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Abstract— Smart manufacturing (SM) systems utilize run-time
data to improve productivity via intelligent decision-making and
analysis mechanisms on both machine and system levels. The
increased adoption of cyber-physical systems in SM leads to the
comprehensive framework of cyber-physical manufacturing sys-
tems (CPMS) where data-enabled decision-making mechanisms
are coupled with cyber-physical resources on the plant floor.
Due to their cyber-physical nature, CPMS are susceptible to
cyber-attacks that may cause harm to the manufacturing system,
products, or even the human workers involved in this context.
Therefore, detecting cyber-attacks efficiently and timely is a
crucial step toward implementing and securing high-performance
CPMS in practice. This paper addresses two key challenges to
CPMS cyber-attack detection. The first challenge is distinguish-
ing expected anomalies in the system from cyber-attacks. The
second challenge is the identification of cyber-attacks during
the transient response of CPMS due to closed-loop controllers.
Digital twin (DT) technology emerges as a promising solution
for providing additional insights into the physical process (twin)
by leveraging run-time data, models, and analytics. In this work,
we propose a DT framework for detecting cyber-attacks in CPMS
during controlled transient behavior as well as expected anoma-
lies of the physical process. We present a DT framework and
provide details on structuring the architecture to support cyber-
attack detection. Additionally, we present an experimental case
study on off-the-shelf 3D printers to detect cyber-attacks utilizing
the proposed DT framework to illustrate the effectiveness of our
proposed approach.

Note to Practitioners—This work is motivated by developing a
general-purpose and extensible digital twin-enabled cyber-attack
detection framework for manufacturing systems. Existing works
in the field consider specialized attack scenarios and models
that may not be extensible in practical manufacturing scenarios.
We utilize digital twin (DT) technology as a key enabler to develop
a systematic and extensible framework where we identify the
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abnormality of a resource and detect if the abnormality is due
to an attack or an expected anomaly. We provide several remarks
on how our proposed framework can extend existing industrial
control systems (ICS) and can accommodate further extensions.
The presented DTs utilize data-driven machine learning models,
physics-based models, and subject matter expert knowledge to
perform detection and differentiation tasks in the context of
expected anomalies and model-based controllers that control the
manufacturing process between multiple setpoints. We utilize
a model predictive controller on an off-the-shelf 3D printer to
run the process, and stage anomalies and cyber-attacks that are
successfully detected by the proposed framework.

Index Terms— Anomaly detection, control systems, cyberat-
tack, cyber-physical systems, data analysis, digital twins, fault
detection, intelligent automation, manufacturing automation,
model checking, security.

I. INTRODUCTION

SMART manufacturing (SM) is an increasingly important
paradigm that promotes the use of run-time and historical

data collected via onboard and additional Internet of Things
(IoT) sensing in the manufacturing system to derive decisions
for the plant floor [1], [2], [3], [4]. Plant floor decisions include
production scheduling and dispatch, predictive maintenance,
anomaly detection, and process control. The decisions are
implemented, often in run-time, on the resources in the manu-
facturing system to minimize disruptions, by integrating cyber
and physical systems in modern manufacturing resources,
allowing them to be reconfigurable and robust in response
to disturbances. This framework of data-enabled decision-
making coupled with cyber-physical manufacturing resources
is commonly referred to in the industry as Cyber-Physical
Manufacturing Systems (CPMS) [5], [6].

As CPMS become more complex, supporting decision-
making processes becomes increasingly challenging.
Additionally, decision-making logic designed for the
nominal conditions of a CPMS may underperform or
fail to detect certain abnormalities in the system due to
complex interdependencies between multiple resources in a
manufacturing process [7], [8]. Another important implication
of the cyber-physical nature of CPMS is its vulnerability
to cyber-attacks. As cyber components are linked to their
physical counterparts, attacks that are initiated in the cyber
domain may cause harm and damage to the physical
manufacturing resource, product, or even the human workers
that are interacting with the CPMS [9]. However, detecting
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cyber-attacks through traditional IT-based attack detection
technology deployed on or in operational technology (OT)
devices and environments can sometimes adversely impact OT
performance or safety. Therefore, new and effective methods
to monitor CPMS and detect cyber-attacks are required.

Detecting cyber-attacks on CPMS is not a trivial task for
several reasons. Systems routinely undergo faults and expected
abnormalities, namely, physical degradation, anomalies. These
anomalies may be hard to distinguish from a carefully targeted
cyber-attack (e.g., one with malicious intent) as these attacks
often mimic the expected anomalous behavior to deceive the
decision-making logic. Furthermore, cyber-attacks may origi-
nate from non-malicious intent (e.g., mis-calibration, version
mismatch, malfunction, etc.), which also causes difficulties in
distinguishing them from anomalies. Additionally, run-time
process controllers can be updated with new firmware and
undo changes to setpoints and resource control inputs, making
cyber-attack detection even more challenging.

To address the issue of monitoring CPMS, digital twin (DT)
technology has emerged as a fundamental tool for twinning
physical resources to provide additional analysis capabilities
and delivering insights on the run-time system in addition
to the as-designed conditions. The potential and flexibility
of DT technology has generated significant research interest
from academia and industry on applying DTs for supporting
SM in practice, hailing DTs as the cornerstone technology
for realizing SM [2], [10], [11], [12], [13]. Building on the
adoption of DT for supporting SM, the main contribution of
this work is to propose a DT-based method to address the
challenge of cyber-attack detection for CPMS.

Specifically, in the context of this work, a DT is a software
replica of a physical counterpart (i.e., the physical twin),
system, process, or product, and has a purpose of impacting
an aspect of the physical twin and its environment in a
positive way through utilizing models, data analytics, and
subject matter expertise (SME) [2], [14]. A DT implemen-
tation consists of one or more compute resources as required
to meet scalability, modularity, and maintainability require-
ments. Use of a single DT (i.e., one compute resource) for
complex CPMS has been proposed [5], [12], [15]. However,
scalability, modularity, and maintainability of such solutions
often becomes a challenge in practice. More recently, a frame-
work of multiple DTs that utilize structured abstractions to
improve scalability, flexibility, maintainability, and modularity
of DT-based solutions has been proposed [2], [14], [16], which
is the DT architecture adopted in this work. The DT framework
presented here utilizes multiple compute resources to distribute
different data collection and analysis tasks supporting the
anomaly and cyber-attack detection processes in a flexible,
modular, and reconfigurable fashion. Therefore, we focus on
a framework-based method that differs from the single DT
approaches, discuss the benefits of our design choice through-
out the paper, and highlight how this approach encapsulates
many others in various ways. As DTs themselves are software
entities, they may also bring along the additional burden of
vulnerabilities that could compromise the physical components
through cyber-attacks. In this work, we focus on utilizing DTs

to support cyber-attack detection rather than considering the
cyber-security of the proposed DTs themselves.

Traditional enterprise cybersecurity control implementations
are not always possible or feasible within Industrial Control
Systems (ICS) network environments and improper imple-
mentations can have unintended consequences [17]. Typically,
passive monitoring capabilities for supporting threat detection
within ICS network environments are implemented as risk
management strategies within these networks. However, coun-
tering the growing threats facing ICS environments requires
both passive and active monitoring [17]. These capabilities
applied at the lowest levels could be utilized to detect signs
of anomalous behavior resulting from cybersecurity threats.

The existing literature has focused on cyber-attack detection
and mitigation for CPS by leveraging cross-domain knowl-
edge [18], [19], [20], [21]. Furthermore, side-channel infor-
mation and data-driven models have been often utilized to
detect certain types of cyber-attacks [22], [23], [24], [25],
[26]. In many of these proposed methods, a training data
set is utilized to generate an underlying process signature,
which is then compared against the run-time measurements to
detect cyber-attacks. While highly effective methodologies for
cyber-attack detection are presented, they are often customized
for a specific system or operation and thus do not provide ways
to extend the proposed frameworks to be adapted for a variety
of CPMS in a modular flexible way.

Most of the existing literature demonstrates a specific
method and implementation scenario. For a holistic cyber-
security approach, an extensible and modular framework
where various components can be extended and modified is
needed. See [27] for a survey of cybersecurity approaches
in CPMS, where the importance and need of a framework
for the security of the system components and the control
architecture is highlighted along with examples from the
literature. To this end, a digital twin-based framework, such
as the one proposed in this work, enables a unifying approach
where solutions from the literature may be efficiently imple-
mented. Additionally, utilizing our framework, solutions from
the literature may be extended with novel capabilities such
as distinguishing cyber-attacks from expected anomalies and
performing transient analysis for controlled processes between
varying setpoints, which have not been considered in the
existing literature.

Many of the aforementioned methods on CPS and CPMS
cybersecurity from the literature are often referred to as
physics-based attack detection methods (see [28] for a detailed
survey). We note that many of the methods we employ for
attack detection in our proposed work utilize physics-based
attack detection methods in their core. Therefore, we consider
physics-based attack detection methods as complementary to
our work and note that the proposed framework in this paper
enables the implementation of such methods with further
extensions. Most notably, the majority of the existing literature
considers the cyber-attack detection problem for a CPMS
with no anomalies, which is often unrealistic in practical
scenarios. Additionally, most existing methods in the literature
rely on threshold-checking on the residual signals, which may
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underperform for controlled processes with setpoint changes
during transients. We propose novel approaches to overcome
these challenges in our proposed framework and methods.

Recent work provides a methodology to detect and differ-
entiate specific types of cyber-attacks from equipment fail-
ure [29]. The method in [29] utilizes specific models and
assumptions, which may be difficult to extend and scale for a
general CPMS with various types of attacks. Therefore, there
exists an opportunity to address the aforementioned short-
comings and support both manufacturing and cybersecurity
automation enhancements by leveraging common technologi-
cal enablers such as DT and the Industrial Internet of Things
(IIoT). DT and IIoT could be tools that afford us with an
opportunity to address cybersecurity issues from a generic and
reusable perspective.

