. To output a security element prioritization, 
we simply traverse the unique longest path outputting each of 
the security element associated with each visited node (along 



Fig. 3. Generated CVSS Scores and Limits from the Unifed Graph 

with the children of each node). No special handling needs to 
be done to output each equivalency set as each equivalency set 
is represented as a directed star subgraph with a single parent 
along the longest path. This means that all nodes equal to a 
node on the longest path are immediate children of that node. 

On occasion a diffculty arises, because the unifed con-
straint graphs are not guaranteed to be totally ordered. Looking 
ahead to our PF case study in Section III-B, Figure 7 shows the 
unifed constraint graph from 3 input graphs. The blue nodes 
not on the longest path of black nodes are those that could not 
be totally ordered given the information in the input graphs. 
We resolve this using the heuristic of assigning each non-
totally ordered node as equivalent to the node on the longest 
path that is equidistant from the last node on the longest path 
(if it is a parent of a node on the longest path) or equidistant 
from the frst node on the longest path (if it is a child of a 
node on the longest path). In our example, the rightmost blue 
node (which is a parent of a node on the longest path) gets 
assigned as equivalent with the initial node on the longest path 
(as both are distance 10 from the last node on the path). For 
the blue nodes on the left (which are children of nodes on the 
longest path), two of them are distance 9 and one distance 10 
from the initial node on the longest path. They get assigned 
as equal to the nodes on the longest path at distance 9 and 10 
respectively. 

III. EXPERIMENTS 

For our empirical study, we applied our methodology to two 
very different security domains. We discuss frst our evaluation 
of the FIRST CVSS and then our evaluation of the NIST PF. 
In both cases we demonstrated the ability of our methodology 
to leverage human expert opinion to generate both a scoring 
system (in the case of the CVSS) and a prioritization system 
(in the case of the PF). 

We note that the purpose of this empirical study is to show 
how one can generate a scoring and prioritization system; 
the results are not intended to provide actual authoritative 
scoring and prioritization systems. Because of this, we did 
not formally defne the necessary qualifcations for the set of 

Fig. 4. CVSS Analysis Visualization 

‘human experts’ for each security domain nor in all cases did 
we use actual human experts. Any real-world usage of this 
approach will need to both provide a rigorous defnition and 
then ensure that all humans in the study comply with that 
defnition. 

A. Common Vulnerability Scoring System 

The CVSS ‘provides a way to capture the principal char-
acteristics of a vulnerability and produce a numerical score 
refecting its severity’ [13]. It is maintained by the FIRST, a 
global forum for incident response teams. The specifcation 
for CVSS version 3.1 is available at [1]. It defnes 2496 
vectors that can be used to describe vulnerabilities. Each vector 
consists of 8 metrics, each with from 2 to 4 possible metric 
values. 

Our user interface represents the CVSS vectors as shown in 
Figure 4. In this example, there are two vectors being presented 
for comparison by the human expert; the red vector is the new 
vector being inserted into the existing constraint graph and the 
blue vector is the current vector being compared against for 
the binary insertion sort. The red boxes represent metric values 
for the red vector; the blue boxes represent metric values for 
the blue vector; and the purple boxes represent metric values 
that apply to both the red and blue vector. The buttons at the 
bottom enable the expert to input the relationship between the 
red and blue vectors (much less than, less than, equal, greater 
than, or much greater than). 



The author performed the analysis along with two volunteer 
researchers; while qualifed scientists in the area of computer 
security, none of these 3 are experienced vulnerability analysts 
(although we continue to refer to them as ‘human experts’ for 
consistency of terminology). Because of this, our empirical 
results will be used only to demonstrate the effcacy of 
the scoring generation system. The results provided are not 
intended to be compared against the CVSS scoring system or 
to suggest new scores. 

Our team analyzed the top 65 frequently occurring CVSS 
version 3 vectors published within the National Vulnerability 
Database (NVD) [16] as of 2020/07/08. This set of 65 vectors 
represented 90.03 % of the published CVE vulnerabilities. 
Each expert performed the analysis 3 times (taking a mean 
of 1.4 hours to complete each session). 

Our goal in performing three sessions per expert was to 
determine 1) if the expert would provide consistent data and 2) 
if the system would produce consistent constraint graphs while 
presenting the expert different sets of comparisons1. We then 
used the data from all three experts to be able to compare the 
produced graphs and to have a dataset upon which to execute 
the voting algorithm to output a unifed graph. 

