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ABSTRACT 

The application of robot workcells increases the efficiency and cost effectiveness of manufacturing systems. 
However, during operation, robots naturally degrade leading to performance deterioration. Monitoring, 
diagnostics, and prognostics (collectively known as prognostics and health management (PHM)) 
capabilities enable required maintenance actions to be performed in a timely manner. Noting the importance 
of data-based decisions in many current systems, effective PHM should be based on the analysis of data. 
The main challenges with robot PHM are the difficulties of relating data to healthy and unhealthy states, 
and lack of models to fuse and analyze up-to-date data to predict the future state of the robot. This paper 
describes concepts of digital twin development to overcome the above challenges. A use case of a digital 
twin modeling robot tool center point accuracy is provided. The proposed procedure for this digital twin 
will be applicable to different use cases such as  reduced repeatability or increased power consumption. 

1 INTRODUCTION 

1.1 Industry challenge 

Industrial robots advance manufacturing by performing intricate, repetitive, or dangerous tasks such as 
material handling, welding, assembly, and painting. Because of their flexibility, robot workcells can 
respond to demands for customized products, changes in orders, and changes in equipment status. Once put 
into operation, robots begin to degrade. If the degradation leads to a failure, the result can be expensive 
repair costs and significant production interruption. To minimize failure instances and enhance their 
decision-making with respect to maintenance practices, manufacturers turn to monitoring, diagnostic, and 
prognostic technologies (collectively known as prognostics and health management (PHM)). 

Invoking any effective PHM capability involves equipment (or process) monitoring along with 
corresponding data collection. Analytics are applied to evaluate the status of robots, and if there are 
degradation problems, provide a diagnosis. In addition to diagnosis, prognostics can also predict the future 
status of the robot components and estimate the remaining useful life (RUL) (Lee et al. 2014). 

There are a large number of diagnostics techniques and methods (Borgi et al. 2017; Izagirre et al. 2021). 
Many reviewed methods for diagnostics and prediction are for specific performance deterioration types 
while prognostics is relatively lacking in many case studies (Peng et al. 2010). A data-driven prognostics 
approach involves developing a fault “model” that must be trained with data representing anticipated faults. 
This data may be difficult to obtain or validate (Vogl et al. 2019). To be more effective, PHM methods 
should fill the gaps in physical sensor data and modeling virtual sensors to obtain data that cannot be 



Kibira, Shao, and Weiss 
 

 

obtained by physical sensors. The methods should also help model typical degradation scenarios, 
maintenance activities, and system impact.  With such methods, predictions are based on real-time status, 
a rich historical data set, and anticipated events. A real-time digital representation of the robot workcell 
through digital twins would address these challenges. This work is part of research at the National Institute 
of Standards and Technology (NIST) to develop methods and measurement science to advance PHM in the 
manufacturing industry. 

1.2 Digital twin technologies and tools 

A digital twin is a data-driven, real-time virtual representation of a product, system, or process. Digital 
twins are enabled by recent technological advancement in modeling and simulation, sensors (to enhance 
data collection capabilities), data storage, and data analytics. There are three main types of digital twins 
that can be built using varying methods: (1) Physics-based digital twins, (2)  Data-driven digital twins, and 
(3) hybrid digital twins, which leverage the advantages of physics and data-driven approaches while 
minimizing their shortcomings. The type of digital twin selected for a project depends on the amount of 
knowledge available and the purpose of the digital twin. A digital twin is context-dependent and could be 
just a partial representation of a physical system. Therefore, the digital twin only requires relevant data and 
models that are specifically designed for an intended purpose (Shao and Helu 2020).  

1.3 Contributions and paper organization 

This paper provides an overview of current trends in modeling, integration, and communication, and a 
standards based approach for implementing a digital twin to support PHM for robot workcells. This paper 
contributes to understanding how a digital twin can be built to support PHM for industrial robots. It provides 
a use case for constructing a digital twin based on the industrial robot arm testbed for PHM that is installed 
at NIST. 

This paper is organized as follows: Section 2 provides background including discussion of the types of 
digital twins, requirements and challenges for a digital twin, and digital twin applications in manufacturing 
PHM; Section 3 describes the challenges of robot PHM, degradation types, and their relationships; Section 
4 reviews a Draft International Standard (DIS) developed under the International Organization for 
Standardization (ISO). It is designated DIS ISO 23247 - Digital Twin Framework for Manufacturing, which 
can be applied to PHM use cases; Section 5 describes a use case for developing a digital twin to predict 
robot accuracy with end effector attached; and Section 6 discusses remaining work for implementing digital 
twins of real robots and concludes the paper.  