Previous research, such as [30], demonstrates techniques
to utilize Industry 4.0 technologies and methodologies such
as IIoT, Industrial Internet of Services (IIoS), and DTs to
create smart factories and establish “Knowledge as a Service”
manufacturing processes to monitor product or service quality.
Our research builds on the previous literature and investigates
utilizing cybersecurity DT technology to monitor devices and
processes for abnormal conditions that could be indicators
of cybersecurity events in the context of run-time controller
inputs and anomalies. These cybersecurity DTs could be
implemented to support a passive/active hybrid approach to
protect the ICS environment from advanced device-level risks.

Our method is capable of working with existing architec-
tures for anomaly detection in industrial systems and enables
scalability to multiple resources in a CPMS thanks to its DT-
centric design. The contributions of this work are:

• An extensible DT-based solution framework for
cyber-attack detection in cyber-physical manufacturing
systems, capable of integrating with existing solutions in
practice.

• A methodology to distinguish cyber-attacks from
expected anomalies for a controlled cyber-physical sys-
tem.

• A novel experimental demonstration of the proposed
DT-based method on an off-the-shelf 3D printer to
demonstrate the effectiveness, flexibility, and scalability
of the proposed approach.

The rest of the paper is organized as follows. Section II
provides preliminary definitions of concepts used in this
work and provides the formal problem definition. Section III
provides the framework architectures for the CPMS with all
of the proposed DTs for cyber-attack detection. Section IV
presents the proposed DT-based cybersecurity approach and
Section V demonstrates the experimental implementation and
results. Additionally, we provide remarks on how solutions
from the literature can be implemented by utilizing our
proposed framework, which provides a guideline for design
and implementation. Concluding remarks and future research
directions are presented in Section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section, we first present definitions and background
knowledge that will be useful in further discussions. Then,

Fig. 1. Illustration of the subspaces for observable abnormalities, anomalies,
faults, and attacks considered in this work. The scope of this paper is outlined
with orange borders in the figure. AD: Anomaly detection.

we formally state our problem in the context of the introduced
formal concepts.

A. Classification of Abnormality Types

To address the challenge of cyber-attack detection for a
CPMS, we first present a classification of anomalies, attacks,
and faults in the context of the present work. Figure 1 presents
various types of attacks and anomalies for a CPMS resource.
Each item in Fig. 1 that is inside the box (output measurable
effect on the system) is an event that results in an effect on
the physical process that is categorized as the corresponding
set (e.g., a failed sensor event results in a fault that is a
subset of anomalies and output measurable abnormalities).
The representation in Fig. 1 is inspired by [7], where types
of anomalies and faults for smart manufacturing systems and
their detection mechanisms are discussed in detail.

Definition 1 (Anomaly [7]): An occurrence that is different
from what is standard, normal, or expected.

Definition 2 (Fault [7]): An anomaly that is related to an
unwanted situation and may be associated with failure, mal-
function, or quality degradation.

Thus, an anomaly (fault) detection (A(F)D) mechanism
detects the result or onset of an anomaly (failure) event. Some
events such as network delays and controller errors may result
either in failures that would be classified as faults, or only
anomalous behavior that does not necessarily result in failure.

Definition 3 (Cyber-attack [31]): The realization of some
specific threat that impacts the confidentiality, integrity,
accountability, or availability of a computational resource.

The “normal” behavior of the system is defined by the
nominal operation of the system without any anomalies or
cyber-attacks and we use the term abnormal for all other
system behavior. Thus, we say that a system is abnormal if
its output measurements are not consistent (evaluated by a
classifier) with the measurements from the nominal operation
without any anomalies or cyber-attacks. Additionally, we say
an input has an output measurable effect on the system if
given sufficient measurements of the output, it is possible
to determine the effect of a (possibly exogenous) input on
the output, which could be immediate or at a later time. For
the rest of the paper, we simply use the term attack when
referring to a cyber-attack to lighten the terminology, unless
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specified otherwise. The term cyber-attack is also used in
certain discussions to emphasize the context.

B. Problem Statement

The set of attacks depicted in Fig. 1 has three distinct
sub-spaces; attacks that are not output measurable (e.g., side-
channel attacks), attacks that are output measurable but do
not necessarily cause anomalies, and attacks that are output
measurable and cause anomalies. Within the scope of this
work, we are focusing on attacks that have output measurable
effects on the system. Thus, the goal of our proposed DT
is to detect the aforementioned output measurable attacks.
Further discussions on the attack intent and attack types that
are not output measurable are beyond the scope of this work.
We note that, for example, the large literature of physics-based
attack detection methods [28] and related works fall under
this category. Since anomalies are not necessarily caused by
attacks, an effective methodology should be able to distinguish
anomalies caused by attacks from the inherent anomalies that
we expect to see in the system, which we term as expected
anomalies in further discussions.

Remark 1: Within the context of cyber-attacks on CPMS,
we do not necessarily require malicious intent. For example,
we consider a miscalibrated sensor as a non-malicious attack.

Additionally, we note that the physical system is a controlled
CPMS resource, thus the operational characteristics of the
system may be modified by a controller. This results in
transient behavior and multiple setpoint references that must
be analyzed in run-time to mitigate false-positives in attack
detection. Furthermore, due to our assumption on the presence
of anomalies in the system, expected anomalies and attacks
may be inseparable in the output as they may result in similar
output effects.

Remark 2: We note that our work differs from the past
literature as we do not rely on a specific system model
or analysis tool to provide our results. Instead, we present
a general-purpose DT framework where data-driven and
physics-based information about the CPMS may be utilized
efficiently to detect cyber-attacks in an extensible and system-
atic manner.

We formally state our problem as “How do we develop
an effective methodology to identify attacks with output mea-
surable effects in the presence of anomalies in a controlled
CPMS?” In this work, we propose a DT-based method to
address this problem and present case studies to illustrate our
proposed method.

III. PROPOSED DT-BASED METHODOLOGY

In this section, we present the proposed methodology to
utilize DTs for attack detection in the context of anomalies
and controllers in the system. We start by introducing the
framework architecture with some of the existing DTs that may
already be in place. We discuss how related methodologies
from the literature can be implemented by the proposed DTs
in our architecture.

Fig. 2. The framework architecture including all the DTs and physical
components. The architecture provides a basis for further extensions based on
the needs on a certain physical process. The decision-maker in the architecture
may be autonomous or purely advisory depending on the application domain.
The color green indicates the DTs in the framework.

A. Framework Architecture
Figure 2 illustrates the architecture of the controlled CPS

framework with the proposed DTs considered in this work.
To avoid confusion of terminology, we use the term process
instead of system in this section (e.g., a physical system is
a physical process). The physical process on the top block
is the manufacturing process we control and analyze utiliz-
ing the proposed framework. The physical process may be
discrete or continuous depending on the application domain.
The execution of discrete manufacturing processes is often
considered in terms of runs where a single unit (or batch) is
manufactured. We consider the data collected during the run
as in-situ and the data collected after a run is completed as
ex-situ (e.g., for post-process quality control). The framework
architecture presented in Fig. 2 is largely based on augmenting
existing feature-based anomaly and fault detection systems in
the literature (e.g., [16], [19], [32], [33], [34]).

Remark 3: It is important to note that the abstraction of
what constitutes a DT is a design decision. We adopt the
DT framework methodology instead of considering a single
DT entity, e.g. [15]. However, there is no loss of generality
since the proposed DTs in this work may be encapsulated by
a single DT. As previously discussed, we utilize the framework
approach, following [14], [34], [35] to improve flexibility,
interoperability, and maintainability of the proposed method.
Therefore our approach is complementary to recent standards,
such as [15], and proposes a new DT-based approach for the
cyber-attack detection problem, without loss of generality in
the context of the existing works.

In the rest of this section we provide details of the blocks
in Fig. 2 and present definitions, purpose, assumptions, inputs,
outputs, and possible extensions for the proposed DTs.

1) Physical Process: We assume that the physical process
(referred to as process for the rest of the paper) is a manu-
facturing process that has sensors in place to collect in- and
ex-situ data and the measurements are available to the DTs in
the framework for data analysis purposes in run-time as well
as in the form of historical data through a database. A discrete-
time representation of the process is then given in a general
form as

x(t + 1) = f (x(t), u(t),w(t)) (1a)
y(t) = g(x(t), v(t)), (1b)
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where x(t) denotes the process states, u(t) is the process
input, y(t) is the measurement, w(t) and v(t) are process
and measurement noise respectively, t is the discrete-time
index, and f and g are the process and measurement models,
respectively. The time index t represents either the in-situ time
index or the run-to-run (R2R) index based on the applications
of interest. We can augment the notation of (1) to include both
time indices if needed (e.g., x j (t) where j is the R2R index
and t is the in-situ time index). Note that y(t) may represent
an in- or ex-situ measurement in this context and it is referred
to as the process output when the interpretation is clear from
the context.

An SME monitors the process through the DTs in the
framework as illustrated in Fig. 2, and implements reconfigu-
rations or changes to the process through a decision-maker.
We assume that a decision-maker exists in the framework
without loss of generality. The decision-maker provides set-
point references r(t) for the process to track (in the sense that
||r(t)− y(t)|| is as small as possible in a suitable norm).

While we assume that the process has the form in (1) for
our further discussions and developments, systems of various
forms and dynamics can be considered here (e.g., discrete
event systems). Additionally, the process itself can be modeled
as a separate DT to perform simulation-based analysis on the
process.

2) Controller DT: The Controller DT houses the run-time
controller with the control logic, as well as observers, process
models, and simulation tools. The Controller DT employs var-
ious control methods and logic (e.g., feedback, feedforward,
rule-based, hybrid, etc.) to regulate the process measurements
y(t) toward the reference setpoints r(t) provided by the
decision-maker. To perform state-based control, the Controller
DT may incorporate various types of filters and estimators to
estimate the current and future states of the process by using
the measurements and information such as historical data,
or model adaptation information provided by other DTs in the
framework (e.g., models of the noises v(t) and w(t)). Control
inputs u(t) ∈ U are implemented on the process, where U
denotes an input constraint set. In practical implementations,
there may be additional safety control loops that bypass the
control input implementation (e.g., emergency stop switch for
a robotic manipulator).