We analyzed each pair of graphs and calculated the number 
of inconsistent relationships (i.e., when they disagreed for a 
particular pair of vectors). With 65 vectors there were 2080 
possible relationships ((652 − 65)/2) = 2080). For pairs of 
graphs from the same expert, the mean number of inconsistent 
relationships was 440 (10.58 %). This number reduced to 224 
(5.37 %) looking just at cases where the relationships point 
in opposing directions (i.e., one is less than and the other 
greater than). For pairs of graphs from different experts, the 
mean number of inconsistent relationships was 622 (14.96 
%). For opposing directions, it is 389 (9.34 %). As expected, 
experts are more consistent with themselves than with other 
experts. However, even among different experts there was 
general agreement on the relationships defned. 

We analyzed each pair of graphs and compared the produced 
CVSS vector orderings. Due to its construction, the equiva-
lency sets in each constraint graph are guaranteed to be totally 
ordered. However, each graph has in general different nodes 
in each equivalency set. This creates a challenge in compar-
ing outputted CVSS vector orderings, because the published 
algorithms for measuring differences in orderings require that 
both sets to be compared have exactly the same elements. 
We address this problem by converting the total ordering of 
equivalency sets from each graph into a total ordering of nodes 
(i.e., CVSS vectors). This entails fxing the ordering of vectors 
within each equivalency set (which doesn’t cause problems, 
because they were all defned to be equal). We perform the 
arrangement of equivalent vectors to minimize the distances 
between the graphs. This is done by fxing the ordering of 
vectors within each equivalency set to match, as closely as 
possible, the total ordering of equivalency sets provided by 

1A comparison of the question sets asked between two runs with this dataset 
revealed only a 10 % overlap of questions. 

Fig. 5. Unifed CVSS Graph of 3 Constraint Graphs from 1 Expert Showing 
Non-Total Ordering of Equivalency Sets 

the graph to be compared. For ordering comparisons, we use 
the Spearman algorithm [17]. This algorithm calculates the 
number of adjacent elements that would need to be swapped on 
an input ordered list in order to match a target list. For pairs of 
graphs from the same expert, the mean distance was 496. For 
pairs of graphs from different experts, the mean distance was 
614. To provide context for these numbers, randomized lists of 
the same size produce a mean distance of 1432. These results 
show our approach is producing vector orderings between 
graphs that are much more consistent than random. 

We imported each of the 3 generated graphs from the 3 
experts (9 graphs total) into our constraint graph unifcation 
tool. These graphs had from 161 to 212 edges with a mean of 
186; however when optimizing to reduce redundant edges, the 
range reduce to 107 from 178 edges with a mean of 138 (note 
that a redundant edge indicates an input from the expert that 
ultimately wasn’t useful). They all had 65 nodes to represent 
the 65 CVSS vectors. 

We then used our voting algorithm to unify the nine graphs 
into a single constraint graph. The 2080 pairs of vectors 
were compared and inputted into the voting scheme. As the 
voting scheme ran, it encountered 121 disputed relationships 
(where the voting was tied) and 219 contradictions (where 
a candidate with a lesser priority relationship violated the 
constraints already added to the graph by a higher priority 
relationship). These types of expected events are discussed in 
detail in Section II-B. The unifed graph is shown in Figure 
1. This fnal graph has 65 nodes and 68 edges. 

While not guaranteed by the algorithm, it is interesting that 
the resulting constraint graph in Figure 1 maintained the total 
ordering of the equivalency sets. This can be observed visually, 
because all nodes are either on a longest path or are children 
of a node on the longest path (using an edge type that marks 
them as equal to their parent). 

We also used our voting algorithm independently on each set 
of 3 graphs from each expert. An example is shown in fgure 5. 



Two of the three experts’ unifed graphs did not totally order 
the equivalency sets. This can be observed visually because 
there exists no longest path covering all equivalency sets. 

Lastly, we used our scoring generation algorithm to use the 
unifed constraint graph to produce a rational scoring set (out 
of many valid solutions). Our input parameters specifed a 
minimum 0.5 score difference for ‘greater than’ relationships 
(the green arrows in fgure 1) and 1.5 for ‘much greater 
than’ (the black arrows in fgure 1). These values were 
chosen somewhat arbitrarily, as many values produce rational 
solutions; they were chosen from the possible values shown 
in Figure 2. 