2 BACKGROUND 

2.1 Motivation for developing digital twins 

Data analytics is becoming a cornerstone of decision-making in production planning and maintenance 
scheduling (Lee et.al 2014). To ensure accurate and timely decisions in these industrial activities, digital 
twins constantly fuse relevant data to create a continuous learning system to improve performance (Tao et 
al. 2016). A digital twin for PHM represents the different states of the system; healthy and degraded states 
because it is updated with real-time data. Data analytics within the digital twin determines the location, 
type, and level of degradation of the workcell and predicts the RUL (Tao et al. 2016). Through the digital 
twin, the condition and predictions of the state of the system and its components are made possible. The 
result is that better decisions regarding a degraded component, repair timing, and type of repair can be 
derived. PHM is one of the major areas for digital twin research and publications in manufacturing (Tao et 
al. 2019). By enhancing PHM with a digital twin, the high costs of reactive maintenance and repair from 
unexpected failure can be averted. 
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2.2 General requirements for a digital twin 

This section discusses the major components of a digital twin. These are (1) data collection mechanisms, 
(2) virtual models (physics, data-driven, or hybrid), and  (3) integration interfaces to support two-way 
communication between the digital twin and the real system. Figure 1 illustrates the components in a basic 
digital twin framework.  

 
Figure 1: Basic Digital Twin Framework 

1. Data collection mechanisms 
The most widely used mechanisms for data collection are physical sensors, which monitor and collect data, 
such as, temperature, velocity, force, electrical current, object proximity, valve status (open/closed), flow 
rate, acceleration, pressure, position, orientation, and vibration. Where it is difficult to install physical 
sensors, virtual sensors in the digital twin can infer needed data indirectly from measured data. For computer 
numerical control (CNC) machine tools and robots, data can be obtained from supervisory programmable 
logic controllers (PLCs). For PHM, data such as maintenance logs, mean time between failure data, mean 
time to repair data, and product quality data can also be made available for analysis. 

2. Virtual models 
A virtual model is a representation of the elements that make up the physical asset (e.g., robot workcell) in 
the virtual space. This is where data from different sources is fused to create a representation of the behavior 
of the system. Data preprocessing transforms collected data into a form that is suitable for analytics. Data 
analytics models are often discussed in terms of data mining and machine learning. Data mining is the 
discovery of knowledge and insights from (often large) data sets. Figure 2 shows the relationship between 
data mining, machine learning, and deep learning. Machine learning is the creation and use of algorithms 
that provide the ability to learn without being directly programmed. Machine learning uses the principles 
of data mining. Deep learning is where the learning is through successive layers of representations, with 
each layer contributing to the learned model (Yu et al. 2009; Hou et al. 2003).  

 
Figure 2: Relationship between machine learning, data mining and deep learning (Kulin et al. 2020). 
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3. Integration interfaces and information exchange 

Interfaces enable exchanging data among different applications within the digital twin. Shao and Kibira 
(2018) outlined standards that support integration activities from distributed messaging and frameworks for 
the digital twin from the highest level to condition monitoring and diagnostics of machines at the lowest 
level.  

3 DIGITAL TWIN FOR ROBOT WORKCELL DEGRADATION 

3.1 Robot workcell PHM 

A robot workcell typically features one or more robots with at least one type of end-effector (e.g., gripper, 
welding wand, adhesive applicator), sensors, safety equipment, controller, and other supporting automation 
(e.g., conveyor system) that is programmed to perform one or more tasks. Robot workcells are required to 
be of high reliability. Monitoring, analysis, prediction, and maintenance activities of a robot workcell can 
be carried out at different levels of control (e.g., workcell, individual robot, or a robot component such as 
a motor). A common framework to define interfaces between different levels of control in manufacturing 
is the America National Standards Institute (ANSI)/International Society for Automation (ISA)-95 standard 
(ISA 2014). ISA-95 provides five levels of control, from level 4 to level 0, i.e., business processes, 
manufacturing operations, monitoring, sensing, and processes. The PHM project at NIST promotes 
advanced sensing, prognostics and health management, and control from ISA-95 manufacturing levels 3 to 
0 to result in improved decision-making support and greater automation (Hedberg et al. 2018). Previous 
NIST work has developed a hierarchy of PHM analyses and how faults in a critical element of a robot (at a 
given level) affect other elements based on their physical and functional relationships (Weiss et al. 2017). 