• The inputs are the reference setpoints r(t) from the
decision-maker, and run-time data (sensor measurements
including but not limited to y(t)) from the process.

• The outputs are the control input u(t) to be implemented
on the process, states of the process (estimated via
observers), process indicators, and model states consid-
ered by the control logic, and measurement signal y(t).

The Controller DT may utilize information from other
DTs, e.g., to simulate system dynamics for what-if analyses
of the physical process [34] or estimate remaining useful
life to detect anomalies and optimize end-of-life control
strategies [16].

3) Feature DT: The Feature DT provides uniform data
streams to the DTs in the framework to improve the interoper-
ability of the framework. Existing run-time anomaly detection

methods often rely on residual analysis to provide threshold-
based decisions [7], [32]. We assume that an SME defines the
desired residual signals with specific features, and implements
them as part of the Feature DT so that the residual information
is shared with other DTs for further data analysis.

Another important task of the Feature DT is to evalu-
ate key process indicators (KPIs) for the process. Various
types of KPIs include health indicators, performance indi-
cators, and efficiency indicators [34], [36]. Similarly, the
Feature DT may be tasked to pre-process or partition large
scale or high sampling-rate measurement data for another
DT that performs statistical learning on the measurement
data.

• The inputs are the data streams from the decision-maker,
process, and the Controller DT. There inputs are aggre-
gated, and pre-processed by the Feature DT.

• The outputs are the processed data streams with the SME
designed data features, residuals, and an indication of
output quality whenever applicable.

In many practical applications, the physical process and its
Controller DT are on a different interface and platform than
the data analytics platform. In such cases, the Feature DT is
tasked with implementing the appropriate interfaces for data
communication and storage to a local database. While the
Feature DT is implemented in the framework based on the
specific needs of other components and DTs, we also leverage
existing Feature DTs, if available.

4) FD/AD DT: The FD/AD DT performs fault and anomaly
detection on run-time data streams. Preliminary detection
capabilities are included in most CPS for reliable run-time
performance. Such detection mechanisms are considered as
part of the FD/AD DT here. The FD/AD DT is usually
built to perform threshold-based limit-checking on the phys-
ical process. The FD/AD DT may include safety monitoring
and performance monitoring systems to detect anomalies and
faults. A review of various model-based anomaly detection
methods for control systems is given in [32] and more specific
anomaly types for smart manufacturing systems with possible
detection methods are discussed in [7].

• The FD/AD DT takes inputs from the Feature DT to per-
form its analysis. Historical data provided by a database
may also be utilized for analysis. Additionally, the attack
detection predictions of the Cybersecurity DT may be
utilized to refine threshold parameters in the FD/AD DT.

• The FD/AD DT provides its outputs for the detection of
an anomaly with an indication of prediction quality (i.e.,
confidence in detection) to the decision-maker and the
operator in the system. We further utilize the outputs of
the FD/AD DT to implement our Cybersecurity DT. The
FD/AD DT may also share the corresponding data traces
for the predicted faults and anomalies.

While we assume a threshold-based limit checking method for
the FD/AD DT here, additional methods that adapt and learn
anomalous or fault behavior of the process over time may be
implemented as extensions.

5) The Cybersecurity DT: The Cybersecurity DT provides
predictions about attacks on the system in the context of
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anomalies and transient response of the controlled process.
We assume that the Cybersecurity DT is designed by an SME
knowledgeable on the cybersecurity of the process and we
focus on attacks with output measurable effects as stated
earlier. In the absence of such prior knowledge, historical
data may be used to understand the normal system behavior
initially. In this context, abnormalities can be recorded during
operation and labeled as normal, anomalous, or attack data by
an SME. If an SME or enough historical data is not available
to initialize the framework, the proposed approaches may not
be applicable. The Cybersecurity DT is a novel contribution of
this work to distinguish cyber-attacks from expected anomalies
for a controlled process, and we provide a detailed analysis of
the Cybersecurity DT in later sections.

• The output data streams and FD/AD indications of the
Feature DT and the FD/AD DT are the inputs for the
Cybersecurity DT. Additional historical data available
through a database is also used as inputs for training data
models.

• The predictions of attacks versus expected anomalies with
an indication of the prediction quality and key features
found in the analyzed signal (e.g., features indicating the
type and/or source of an attack) are the outputs of the
Cybersecurity DT. Additionally, the attack features found
in the analyzed data are shared with the FD/AD DT and
the SME Operator for further analysis.

6) SME Operator: The operator monitors the outputs of the
FD/AD DT and the Cybersecurity DT to further analyze if the
physical process has an anomaly or is under a cyber-attack. For
this purpose, the DTs report their prediction quality and the
features found in the data so that a human SME may further
investigate any abnormalities.

7) Decision Maker: The role of the decision-maker is to
provide an interface between the SME and the plant floor.
Many CPMS in practice utilize a supervisory control and
data acquisition (SCADA) layer as a decision-maker. The
decision-maker may have a supervisory role where it takes
actions on the plant floor by making autonomous decisions.
If the decision-maker is purely advisory, the SME may imple-
ment actions and prescribe references directly to the con-
trolled plant, bypassing the decision-maker. In our context, the
decision-maker provides details and updates on the reference
signal r(t) for the process.

The presented framework forms a basis for the analysis
of cyber-attacks for CPMS in the context of closed-loop
controllers and expected anomalies. The proposed DTs in
our framework are building blocks that can be implemented
via various detection and classification methods from the
literature. The DTs therefore provide valuable abstractions for
performing attack detection in CPMS via a composition of
methods, illustrating how the proposed framework is general
enough to accommodate various methods and solutions from
the literature (e.g., [8], [19], [20], [29], [33], [37], [38]). See
Section V-F for further discussions. Furthermore, the presented
framework may be aggregated into a system-level DT that
operates within or outside of the four walls of operation (e.g.,
at the supply chain level) [2], [39].

Fig. 3. The architecture of the Cybersecurity DT. The Detector DT and
the Consistency DT are used for detecting abnormalities and attacks on the
physical process. The historical data is stored in a database for model training
as well as knowledge storage and SME data mining of the types of expected
anomalies, attacks, etc.

IV. THE CYBERSECURITY DT

The architecture of the Cybersecurity DT is illustrated in
Fig. 3. The Cybersecurity DT utilizes a Detector DT and
a Consistency DT to analyze run-time and historical data,
and perform online data analysis. In this section, we present
the architecture of the Cybersecurity DT as one of the main
contributions of our work. Then, to illustrate the utility of
the proposed Cybersecurity DT, we provide details of a
proposed attack detection method to distinguish attacks in the
context of anomalies for a controlled process. Throughout the
section, we highlight how various other methodologies from
the literature may be utilized in our proposed framework,
wherever appropriate.

A. Cybersecurity DT Architecture

We propose a Cybersecurity DT that utilizes two DTs to
perform abnormality detection and attack detection, so that
it can predict the presence of a cyberattack on the physical
process. The Cybersecurity DT also has a database that
includes historical data that is used for model training, data
mining, and data analysis. Note that while the Cybersecurity
DT uses run-time data to predict attacks, the DT may or may
not run synchronously with the physical twin. We assume
that the data streams within the framework are time-stamped
such that asynchronous DT predictions that indicate predicted
time-instance of an attack onset are possible. The actual time
frame of the DT versus the physical process for a practical
implementation depends on the application domain of the
process.

1) Detector DT: Noting that our goal is to detect attacks
that have output measurable effects, we first need to identify
if a measurement is abnormal. The Detector DT is tasked
with performing abnormality detection on the process data
by leveraging the anomaly prediction from the FD/AD DT.
A key problem with anomaly and attack detection is the
scarcity of abnormal process data versus the abundance of
normal process data, leading to an unbalanced data set. For
this purpose, machine learning models such as one-class
discriminators [38], [40], [41], [42] and auto-encoders [43],
[44], [45] are often utilized in the literature for abnormality
detection to represent the normal data sufficiently well in
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a projected space such that abnormal data can be detected
efficiently (see Section IV-B1).

Data-driven models may be utilized in the Detector DT and
with the assumption on the availability of sufficient normal
process data to train data-driven models. Additionally, the
FD/AD DT predictions may be utilized to improve the abnor-
mality detection in the Detector DT. We present a Detector
DT leveraging one-class discriminators in later sections and
demonstrate our approach in the experimental study.

• Inputs to the Detector DT are the outputs from the Feature
DT (e.g., features of the process measurements) and the
FD/AD DT (e.g., prediction of an anomaly, anomaly
traces found in the analyzed data). Historical data from
a database is used to train data-driven models in the
Detector DT.

• The Detector DT provides an indication of abnormality
for the processed data. If the abnormality detection has
an associated detection threshold, the threshold value is
reported as well.

If the physical twin undergoes modifications that affect the
dynamics of the process (e.g., physical wear, maintenance
event, re-calibration of sensors, new data streams, software
updates), the Detector DT may be re-trained given that suf-
ficient data in the historical database is available, adjusted
to another model in its library (if the new context environ-
ment has already been modeled), or modeled to track certain
dynamics such as slow drift as the new normal behavior.
We focus on data-driven discriminator based abnormality anal-
ysis in our work. Extensions to the presented approach include
physics-based analysis utilizing models such as (1), residual-
based analysis (e.g., using a golden trace), and rule-based
analysis e.g., various statistical process control methods [46].

2) Consistency DT: If a measurement is labeled as abnor-
mal by the Detector DT, or alternatively if an anomaly is
detected by the AD-DT, further analysis is performed by the
Consistency DT. To understand if an abnormal measurement
is due to an attack or an anomaly, we utilize the notion
of consistency metrics on the process data. A consistency
metric for the physical process (1) characterizes the expected
behavior of the system during expected anomalies, e.g., how a
measurement signal changes due to expected mechanical wear.
We provide a formal definition of consistency metrics and how
they are used for attack detection in Section IV-B2.