Decreasing the minimum distances enables more fexibil-
ity in adjusting the fnal scores; increasing them too much 
prohibits being able to produce a valid solution. The scores 
generated for the 13 equivalency sets are as follows: 0.6, 1.4, 
2.3, 3.0, 3.7, 4.9, 5.6, 6.3, 7.0, 7.7, 8.6, 9.3, and 10.0. Note 
that the CVSS specifcation [1] requires scores to be between 
0 and 10 with one decimal place (101 possible scores). 

This output is shown visually in Figure 3. The size of 
each node represents the number of CVSS vectors within that 
equivalency set. The lower red nodes represent a minimum 
boundary (the lowest possible scores that could be generated) 
while the top blue nodes represent the maximum boundary. 
The green nodes represent the scores chosen by our algorithm. 
The equivalency sets are ordered in increasing signifcance; 
this left to right order matches the black nodes in fgure 1 
also reading from left to right. Note the unusually large jump 
between equivalency sets 1 and 2 and then also between 4 
and 5. These jumps represent the infuence of the leftmost 2 
black ‘much greater than’ arrows in fgure 1. The other 3 black 
arrows do not affect the scoring, because they span a sequence 
of ‘greater than’ green arrows that collectively require a greater 
separation than the black arrow. 

B. Privacy Framework 

The NIST PF is a tool ‘to help organizations identify and 
manage privacy risk to build innovative products and services 
while protecting individuals’ privacy’ [18] [14]. It contains a 
hierarchy of controls at three levels of abstraction: functions, 
categories, and sub-categories. Our focus was to prioritize the 
100 sub-categories for a particular privacy scenario. In doing 
this, we chose to limit human operators to inputting just <, 
=, and > (two fewer options than with CVSS). 

Our volunteer privacy expert is a privacy professional. He 
constructed a scenario upon which to base his evaluation of 
the 100 privacy controls. The scenario was constructed to 
be specifc enough to enable an evaluation of the controls 
but abstract enough to be useful to as broad a community 
as possible. The chosen scenario was the deployment of 
a COVID-19 digital exposure notifcation system within a 
company. When evaluating the controls, the expert assumed 
that no privacy controls had yet been implemented and thus 
was working to prioritize the 100 controls for implementation. 
Note that we did not use a scenario for CVSS, because CVSS 
inherently has its own scenario where it considers the impact 

of each vulnerability on the world at large. The console used 
by the expert to evaluate the 100 privacy controls is shown in 
Figure 6. 

The expert analyzed the privacy sub-categories two times 
(taking a mean of 1.0 hour per session). The two graphs 
initially had a mean of 246 edges, but optimizations to remove 
redundant edges reduced that to a mean of 157 edges. There 
were 100 nodes to represent the 100 controls. The unifed 
graph generated from the two input graphs is shown in Figure 
7. As with Figure 5, it does not totally order the equivalency 
sets (as shown by the four blue nodes above the longest path). 
This only partial ordering may be due to us using our voting 
algorithm with just 2 input graphs; it is hard to use voting to 
break a tie with just 2 sets of votes. 

Our goal with this experiment is to produce a prioritization 
list of privacy framework controls for implementation with the 
stated scenario. Thus, we did not generate scores. Instead, we 
used the unifed constraint graph to generate equivalency sets 
of decreasing priority. As discussed previously, whenever a 
node is partially ordered (the ones in blue that are not on the 
longest path), we use the imperfect heuristic of including it 
in the set on the longest path equidistant from its parent or 
child. This yields 11 equivalency sets of privacy controls with 
decreasing priorities with the following set sizes: [14, 15+1, 
2, 9, 5, 10, 20, 10, 8, 2+2, 1+1]. Note that the ’+x’ entries 
show our heuristic imperfectly adding the 4 partially ordered 
blue nodes to the totally ordered equivalency sets in order to 
be able to present a simple prioritization to the users. Had 
we access to our privacy expert to perform a 3rd analysis, 
we believe it likely that the output would be totally ordered, 
eliminating the need to use our imperfect heuristic. 

The privacy expert spent 1 hour per analysis session (2 
sessions in total) in generating the prioritization using our tool. 
Ideally we would have access to other experts, had them do 
this by hand, calculated the time, and analyzed the differences. 
Unfortunately, we do not have this data. What we can say 
is that the tool makes it easy for the human to perform the 
task (they just compare controls). More importantly though, 
it enables groups of human experts to work together on a 
prioritization (or scoring system) without having to coordinate 
and/or negotiate their analysis. 