3.2 Robot degradation 

Degradation is the reduction in health, and usually in performance, that can lead to a failure to meet 
production expectations in terms of throughput and/or quality. Degradation is progressive and is more 
critical on some components in affecting the overall health and safety of the workcell. Most modern 
industrial robots have six axes, which provide them translation in the X, Y, and Z planes and orientation in 
roll, pitch, and yaw to achieve specific end effector positioning. However, the presence of multiple joints 
increases the possible points of degradation. And if degraded performance occurs, finding the root cause is 
more complicated. The potential errors due to degradations at any joint, along with errors in the end effector, 
sum up at the tool center point (TCP). Robot degradations affect TCP accuracy, repeatability, path 
straightness, and energy consumption. Of the degradation types, loss of TCP accuracy is the most difficult 
to overcome (Shiakolas et al. 2002). The major causes of robot degradation are mechanical wear, encoder 
slip ring failure, and thermal effects (or high temperatures). These are described below: 

 
1. Mechanical wear: The loss of material due to wear depends on the friction between two surfaces 

and load carried. In robot joints, the main axes undertake greater load levels and the wear processes in these 
axes are usually more significant than in the wrist axes. Wear results in gear backlash, vibration, and noise. 

2. Encoder slip failure: An encoder is a device that detects and converts mechanical motion, such as 
rotation, into a coded electrical signal. The common causes of encoder failure are mechanical bearing 
overload, surface wear, damaged insulation, loose fit, and high temperature (Bova and Tolio 2009).  

3. Thermal effects: The internal components of a robot joint such as a motor, servo drive, gearing 
system, brake, encoder, torque sensor, and connecting cables are often enclosed in a single housing. Any 
thermal action in one affects the others. In case of the gearing system, excessive heat can lead to scuffing 
failure and reduced life of lubricant. In addition, elevated temperatures lead to expansion of the gears and 
shaft. The result is a tighter fit leading to additional wear and power loss. Without effective heat dissipation, 
increased temperatures result in diminished performance (Eitel 2019). 
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3.3 Challenges to robot workcell PHM 

Some of the challenges for robot PHM are (1) lack of sufficient data related to degraded condition(s) of the 
robot, and (2) lack of models and methods to fuse and analyze robot data at different levels of detail and 
control. When data is insufficient, or if there are abrupt changes in operating environment and conditions, 
prognostics tend to be inaccurate in representing the system. Even where data is available, it is often 
unlabeled and uncertainties exist (e.g., probability distributions of the data may not be known).  

In addition, as observed in Chandrababu et. al. (2009), it can be tedious and time consuming to diagnose 
even a “relatively” simple problem in robots due to complex interactions among system components 
including a faulty part or subcomponent. It is also non-trivial to relate sensor data with failure events in a 
practical industrial setting. Other issues are: (1) high cost for direct measurements from a robot to acquire 
data for the TCP (Qiao et al. 2018),   (2) determining which variables (e.g., vibration, temperature, or power 
consumption) to monitor and for which to collect data, (3) selecting robot modeling and data analytics tools 
and integration, and (4) experiencing difficulty in modeling all factors and variables responsible for 
performance degradation due to limitations of robot simulation modeling tools. 

3.4 Digital twin application for robot PHM  

It was determined by Shangguan et al. (2020) that many prognostic approaches rely on historical data and 
some physically collected data, with little consideration for virtual data. They proposed fusing the two data 
types leading to a convergence of the physical with the virtual data through the digital twin. A digital twin 
plays the role of integrating and analyzing sensor data, virtual data, technical specification, and plant 
condition data thus enabling the PHM tasks of diagnosis and prediction (Shangguan et al. 2020). Figure 3 
summarizes the activities involved in developing a digital twin to enhance PHM for robot workcells. 

In a predictive role, deterioration scenarios can be created within the digital twin to determine what 
would happen in the robot workcell (Aivaliotis et al. 2019). Prognostics relies on both operational and 
environmental data so that algorithms assess the extent of deviation or degradation from expected normal 
operating condition (Tuchband et al. 2007). Prognostics with the digital twin also enables predicting the 
outcome of alternative maintenance scenarios or particular repair actions. These predictions are compared 
with actual experience to evaluate effectiveness. The experience then becomes part of the asset’s history. 

In summary, to support robot PHM, a digital twin can (1) generate degraded data conditions of interest 
that are not possible in real-life; this data can then be analyzed to identify interesting patterns, (2) generate 
data that cannot be captured by physical sensors or from the controller,  (3) provide a platform to learn from 
collected physical sensor data by comparing it with digital twin data, and (4) analyze the robot workcell at 
different levels of detail; from robot sub component to workcell levels.  

 
Figure 3: Activities of developing a digital twin for robot workcell PHM 

4 STANDARD DIGITAL TWIN FRAMEWORK FOR MANUFACTURING 

A survey by Lu et al. (2020) showed that current approaches for implementing digital twins in 
manufacturing face a number of challenges such as lack of (1) common definitions of digital twins, (2) 
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common terminologies, and (3) standardized procedures for creating digital twin applications. To enable 
wider implementations of the digital twin in manufacturing, especially for small and medium enterprises, a 
standardized procedure and generic framework are needed. This framework is provided by the ISO 23247 
– Digital twin Manufacturing Framework, which is the standard that is adopted for building the digital twin 
for the robot workcell for this project.  