We assume that specifications defining the behavior of
the system under expected anomalies are provided to the
Consistency DT. Therefore, the Consistency DT monitors
these specifications on the run-time process data to detect
inconsistencies that predict the presence of an attack on the
process. We focus on formal methods-based approaches to
encode specifications for expected anomalies for the CPMS
process. Within this context, the specifications are represented
in terms of the progression of consistency metrics in a formal
language that is used by the Consistency DT to monitor the
process for attacks.

• Outputs from the Feature DT, Detector DT, and the
FD/AD DT are utilized for evaluating consistency met-
rics and monitoring the metrics in run-time. Process
specifications based on the consistency-metrics for

expected anomalies are also provided to the Consistency
DT.

• The Consistency DT outputs the prediction that an attack
has occurred with the prediction quality and the features
found in the data traces. The anomaly and attack traces
found by the Consistency DT are also stored as part of
the historical data for further analysis.

We assume an expert analyzes historical data of the process
to evaluate consistency metrics and specifications for expected
anomalies. Therefore, a new anomaly (one that is not con-
sidered in the set of expected anomalies) is predicted to be
an attack by the Consistency DT. As the Consistency DT
reports the features found on the data as well as data traces,
an SME may design additional consistency metrics and spec-
ifications for a new anomaly by analyzing the process data.
We present example consistency metrics and corresponding
formal specifications for a CPMS process in the experimental
study. Extensions of our approach could utilize data-driven
methods to identify consistency metrics and corresponding
formal specifications. Developing such methods is a subject
for future work.

3) Historical Data: The historical database stores process
data, the expected anomaly features, and data traces, as well
as historical outputs from the Feature DT and the FD/AD
DT. The database is updated with the outputs of the DTs
for further analysis. Additionally, the SME updates the labels
of the historical data to account for new expected anomalies
encountered on the process. This procedure may be initialized
with sufficient historical data to build consistency metrics. The
SME can monitor abnormal data identified by the DTs to build
a library of expected anomalies and better consistency metrics
over time.

B. Proposed Illustrative Methods for Attack Detection

We present the theoretical background for the proposed
illustrative detection methods used in the Detector DT and
the Consistency DT for abnormality detection and consistency
metrics based attack detection, respectively, in this section.

1) Abnormality Detection: To implement abnormality
detection, the Detector DT is trained on the historical process
data D = { y(t), x(t), u(t), η(t) | t = t0, t0 + 1, . . . , t0 + nw},
where η(t) ∈ {0, 1} is a label for abnormality of a data point,
to recognize features of normal process data. Note that in
practice for an unbalanced dataset, we utilize only a single
class label and define everything else as abnormal (i.e., η
becomes trivial as all data in D corresponds to a single class).
We denote the normal data boundaries trained by the Detector
DT using the data D as B(D) ⊂ F , where F is a possibly
nonlinear feature space where the Detector DT operates.

The Detector DT utilizes its trained model B(D) to monitor
run-time data provided by the Feature DT and FD/AD DT
and detect if current measurements of the physical process
are normal, i.e., if ψ( y(t ′)) ∈ B(D), where ψ : Y → F is
a map from the measurement space Y to the feature space
F of the Detector DT. Based on this analysis the Detector
DT outputs its prediction as a label η̂(t ′) ∈ {0, 1} of normal
versus abnormal. Additionally, probabilistic predictions and
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prediction quality measures may be provided. To this end,
statistical learning methods such as the ones provided in [26]
may be utilized. Alternatively, physics-based methods [28]
may be utilized to detect abnormalities.

The training for the Detector DT utilizes historical process
data of the steady-state operation at a predefined setpoint
reference, e.g., r(t) = r̄ , to train B(D). However, the setpoint
of the process may be altered either by a decision-maker or by
a closed-loop controller on the physical process. The setpoint
changes result in transient dynamic behavior on the system (1),
which may cause false positives by the Detector DT.

To mitigate false positives of the Detector DT during
transients, we utilize the solution map of the process (1),
φ : X ×U∞

×Z+ → X , where X is the state space of (1) and
U∞ is the space of sequential control inputs on (1). Given an
initial state x(t0) and a control sequence u ∈ U∞ over a time
interval including the interval [t0, tc], we have

φ(x(t0), u; tc) = x(tc), (2)

where x(tc) is the state at time tc (i.e., the current state). Our
motivation for the proposed abnormality detection method is
to utilize the trained data boundaries B(D) during transient
response. Roughly speaking, as B(D) is trained for the process
at a given setpoint, we define a projection using φ to estimate
state of the process at a previous setpoint given the transient
observations (i.e., as the process moves away from the said
setpoint) and the control inputs. If the process is normal,
(i.e., no attacks or anomalies), the projected state should be
within B(D).

Remark 4: Forward projections of the set B(D) for the
transient control inputs can also be used for abnormality
detection. However defining such projections may in general
be computationally expensive as B(D) may be control and
state dependent, and new computations are needed at each
control step. Therefore, we focus on the proposed projection
type method for abnormality detection in this work.

Formally, the goal of the Detector DT during transients
is to estimate the initial state x̄(t0) of the process at time
t0 based on the observed sequence of states and control input
u until the current time tc. Let us denote the model of the state
progression as

8(x(t0)) =


φ(x(t0), u; t0)

φ(x(t0), u; t0 + 1)
...

φ(x(t0), u; tc)

. (3)

Additionally, let x denote the sequence of estimated states of
the process between the times [t0, tc]. Then, the Detector DT
solves the following minimization to estimate the initial state
x̄(t0) by using the control input u and the state sequence x.

x̄(t0) = argmin
z

{||8(z)− x||}, (4)

where z is an intermediate variable for the notation. For a
normal process (i.e., process outputs with ψ( y(t ′)) ∈ B(D)),
the solution of (4) is close (in the normed distance sense) to the
actual initial state x(t0). Therefore, the Detector DT evaluates
the abnormality of the projected state x̄(t0) to evaluate the

label η̂(tc) for the current state x(tc). Namely, if x̄(t0) ∈ B(D),
then the current state x(tc) is predicted as normal by the
Detector DT.

2) Consistency Metrics for Attack Identification: As men-
tioned earlier, the Consistency DT monitors the progression of
a set of consistency metrics to understand if the abnormal data
traces belong to a known anomaly. Since there may be many
types of anomalies in the system, the design of the appropriate
consistency metrics is often a challenging task. Following (1)
we define the anomalous states and measurements as x̃(t)
and ỹ(t), respectively. Due to the nature of anomalies, true
models of the anomalous process and measurements are often
unknown, but we do have historical data of x̃(t) and ỹ(t) for
known anomalies. Let us define a combined run-time state as

ζ (t) = (x(t), y(t), u(t), r(t)).

Our goal is to develop a consistency metric of type

ξi (t) = ci (ζ ; θ),

where θ = {(x̃i , ỹi , r i , ui ) | i = 1, . . . , nh}, is the data
set of length nh from previous known anomalous process
measurements, and ζ = {ζ (t), ζ (t − 1), . . . , ζ (t − nw)}, for
a window of size nw. The Consistency DT monitors the
progression of ξi (t) with run-time data ζ (t). Suppose we
design our consistency metric such that ||ξ(t)|| ≤ δ(t), for
some δ(t) ∈ R during expected anomalies. Then, any abnormal
measurement that results in ||ξ(t)|| > δ(t) is logged as
inconsistent. In our setting, an inconsistent measurement is
a possible attack on the system. The design engineer for the
consistency metric may utilize models of any kind (e.g., data-
driven, physics-based, statistical, rules-based, etc.) to define
a function ci to evaluate consistency metrics. There may be
multiple ci in the system and the consistency DT may utilize
an ensemble approach to detect inconsistencies.

A key challenge is defining δ(t) dynamically for a tempo-
rally measured signal. While specific δ(t) may be developed
for individual use cases, the scalability of the design process
becomes a prohibiting factor for using the proposed DT-
based approach. An effective way to monitor consistency
metrics may utilize signal temporal logic (STL) to develop
logical predicates that prescribe the expected behavior of the
measured signal over predefined measurement-time windows.
STL is a widely used formalism to specify properties of a
signal that is measured from a process. STL predicates for
anomaly detection on an additive manufacturing (AM) process
in a similar DT setting are presented in previous work [16].
We omit a detailed background on STL and refer interested
readers to [47]. An STL formula π is formed by the following
syntax:

π ≜ ⊤ | p | ¬π | πi ∧ π j | πi U [a,b]π j (5)

where, ⊤ is logical true, p is a predicate, ¬π is the logical
negation of the proposition π , πi ∧π j is the logical conjunction
of two propositions, and πi U [a,b]π j is the until operator
defined as the proposition πi being true at least until the
proposition π j is true in the time interval [t +a, t + b], where
t is the current time. A signal s(t) at time t is satisfied by a
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predicate p if ℓ(s(t)) > 0 for some function ℓ (i.e., s(t) |H

p ⇐⇒ ℓ(s(t)) > 0). Here the operator |H is used to indicate
that the condition on the left side satisfies the condition on
the right side. Additionally, ⊥ = ¬⊤ is the logical false, the
eventually operator is ♢[a,b]π ≜ ⊤ U [a,b]π , and the always
operator is □[a,b]π ≜ ¬(♢[a,b]¬π).

We utilize signal temporal logic (STL) to encode the consis-
tent temporal response of the system for expected anomalies.
Let 5 = {π1, . . . , πns } denote the set of consistency speci-
fications to monitor. We want the process to satisfy all the
specifications πi ∈ 5, thus the Consistency DT monitors if the
conjunction of all specifications is satisfied (i.e., evaluates to
true (⊤)). Thus, the Consistency DT monitors the proposition

ζ (t) |H

∧
∀π j ∈5

π j , (6)

where we require the consistent run-time state measurement
ζ (t) (or a subset of the signals) to satisfy the conjunction
of ns propositions. While the proposed framework utilizes
STL for consistency monitoring, extensions of the proposed
framework may utilize various techniques including static and
adaptive limit checking. We provide examples of inconsistency
metrics and how they can be used for attack detection in the
experimental demonstration, Section V.