IV. LIMITATIONS 

Our scoring approach is domain agnostic and thus has wide 
applicability; however, the domain to be analyzed must be 
small enough that a human can analyze the vectors (i.e., 
perform nlogn comparisons for the binary insertion sort). This 
effectively means that the inputs to the system must be nominal 
or ordinal measurements with a constrained set of possibilities. 
If the measurement is at the interval or ratio level, then it 
may be necessary to abstract and group ranges of values into 
categories related at the ordinal level of measurement. 

The NIST privacy framework contains only 100 controls 
(more precisely sub-categories), which makes this tractable. In 
the future, we’d like to analyze the NIST CSF sub-categories; 
there are only 98. For CVSS, each input vector contains a 



Fig. 6. Privacy Framework Analysis Console 

Fig. 7. Unifed Privacy Framework from 3 Constraint Graphs from 1 Expert 

group of eight ordinal metrics that each have less than fve 
possible values. This produces 2496 vectors, but we did not 
need to analyze all of them because the frequency distribution 
follows a power law type curve. Just 66 CVSS vectors covered 
90 % of the publicly published vulnerabilities in the NVD (as 
of 2021/01/08). 126 vectors covers 95 %; 320 covers 99 %. 

V. RELATED AND FUTURE WORK 

We have been applying this approach to CVSS using human 
experts from the FIRST CVSS Special Interest Group (SIG). 
The SIG maintains the CVSS industry standard; we have two 
collaborative projects with them. The frst is to calculate how 
much the CVSS v3.1 scoring system deviates from the closest 
rational scoring system generated from our approach using 
CVSS SIG experts. This work will be published late 2022 as 
NISTIR 8409 [19]. The second collaborative project is to use 
our approach to assist the CVSS SIG in creating the scoring 
system for the upcoming CVSS version 4.0. 

We also plan to investigate how one can map not yet 
analyzed security elements to a group of analyzed and scored 
elements. For example, there are several thousand CVSS 
vectors that our experts did not analyze; this was not a 
signifcant problem, because these vectors occur at extremely 
low frequencies (or not at all). However, we believe that 
through machine learning clustering techniques we can map 
the not yet analyzed vectors to the scored vectors with some 
measurable degree of accuracy. 
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VII. CONCLUSION 

In this work we have developed and demonstrated a new 
domain-agnostic technique for generating scoring systems. 
We have shown how human knowledge can be queried and 
encoded by asking an expert to iteratively compare pairs of 
elements from a particular domain. For the encoding, we 
modify the textbook binary insertion sort algorithm by 

• using a human brain as the central processing unit (CPU) 
to power the algorithm, 

• allow for equality and the recording of distance con-
straints, 

• and adding initial comparison node randomization to 
more evenly spread the edges through the resultant 
knowledge graph. 

The result is a directed acyclic graph that contains a 
unique longest path that totally orders the equivalency sets. 
Our constraint graph unifcation tool then combines multiple 
of these graphs and uses a voting algorithm to generate 
a unifed constraint graph. Finally, our scoring generation 
and prioritization tool generates human customizable scoring 



systems consistent with the inputted constraint graph as well 
as prioritizations. 

We applied this domain-agnostic approach to the security 
domain and performed experiments using the CVSS, the PF, 
and (to a much lesser extent) the CSF. 

In this work, we have demonstrated the usability and 
functionality of this approach. What we did not accomplish 
was to 1) prove the accuracy of the generated scoring systems 
/ prioritizations and 2) perform a rigorous statistical study on 
the consistency and/or differences between multiple encoding 
of both a single expert and a group of experts. 

The former is unfortunately not generally possible, as no 
ground truth exists. We rest our defense of the approach in 
postulating that an expert will be able to accurately compare 
the relative signifcance of two elements. Empirically, we did 
fnd modest differences in the comparison results produced by 
the same expert when analyzing the same data multiple times. 
To reduce such errors, we suggest that each expert analyze 
each dataset three times. 

The latter issue was not addressed in this work because, 
for the CVSS, the author did not have access to true domain 
experts and, for the PF, did not have enough domain experts 
(as well as the time of the single expert available) to perform 
any rigorous statistical studies. 

Lastly, we note another major limitation of this work. This 
work only applies to knowledge domains that are small enough 
that a human can analyze the vectors. Mostly likely, the inputs 
need to be nominal or ordinal measurements with a constrained 
set of possibilities. To help mitigate this limitation, future 
work will explore combining this approach with machine 
learning where humans analyze the most prevalent elements 
and generate a scoring system for that subset; then machine 
learning approaches map the less frequent elements into the 
generated equivalency sets thereby enabling the scoring of all 
elements. 
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