To accommodate existing methods from the literature,
attack detection algorithms relying on online monitoring
of certain signal features and signatures [19], [22], [29],
watermarks [21], [27], and statistical and model-based signal
metrics [16], [20], for algorithmic decision-making, can be
efficiently implemented via the proposed STL-based method-
ology in conjunction with the abnormality detection. In this
case, the proposed detection methodologies may be utilized
as part of the Detector DT, while consistency metrics may be
implemented with the Consistency DT. Since STL is a con-
venient framework to monitor the behavior of threshold-based
limit checkers, numerous other methodologies from the liter-
ature can be incorporated as part of the proposed framework.
Additionally, we outline a generic consistency metric function
and an STL based approach to detect inconsistencies, which
can easily be used to implement established approaches from
statistical process control (SPC) literature [46]. A discussion
on the adaptation of a number of methods from the literature
is given in Section V-F.

Statistical process monitoring methods such as average run
length (ARL) may be utilized (see a similar use case in [29])
to tune the parameters and sensitivities as we further discuss in
the case study section. Furthermore, the methodology recently
presented in [29] can be implemented within our framework
by utilizing their model-based detection methods as part of the
Detector DT and using the Consistency DT to recognize the
outputs of the multiple regressors in their framework.

We also emphasize that the aforementioned methods can
be implemented as part of the Consistency DT itself as long
as the inputs and outputs specified by the framework design
are provided. The modularity of the proposed framework
allows one to interchange and mix various solutions from the
literature to develop a comprehensive solution framework for
a holistic cybersecurity approach to CPMS.

Fig. 4. Illustration of the information flow in the framework for attack
detection with the Cybersecurity DT. The boundaries of the Cybersecurity
DT are outlined with dashed lines.

As mentioned previously, unexpected anomalies, i.e.,
anomalies that are not considered in the set of anomalies
during the design of the Consistency DT, are also predicted as
inconsistent. When such new anomalies are encountered, the
design engineer utilizes the new data traces θ ′ containing data
from the new anomalies to potentially design new consistency
metrics and propositions to be monitored by the Consistency
DT.

C. Integration of the DTs for Attack Detection

Figure 4 illustrates the information flow between the DTs
for attack detection in the presence of expected anomalies
in the system. For the purposes of illustration, we denote a
flowchart of how the prediction of the DTs inform each other
and note that Fig. 4 does not illustrate the data shared between
the DTs. The Feature DT continuously provides data to all
other DTs in the framework. If the Feature DT includes an
event trigger in its outputs, other DTs may use the trigger
to perform analysis, or continuously perform analysis on the
streaming process data.

First, the AD-DT performs threshold-based limit-checking
to predict if there are any anomalies in the process. As we
treat the AD-DT as part of existing detection mechanisms on
the CPMS, we expect that its threshold limits are tuned at
a desired operating characteristic by an expert. For our case
study, we assume that the AD-DT has “wide” threshold limits
set by an expert to reduce the false-positive rate. Consequently,
if the AD-DT detects an anomaly, we conclude that the data is
abnormal and move to request necessary consistency metrics
from the Consistency DT.

If the AD-DT does not detect an anomaly, the Detector DT
is utilized to predict abnormality. If there is no abnormality,
the data is labeled as normal and no further action is taken.
If the Detector DT predicts an abnormality, a consistency
metric is requested from the Consistency DT. The consistency
DT may utilize multiple consistency metrics with various
parameter settings based on which DT requests a given metric.
A consistent output is predicted to be an anomaly and this pre-
diction is shared with an anomaly classifier or decision-maker
for further analysis. If the data is inconsistent, an attack is
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Fig. 5. Illustration of the DT architecture with the off-the-shelf 3D printer.
Data communication over the network is shown with dashed lines and local
data communication is shown with solid lines.

predicted and the prediction is shared with an attack classifier
or decision-maker for further analysis.

V. EXPERIMENTAL DEMONSTRATION ON AN
OFF-THE-SHELF 3D PRINTER

In this section, we provide an experimental demonstration
of our proposed DT solution on an off-the-shelf 3D printer
as an illustrative CPMS resource. Experimental data collected
from a printer under normal operation, anomalous operation,
and attacks are collected and analyzed by the Cybersecurity
DT to present results of attack detection. The overview of
the experimental setup is shown in Fig. 5. This experimental
study is a demonstration of the proposed framework on a
real-world setup. As previously discussed, our framework can
be used in various application scenarios not limited to the
one presented here and can be complementary to existing
approaches. We discuss several examples from the literature
at the end in Section V-F.

A. Controller DT Over a Network

For our experimental demonstration, we focus on the heat-
ing system of an off-the-shelf fused filament fabrication (FFF)
3D printer. In FFF, a thermoplastic material is extruded onto
a build bed via a numerically controlled extruder with a
heated nozzle. A G-Code file is an input to the printer’s
local controller, and the local controller executes each line
of G-Code in sequence to deposit material at each layer to
create a 3D geometry in a bottom-up, layer-by-layer fashion.
Thus, a physical process is operated by purely cyber inputs.

1) Motivation: Heating the deposited material within
the desired temperature range is crucial for an extrusion
process. The local controller includes a Proportional-Integral-
Derivative (PID) loop that ensures robust tracking of a temper-
ature reference rT (t) prescribed by the G-Code file, however,

dynamic updates to the printing temperature are of interest for
several reasons. Dynamic adjustment of printing temperatures
is shown to greatly improve dimensional performance [48] as
well as layer-to-layer material adhesion and part strength [49],
[50]. To enable such applications of interest, we implement a
network Controller DT that adjusts the printing temperature
of the 3D printer based on a reference map that is designed
by an engineer for a specific printing process. Run-time
communication of the heater inputs over a network induces
potential cyberattack vulnerabilities that may cause the failure
of the printed part or the machine itself. For this purpose,
we demonstrate how our framework enables DT-based cyber-
security solutions for the controller physical process in the
context of expected anomalies.

2) Controller Implementation: Since we do not have direct
access to the nozzle heaters in the printer, we model the
closed-loop heating system (i.e., heaters controlled by the local
controller) and develop a model predictive controller (MPC)
scheme to prescribe heater references so that the system output
yT (t) tracks a reference temperature rT (t). To implement a
controller, the heating system is modeled as a discrete-time
second order linear time invariant (LTI) system

x(t + 1) = Ax(t)+ BuT (t) (7a)
yT (t) = Cx(t), (7b)

where the system matrices A ∈ R2×2, B ∈ R2×1 are identified
from the step response of the closed-loop heating system
with C = [1 0]. We define the control input limits as
U = [160, 220]

◦C. Then, the goal of the MPC controller
is to solve the following optimization problem in a receding
horizon fashion

min
u

t+N−1∑
τ=t

||x(τ )− xr (τ )||2Q + ||uT (τ )− ur
T (τ )||

2
R (8a)

+||x(t + N )− xr (t + N )||2P (8b)
s.t.: x(τ + 1) = Ax(τ )+ BuT (τ ) (8c)

x(t) = x̂(t), uT (τ ) ∈ U, τ = t, . . . , t + N − 1 (8d)

where we have Q, R, P as positive definite matrices, ||x ||
2
Q =

xT Qx , xr and ur
T as the state and control input refer-

ences, respectively, x̂(t) as the current state estimate, N
as the controller horizon, and u = {uT (t), uT (t + 1), . . . ,
uT (t + N − 1)}. We use the solution of the corresponding
Discrete-time Algebraic Ricatti Equation (DARE), for defining
the weight matrix P . See, e.g., [51], for similar MPC imple-
mentations. We denote the optimal solution of (8) with u∗.
After the controller implements u∗

T (t) on the physical system
over the network, the optimization (8) is solved over an
updated horizon with updated process data. We use a standard
Kalman filter observer update to estimate the current state x̂(t)
from measurements and omit the formulation here for brevity.

3) Reference Handling: As the formulation (8) suggests, the
controller operates in the temporal domain. However, G-Code
references executed on the printer are inherently spatial and
event-based. To remedy this mismatch, we utilize an Emulator
DT that emulates the printing process by analyzing the G-Code
file. During run-time, the Emulator DT queries the position
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data of the four axes (e.g., x,y,z location of the extruder head,
and the position of the extrusion (E) axis), p(t) ∈ R4, from
the local controller. Then, the Emulator DT utilizes p(t) to
estimate the current line of G-Code executed by the printer.
For our case study, we utilize a temperature reference that
alternates between 205◦C and 210◦C every five layers in the
printing process.

B. Attack and Anomaly Scenarios

We consider two attack scenarios and two anomaly scenar-
ios in our case study.

1) Anomalies: Two types of anomalies are considered:

A1 The first anomaly is caused by the use of a cooling
fan on the extruder head. The fan increases the airflow
over the extruder nozzle, which reduces its temperature.
The cooling effect is an exogenous disturbance that is
unknown to the controller and causes an anomaly in the
temperature measurements.

A2 The second anomaly is the degradation of the heating
system performance. As the heating system is used over
time, its components undergo thermal and mechanical
wear which causes the system response to be slower
(in terms of settling time) than expected for a given
temperature reference rT (t). As this effect occurs grad-
ually over a long time horizon (a matter of months of
use), we instead simulate the degradation by updating
the local controller gains to deliberately slow down the
closed-loop response of the local heating system.

As shown in Fig. 5, an anomaly detection (AD) DT is
implemented as a threshold-based limit-checking procedure
on the temperature error eT (t) = rT (t) − yT (t). Thus, the
AD-DT checks if the error is larger than a predefined threshold
level βAD ∈ R+, i.e., |eT (t)| > βAD . The value of βAD is
preset by a designer based on the expected system response
characteristics (e.g., expected maximum temperature error,
robustness margins, etc.).

2) Attacks: As the DT framework communicates with the
printer only over a network, the measurement signals may
be prone to attacks. Note that an attack on the measurement
signal over the network is a vulnerability of the network
communication and not the DTs themselves. Thus, the attack
scenario in this case study is similar to network attacks
studied extensively in the literature for controlled systems,
see e.g., [28]. We utilize our DT framework in the context
of the said network attacks to detect and differentiate them
from expected anomalies. To simulate network attacks on the
measurements, we consider two attack types as yT (t)+w(t),
where w(t) is the attack signal we implement on the measure-
ment.

T1 Injection of a constant offset to the measurement signal,
e.g., w(t) = c1 for some c1 ∈ R.

T2 Injection of a temporally cyclic signal to the measure-
ment signal, e.g., w(t) = c2 sin(t) for some c2 ∈ R.

In this case study, we are focused on the attacks that
compromise the temperature measurements yT (t). Attacks on
the transmission of heater reference input (uT (t)∗) from the
Controller DT to the 3D printer are not considered. However,

we note that various attack types may be implemented on the
case study setup by considering corresponding measurements
and signals from the system.

Remark 5: Note that as mentioned in Remark 1, we do not
differentiate attacks based on their malicious or non-malicious
intent. Within the scope of this work, we are only interested in
the output measurable effect of an attack on the system (see
e.g., Fig. 1). Therefore, we present two attack scenarios with
two different measurable output effects on the experimental
system based on common network attack types. At the end of
this section, we provide a further discussion on how different
attack scenarios for various manufacturing resources from the
literature can be implemented by our proposed framework.

Although we pose the two attacks in this study as instances
of common network attacks, they could represent the mea-
surable output of many other attack types. For example,
considering the examples given in Fig. 1, a compromised
sensor on the physical system or upgrade errors causing false
measurement readings due to miscalibration could result in
similar output measurable effects.

C. Cybersecurity DT

Following the architecture illustrated in Fig. 3, the Cyber-
security DT is designed for abnormality detection and consis-
tency checking. We present a proposed implementation for the
Cybersecurity DT in this section, and refer the reader to the
previous sections for discussions on how other solutions from
the literature can be implemented as part of the proposed DT
framework instead.

1) Detector DT: As previously stated, the temperature
reference alternates between the two setpoints every five
layers. We utilize two one-class support vector machines
(OSVM) [42], [52], [53] to model the normal behavior of the
process at the two setpoints, one for each setpoint. An OSVM
utilizes training data that correspond to the same class, also
named as positive training samples e.g., measurements under
normal operation. Let us denote the training data as D+

=

{z1, z2, . . . , znz }, where zi ∈ Z denote individual measure-
ments. Utilizing a mapping φ : Z → F , the OSVM trains its
data boundaries with the following optimization

α∗
= argmin

α

{αT Kα | 0 ≤ αi ≤
1
vnz

,
∑

i αi = 1}, (9)

where α = [α1, . . . , αnz ] is the decision variable, v ∈ R+ is a
user-defined regularizer parameter, and Q[i, j] = k(zi , zk) =

φ(zi ) · φ(z j ) with k(zi , zk) representing a kernel function,
which is in turn given by the dot product φ(zi ) · φ(z j ). The
optimal threshold value is evaluated as

ρ∗
=

∑
i αi k(z j , zi ). (10)

The decision function for one-class classification is given as

h(z∗) = sgn(
∑

i αi k(zi , z∗)− ρ∗). (11)

Furthermore, we denote the trained model of the OSVM as

B(D+) = {z | h(z) ≥ 0}. (12)

If we have a sample z ∈ B(D+), the Detector DT predicts that
the sample is normal, and abnormal otherwise. Note that if we
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are training only on the measurement outputs y(t), we may
utilize φ = ψ , where the map ψ is given previously. For
further details on the derivation of (9), see [40], [53]. For our
implementation, we utilize the output measurements to train
our OSVM, i.e., zt = yT (t).

To collect training data D+, we run the process at the given
setpoint temperatures (denoted with T s

1 and T s
2 ) and with the

MPC providing heating references in closed-loop. We train
two OSVMs on the collected data at two different setpoints,
denoted with D+(T s

1 ) and D+(T s
2 ) to evaluate the two models

as B1 := B(D+(T s
1 )) and B2 := B(D+(T s

2 )).
To deal with controlled transient behavior, we utilize the

solution map φ of the linear system model (7). Since the
Cybersecurity DT is provided with data from the Controller
DT, the discrete-time index when the system is driven to a new
setpoint is tracked as t = nsp. Then, by querying the sequence
of previous inputs u = {u∗

T (t−1), u∗

T (t), . . . , u∗

T (t−nsp)} from
the Feature DT, the Detector DT evaluates the projected state
x̄(t − nsp) by utilizing the state estimates x̂ (see (4)). Since
the OSVM is trained on the output measurements, we fur-
ther get the corresponding projected output measurement as
ȳT (t − nsp) = Cx̄(t − nsp). If we have ȳT (t − nsp) ∈ Bi ,
where i denotes the corresponding previous setpoint, then the
Detector DT predicts that the current state estimate x̂(t) is
normal and abnormal otherwise.

Remark 6: The abnormality detection checks the condition
ȳT (t − nsp) ∈ Bi . If the volume of Bi is too large (in
a multidimensional sense), projections of certain attacked
process measurements may still be within Bi , resulting in
false negatives. Additional models to refine the abnormality
predictions of the Detector DT may be utilized to improve
false negatives in such cases.

2) Consistency DT: We present a consistency DT designed
by utilizing expertise knowledge about the controlled physical
process. By including the Controller DT in our framework,
we have additional information about the expected system
behavior under closed-loop control. Namely, the controller
(8) provides near offset-free tracking under perfect model
and state knowledge (see [51] for further details). Since
we have inherent uncertainties in our model (7) as well as
state estimation, we expect the controller to have a small
steady-state tracking offset (in the normed sense), which we
evaluate experimentally (an over-approximation of this offset
is denoted with δ1). Then we define a consistency metric

ξ1(t) = c1(yT (t), rT (t)) = |yT (t)− rT (t)|, (13)

which provides us with the norm of the output measurement
residual signal. For a consistent physical system, the residual
should converge to a neighborhood of the empirically deter-
mined tracking offset, e.g., ξ1(t) ≤ δ1 as t → ∞. However,
monitoring the asymptotic response of the system is often not
feasible or desirable. Let τ(t) ∈ {0, 1} denote a consistency
metric request, such that we have τ(t) = 1 if either the
AD-DT or the Detector DT requests a consistency metric
and τ(t) = 0 otherwise. We define ξ2(t, t0, t f ) as another
consistency metric to count the number of requests in a given
time interval t ∈ [t0, t f ]. We use ξ2 to define specifications
that are robust to transient response in the state estimation,

which often occur due to disturbances on the process and data
communication. Using STL, the monitoring logic is given as

π1 : τ(t) H⇒ (τ (t + 1) ∨ ♢[t+1,t+ts ](ξ1(t) ≤ δ1)), (14a)
π2 : τ(t) H⇒ ♢[0,β](¬τ(t)), (14b)
π3 : τ(t − 1) ∧ ¬τ(t) H⇒ □[0,β2](ξ2(t, 0, β2) ≤ 1), (14c)
π4 : τ(t) ∧ (ξ1(t) ≥ 1) H⇒ ♢[t+1,t+t ′

s ]
(ξ1(t) ≤ δ1), (14d)

where (14a) denotes that whenever the consistency metric
is requested, (i.e., τ(t) = 1 = ⊤); either the consistency
metric is requested again in the next time-step (t + 1),
or the temperature error norm eventually converges to the
tracking offset δ1 within ts time-steps. Similarly, (14b) requires
that whenever the consistency metric is requested, i.e., the
measurement is abnormal, the new measurements should be
normal eventually in the next β time steps, where the value of
β is determined empirically based on previous process data.
Next, (14c) requires that whenever the output measurement
turns normal (i.e., request is made in the previous time step
but not the current one), it should stay that way for the next
β2 time-steps based on the ξ2 consistency metric (i.e., there
can be at most one consistency metric request in the given
time interval). Similar metrics may be developed for various
applications of interest. Lastly, (14d) denotes that if there is a
large deviation in the signal at the time of consistency metric
request, the signal should converge to the δ1 limit within t ′

s
timesteps. Note that π3 and π4 may be merged for a succinct
representation, but we utilize two separate specifications here
for clarity. Furthermore, statistical metrics such as ARL may
be utilized to tune the parameters for the STL monitoring
parameters, similar to the statistical analysis provided in [29].
We instead utilize empirical data collected on our experimental
setup to tune these parameters, given that our process is
non-stationary in the sense that the controlled system includes
a reference tracking MPC, and there are reference changes
inducing transient dynamics.

We denote the STL specification

π = π1 ∧ π2 ∧ π3 ∧ π4, (15)

which is satisfied (SAT) if and only if all the propositions
in (14) are satisfied (i.e., they are ⊤). The Consistency DT
monitors the process data to check if the specification (15) is
SAT. The monitoring process may be performed in run-time
with robust satisfaction monitoring techniques [54]. Here we
instead utilize a retrospective analysis on the collected process
data stored in the Cybersecurity DT to perform the monitoring
task. We expect a consistent process to have the output mea-
surement stable under the closed-loop control implemented by
the Controller DT, resulting in SAT. When the measurement
signal is compromised, the controller will not be able to track
the desired reference, which causes large tracking errors or
instability on the temperature signal that result in (15) to be
unsatisfied (UNSAT).

We determine the value of the parameter t ′
s based on the

expected system performance as a constant parameter during
the process. However, the parameter ts should be adjusted
based on the initial condition of the mismatch between yT (t)
and rT (t) dynamically, since the system dynamics have a
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non-trivial time constant. To evaluate the parameter ts in (14a)
we utilize a user-defined parameter mapping for ts , which is
determined based on the analysis of previous anomalous data
by an expert.

D. Implementation Details

We use an Ultimaker 31 FFF printer with Polylactic Acid
(PLA) material for our case study. The printer has a network
application programming interface (API) that allows for moni-
toring of extruder temperatures yT (t), stepper motor counts on
the controller p(t), and extruder heater input updates uT (t).
The Controller DT is implemented on a personal computer
using python. For reliable network communication between
the Controller DT and the printer in run-time, a sampling time
of 0.5 seconds is used in the case study. In each 0.5 second
cycle, the Controller DT execution sequence is repeated and
a new heater reference u∗

T (t) is sent to the printer over the
network. The linear model in (7) is adjusted for actuator
delays, which were approximated to be 10 time steps for the
implementation of the control law using (8).

We collect experimental time-series data for (i) the nominal
system without the Controller DT running, (ii) the controlled
system with the Controller DT without attacks or anoma-
lies, (iii) the controlled system with anomaly cases (A1
and A2), and (iv) the controlled system with sensor attack
cases (T1, T2). For experimental implementation purposes,
we replay the collected time-series data to the Cybersecurity
DT for asynchronous data analysis in an offline fashion.
This approach is taken to avoid any computational errors in
our results due to possible run-time execution issues and to
illustrate how various DTs in the framework may operate at
different time scales. It is important to note that synchronous
implementations of the Cybersecurity DT would perform
comparably in practice to our approach since we do not change
how the Cybersecurity DT interacts with the other DTs in the
framework in our experimental approach. The experimental
data used in this case study is available in the supplementary
materials.

E. Results

In this section, we present experimental study results from
the implementation of the proposed framework. Figures in this
section are the results of multiple runs of the printing process
for various anomalies and attacks. Therefore the time axes
on the processes do not illustrate times from a single printing
process but rather show the time scale of the dynamic behavior.

1) Detector DT Performance: We use nominal process data
when the Controller DT is running to train the OSVMs for
the two temperature setpoints T s

1 = 205◦C and T s
2 = 210◦C.

We use radial basis function kernels for our initial OSVM
training. The transient analysis in (4) is sensitive to model
mismatches, which results in false-positives on normal data
traces. Thus, we analyze the performance of the OSVMs on
the nominal process measurement and transient responses to

1Certain commercial instruments and materials are identified to specify the
experimental study adequately. This does not imply endorsement by NIST or
that the instruments and materials are the best available for the purpose.

Fig. 6. Illustration of the Detector DT abnormality detection during normal
operation using the robust bounds.

improve their robustness by perturbing their data boundaries.
We perturb the boundaries based on the performance of the
Detector DT on the historical data to mitigate false positives
(e.g., include historical data points that are known to be
normal but predicted abnormal by the Detector DT in the
training set D). This procedure reduces the false positive
rates of the Detector DT at the expense of reduced sensitivity
(see Remark 6). The perturbation procedure is designed such
that the resulting boundaries of the Robust OSVM are an
over-approximation of the original as-trained OSVM.

To remedy the reduced sensitivity of the Detector DT
with the Robust OSVM due to the perturbation procedure,
we utilize additional OSVMs to provide a solution to the
scenario outlined in Remark 6. We train two new additional
OSVMs (one for each setpoint) on the features of the Robust
OSVM solutions for normal data points. The output of the
Detector DT with these new additional OSVMs is denoted
as Robust OSVM+ in Fig. 6 and the indication + is used in
subsequent figures for comparisons to the two different Robust
OSVM solutions. To train the Robust OSVM+, we extract
three features from the Robust OSVM solutions on the normal
dataset. Specifically, we train the Robust OSVM+ on the

• Root-mean-squared error of the estimation (4)
• Time elapsed since the last setpoint
• The absolute estimation error |ȳT − yT |,

of the Robust OSVM solutions on the normal dataset. We pass
the datapoints that are predicted to be normal by the Robust
OSVM through the Robust OSVM+ for additional analysis
and to improve the Detector DT performance.

Figure 6 illustrates the performance of the Detector DT
with the updated robust data boundaries on normal process
data. The top plot illustrates the temperature reading and
the reference temperature for the process. The middle plot
shows the comparison of the predictions using the As-trained
OSVM, Robust OSVM, and Robust OSVM+. We observe
that the As-trained OSVM results in a high rate of false
positives in the middle plot, annotated with 1 on the figure.
The Robust OSVM+ solution in the middle plot has slightly
increased sensitivity that still rejects most of the As-trained
OSVM false positives. We show how the increased sensitivity,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on February 23,2023 at 14:33:52 UTC from IEEE Xplore.  Restrictions apply. 



14 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 7. Illustration of the Detector DT abnormality detection and the
Cybersecurity DT attack detection during the anomaly A2. Top plot shows the
temperature response of the process and the reference temperatures. Middle
plot shows the Detector DT outputs for the Robust OSVM and Robust
OSVM+ procedures with D-DT and D-DT+ respectively. Bottom plot shows
the Cybersecurity DT outputs when the Robust OSVM and Robust OSVM+

procedures are utilized with CS-DT and CS-DT+ respectively. The rectangles
around Abnormal and Anomaly indicate the ground truth for the signals.

when compared to the Robust OSVM, provides better attack
detection performance in the following results.

On the bottom plot of Fig. 6 we illustrate the importance
of the projection method given in (4) utilizing the Robust
OSVM+ (R-OSVM+) procedure. The output without the
projection (R-OSVM+, No proj.) has excessive false positives,
annotated with 1 on the figure, since it predicts all the transient
responses as abnormal datapoints. It is important to note that
our proposed method for abnormality detection during con-
trolled transient response works with minimal false positives in
our experimental setup. The data trace (R-OSVM+, w/proj.)
correctly identifies the transient behavior of the process as
normal behavior and has minimal false positives (e.g., the one
spike at time ≈ 225 seconds on the bottom plot of Fig. 6).

2) Cybersecurity DT Performance: Here we analyze the
performance of the Cybersecurity DT for the attack and
anomaly cases considered in our case study. All the fig-
ures have rectangles around certain axis labels indicating the
ground truth for the signal illustrated in the figure. Addi-
tionally, we provide numbered annotations on the figures to
highlight some discussion points that we provide in the text.

Figure 7 illustrates the Detector DT and Cybersecurity
DT output for the anomaly case of A2. On the top plot,
we see that the system response is altered due to the change
in the local controller parameters. Specifically, the system
response is slower than what is anticipated by the model in the
controller. Consequently, the temperature signal significantly
over- and undershoots the reference signal as the controller has
a large model mismatch, which is illustrated by the process
response on the top plot of Fig. 7. The Detector DT predicts
abnormalities throughout the process and requests consistency
metrics from the Consistency DT. In the middle plot we see
the effect of the Robust OSVM+ versus the Robust OSVM,
where the predicted abnormalities are slightly different for
the two cases. Due to the anomaly, the datapoints throughout
Fig. 7 are abnormal and anomalous, which is indicated by
the rectangles in the axis labels. The detector DT identifies

Fig. 8. Illustration of the Detector DT abnormality detection and the
Cybersecurity DT attack detection during the attack T1. Top plot shows the
temperature response of the process and the reference temperatures. Middle
plot shows the Detector DT outputs for the Robust OSVM and Robust
OSVM+ procedures with D-DT and D-DT+ respectively. Bottom plot shows
the Cybersecurity DT outputs when the Robust OSVM and Robust OSVM+

procedures are utilized with CS-DT and CS-DT+ respectively. The rectangles
around Abnormal and Attack indicate the ground truth for the signals.

the abnormalities as shown in the middle plot, during the
setpoints and partially during the transient response between
the setpoints. The transient response of the system is similar to
the normal case, which results in the Detector DT predicting
normal outputs during parts of the transient response.

Since the process is not attacked, we see that the temper-
ature output is still bounded around the reference trajectory
and thus the predictions of the Cybersecurity DT are normal
where the temperature signal begins to converge towards the
reference. On the bottom plot of Fig. 7, we see that the
Cybersecurity DT correctly identifies the anomaly in the signal
for the abnormal predictions identified by the Detector DT.
Additionally, we see that the Robust OSVM, due to its reduced
sensitivity in abnormality detection, results in a false postive of
the Cybersecurity DT which can be seen on the bottom plot
of the Fig. 7, annotated with 1. In comparison, the Robust
OSVM+ has no false positives (e.g., all the predictions are
either anomalous or normal). Similar to the case illustrated in
Fig. 7, the Cybersecurity DT was able to correctly detect the
anomaly A1 for all the experimental data we have collected.

Figure 8 illustrates the Detector DT and Cybersecurity DT
output for the attack case T1. Due to the attack on the system,
the controller stabilizes the temperature outputs at an offset
away from the desired setpoints. The middle plot shows the
abnormality predictions of the two OSVM procedures. The
Robust OSVM+ has better abnormality prediction (shown
with D-DT+) when compared to the Robust OSVM (shown
with D-DT). Using the consistency measures and the STL
monitoring, the Consistency DT analyzes the measurements
and identifies the offset in the signal. On the bottom plot of
Fig. 8 we see that the Cybersecurity DT identifies attacks
on the inconsistent measurements from the process. During
transients in the process, the signal behaves consistently with
the nominal transient behavior, which causes the Cybersecurity
DT to predict normal measurements. The annotation 1 on the
bottom plot highlights the attack prediction of the CS-DT,
which is later and more inconsistent when compared to the
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Fig. 9. Illustration of the Detector DT abnormality detection and the
Cybersecurity DT attack detection during the attack T2. Top plot shows the
temperature response of the process and the reference temperatures. Middle
plot shows the Detector DT outputs for the Robust OSVM and Robust
OSVM+ procedures with D-DT and D-DT+ respectively. Bottom plot shows
the Cybersecurity DT outputs when the Robust OSVM and Robust OSVM+

procedures are utilized with CS-DT and CS-DT+ respectively. The rectangles
around Abnormal and Attack indicate the ground truth for the signals.

CS-DT+ outputs that use the Robust-OSVM+. We clearly
see that the Robust OSVM+ in the Detector DT improves
the abnormality detection and consequently attack detection
performance of the Cybersecurity DT.

Figure 9 illustrates the Detector DT and Cybersecurity DT
output for the attack case T2. Due to the attack on the
system, the controller is not able to stabilize the system to
any reference temperature which can be observed on the top
plot. Thus, the temperature measurements fluctuate irregularly
causing the Detector DT to detect abnormality most of the
time, shown in the middle plot. Using the consistency mea-
sures and the STL monitoring, the Consistency DT analyzes
the measurements due to the requests from the AD-DT and
the Detector DT. On the bottom plot of Fig. 9 we see that
the Cybersecurity DT identifies attacks on the inconsistent
measurements from the process. It is important to note that the
Cybersecurity DT finds normal or anomalous measurements
in the data stream at times where the measurement signal is
similar to the transient response of the nominal process or
the abnormal signals of the anomalous process. Annotation 1
on the bottom plot shows the missed positive by the Robust
OSVM when compared to the Robust OSVM+. While the
effect of Robust OSVM+ is attenuated in this case, we still
see that when compared to the Robust OSVM, the Robust
OSVM+ provides slightly better attack detection performance.
The anomalous predictions between 100 − 150 seconds and
170−210 seconds exhibit similar behavior to the anomaly case
A2, which result in the Cybersecurity DT predicting anomalies
instead of attack signals in those intervals. As mentioned
earlier, the recommendation of an attack on the system is
shared with an attack classifier (either to an SME or to
additional data analysis DT) for further analysis.

3) Discussion: The results in this section show that the
Cybersecurity DT identifies inconsistencies throughout the
signal, which predicts that the signal is most likely compro-
mised, i.e., attacked. Furthermore, when used for anomalous

signals and attack signals interchangeably, the Cybersecurity
DT was able to correctly analyze and identify an attack on the
system without any need for parameter adjustment or model
re-training. Due to the way we have implemented the STL
specifications for consistency monitoring, we have observed
that some attacked signals are partially missed or identified
as anomalous especially around setpoint changes. This is an
important tradeoff in the framework design that we favored to
provide robustness when the process is in nominal condition
(no anomalies or attacks). AM processes often take multiple
hours to manufacture a 3D object. Therefore, false alarms
that would result in stopping a process prematurely could be
costly (e.g., time and material lost due to a false alarm at the
end of a multi-hour print job). Consequently, our design is
aimed toward reducing false alarms on the physical process.
Various extensions that allow for higher false alarm rates may
be utilized for processes where the cost of missing an attack
is much higher than prematurely stopping the process.

We demonstrated a possible implementation for the Cyber-
security DT in this case study, utilizing OSVM detectors in
conjunction with STL consistency checking. As previously
discussed, several other methodologies from the literature
may be utilized instead within our DT framework, thanks
to its modular and flexible design. Comparing our frame-
work to others in the literature, we note that many of the
existing work focus on either anomaly or attack detection.
Thus, implemented alone, our methodology would outperform
such methods in detecting and distinguishing attacks versus
anomalies.

To compare our method to recent work such as [29],
where equipment faults are also considered, we make remarks
throughout the sections to illustrate how their method can
be implemented with our framework. Also, in our proposed
framework, we do not limit the dynamical systems or the appli-
cable controllers to derive statistical conditions as presented
in [29], but rather outline a framework of DTs that can be
developed flexibly based on the specific need. We demonstrate
an optimization-based controller with dynamically changing
references to illustrate a very general case for the generaliz-
ability and flexibility of our proposed DT framework, when
compared to the existing literature.

An important observation about the attack detection results
indicate that the detection performance may be improved by
considering a latched process detection. In our presented work,
all detections are conducted by comparing the datapoints to
the expected normal boundaries; however, by incorporating
the state of the process as anomalous, normal, or attacked,
further methods can be developed to instead look at the
transition from one state to another. Such detection methods
may require additional modeling and data analysis, and would
be an extension of the proposed framework in this work.

F. Outlook for Additional Application Scenarios

In this case study, we demonstrated the utility of our
framework on an off-the-shelf 3D printer. Our framework
is capable of accommodating various CPMS with minimal
modifications. In this section, we briefly discuss a few other
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examples from the literature and how our framework enables
tools to implement them in practice.

We note that our detection and consistency DTs require
a certain level of knowledge (both physics-based and SME
knowledge) to design the given metrics and DTs, and to
have necessary sensors to measure the effect of an attack.
However, this is not a limitation in numerous practical cases
such as the broad class of physics-based detection methods.
Additionally, consistency features may be learned from past
data using data-driven classification and pattern matching
methods, reducing the need for SME knowledge in designing
a consistency DT. As output measurable attacks are of interest
in this study, we assume that necessary sensors are available
in the given CPMS. Next, we discuss recent attack detection
examples from the literature and how they can be implemented
using our framework.

In [24], product-oriented attacks for machining processes
are studied. In-situ monitoring of process variables including
side-channel measurements is utilized for monitoring and
attack detection. In our framework, the measurement systems
can be implemented as part of the physical process and/or
via the Controller DT. The measurement data is processed
by the Feature DT to evaluate the metrics mentioned in [24]
(e.g., Material Removal Rate, cutting time, etc.), logged in a
database, and shared with the Cybersecurity DT. The Cyberse-
curity DT may be implemented with the attack detection logic
presented in [24], where the Consistency DT can implement
STL logic to monitor the changes in these parameters to be
within limits specified by an SME.

In [26], data-driven methods for detecting cyber-physical
attacks are proposed and demonstrated on an AM process and
a machining process. The measurement data streams can be
processed by the Feature DT to prepare necessary features to
analyze by the Cybersecurity DT. The data-driven methods
proposed in [26] can be implemented as part of the Detector
DT, similar to the OSVM application we have demonstrated
in our work. Using the models from [26], decision logic
flows similar to those given in Fig. 4 can be used for cyber-
attack detection. From the specific case studies in [26], the
microcontroller used for collecting images on the 3D printer
streams images to the framework via the Feature DT, where
the images are logged to a database, and feature signals
such as mean, standard deviation, and magnitude of pixel
values are evaluated by the Feature DT and shared with the
Cybersecurity DT. Then, the data-driven models are utilized
to detect cyber-attacks and alert an SME, just as given in
Fig. 2. However, methods to differentiate anomalies from
attacks and dealing with advanced closed-loop controllers with
set point changes and transient behavior has not been discussed
in [24] and [26].

Many of the other works from the literature utilize
side-channel measurements to detect cyber-attacks. These
methods can be implemented within our framework using
appropriate Detector DTs to identify signal signature changes
and Consistency DTs to differentiate attacks (e.g., [22], [25]).
Additionally, the digital signature matching process in [23]
can be implemented in our Cybersecurity DT via the Detector
DT and the Consistency DT with the remaining data streams

implemented similarly to the examples given above. The
data processing and attack detection methods in [29] can be
implemented with Feature and Detection DTs. Additionally,
the differentiation method and the process controllers consid-
ered in [29] may be implemented as part of the Consistency
and Controller DTs. On top of being able to accommodate
the solutions from [29], our framework further enables tools
to deal with a large class of attack types and the use of
advanced control methods with transient behavior. Similarly,
SPC methods [46] may be utilized for consistency metrics
within our DT framework. Just as existing AD methods can
be integrated into Feature and AD DTs in the framework. SPC
methods and control charts can be integrated into the Detector
DT to find traces of statistically significant variations, which
then may be further analyzed by the consistency DT. We note
that many of the threshold-based SPC rules, e.g., the western
electric (WE) rules, may be implemented using the proposed
consistency DT in a scalable manner. A detailed study of
implementing the full set of SPC tools within our framework
is beyond our scope and subject for future work.

It is important to note that our framework is able to
accommodate all these solutions from the literature while
enabling tools for additional functionality such as anomaly
detection and classification of anomalies from cyber-attacks in
a practical setting as well as dealing with the transient response
of the controlled physical process under set point changes due
to a controller.

VI. CONCLUSION

We have presented a DT framework for cyberattack detec-
tion on CPMS in the context of closed-loop controllers and
anomalies in the physical process. We demonstrated our
approach on an off-the-shelf 3D printer on which we imple-
mented a novel network controller. The proposed Cyberse-
curity DT is able to detect attacks and anomalies on the
system while the process is controlled to switching setpoints.
Our approach is platform agnostic and modular thanks to its
DT-centric design. The components of the framework can be
extended for multiple resources in a manufacturing system and
aggregated into a system-level DT framework. Extensions of
the presented approach for an AM fleet scenario [55] with
multiple machines is of interest for future work. We note
that in a plant floor with multiple machines, a designer could
potentially utilize similar consistency and detection structures
for similar machines, if possible, or design individual cyber-
security DTs for each machine, based on the application
of interest. Developing methods for attack detection across
multiple machines is a promising future direction.

We have designed and tested our approach for isolated
attacks and anomalies. However, there may be practical cases
where anomalies and attacks are present in the system simul-
taneously. Investigation of such cases is subject to future
work, especially in the context of controlled transient behavior.
Additionally, testing the performance of a latched process
approach (i.e., detecting changes from a current detection state
to another instead of comparing all to the normal detection
state) as identified in the discussion section is of interest.
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An important contribution of this work is the investigation
of the abnormality detection under closed-loop control on the
process. Further developments in detecting abnormalities dur-
ing closed-loop transient behavior could improve CPMS per-
formance and the abnormality detection performance of DTs.
Additionally, we believe the presented OSVM based abnor-
mality detection approach can be extended as a stand-alone
AD approach for CPMS by defining the proper data labels
for training and tuning the sensitivity of the detector for the
specific use case (e.g., using a receiver operating characteris-
tics curve). Lastly, studying attacks with no output measurable
effects are of interest for future work.
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