This section introduces the DIS ISO 23247 framework. There are four parts in the standard: (1) 
overview and general principles, (2) reference architecture, (3) digital representation, and (4) information 
exchange. The parts of the standard is briefly described as follows: 

 
1. ISO 23247-1 provides general principles and requirements for developing digital twins in 

manufacturing; it defines terminologies used throughout the series (ISO 2020a). For example, the 
digital twin in manufacturing is defined as “a fit for purpose digital representation of an observable 
manufacturing element (OME) with synchronization between the OME and its digital representation.” 
OMEs include personnel, equipment, materials, manufacturing processes, facilities, environment, 
products, and supporting documents. When implementing digital twins of OMEs with specific 
objective and scope, appropriate standards, methods, and tools need to be used.  

2. ISO 23247-2 provides a reference architecture for implementing digital twins in manufacturing. It 
includes a reference model from domain and entity point of view. There are four domains and each 
domain has a logical group of tasks and functions, which are performed by functional entities. These 
are (1) observable manufacturing domain, (2) data collection and device control domain, (3) core 
domain, and (4) user domain. Figure 4 shows the entity-based reference model and an illustration of 
the four domains and their interactions (ISO 2020b). 

3. ISO 23247-3 describes the basic information attributes for typical OMEs (ISO 2020c). Whenever 
possible, existing standards should be used to digitally represent OMEs. In a use case, the most 
appropriate information model shall be selected for the OME according to the requirements. Each OME 
shall use the unique enterprise identifier if possible.  

4. ISO 23247-4 discusses technical requirements for information exchange between entities within the 
framework (ISO 2020d). The networks between domains and entities include (1) user network that 
connects the user entity and the core entity, (2) service network that connects sub-entities within the 
core entity, (3) access network that connects the data collection and device control entity to the core 
entity and to the user entity, and (4) proximity network that connects the data collection and device 
control entity to OMEs.  

 

Figure 4:  Entity-based digital twin reference model for manufacturing (ISO 2020b). 
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5 DIGITAL TWIN USE CASE FOR ROBOT PHM USING THE STANDARD FRAMEWORK  

5.1 Description of the use case  

This is a description of a digital twin of a single robot arm, which would represent one of the robots in the 
NIST PHM for robot systems workcell consisting of two robots. The workcell was installed to be used to 
develop different use cases for PHM research in robot systems (Weiss et al. 2017). One of the robots is 
tasked for material handling while the second robot is configured for performing a precision operation. A 
different end-effector is attached to each robot to carry out the specified operation. The two robots have 
overlapping work envelopes. As such, a supervisory PLC monitors and coordinates the activities in the 
workcell. Performing PHM within the workcell involves monitoring data such as robot joints and TCP to 
analyze data for each robot arm to determine the source and cause if deterioration in performance is 
observed. The scope of the work in this paper is a description of the activities and benefits that accrue by 
building a digital twin. This use case is targeted for robot accuracy, as an example, but the procedure is 
relevant to other forms of robot degradation. Table 1 is an instantiation of the ISO 23247 - Digital Twin 
framework for a digital twin for PHM of the robot in the workcell. 

5.1.1 The problem  

The use case is for PHM of a robot and end effector with respect to TCP accuracy. Robot accuracy 
degradation is the deterioration in a robot’s ability to locate and orient the end-effector TCP as specified in 
the robot program. The end-effector at the robot arm’s wrist allows the robot to interact with the task. The 
material handling robot is fitted with a gripper (for picking and manipulating objects). Figure 5 shows a 
UR5 robot fitted with a gripper picking up a part for dropping at a different location. The end-effector for 
the precision operation is a process tool for carrying out the operation. In the robot workcell, reduced TCP 
accuracy results in placing a part at a location or having the orientation that is different from the robot 
command. Robot accuracy is assessed by comparing the actual positions with the expected (or commanded) 
position. Reduced accuracy occurs because of joint friction, encoder slip failure, wear, or vibration. These 
effects may also result in increased power consumption during execution of a task. Before any analysis  
activity can proceed, data has to be collected. 

 

 

Figure 5: A Universal Robot with an RG2 gripper picking and dropping a part 
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Table 1: Robot TCP accuracy use case (table template adopted from work of ISO/IEC/JTC1/AG11) 

Use case name Monitoring and control of a robot arm to maintain robot accuracy 
Application field Manufacturing (PHM for Robot Workcells) 
Life cycle stage(s)/ 
phase(s) coverage Maintenance  

Status During operation 
Scope Accuracy of a robot workcell tool center point of a robot arm with an attached end 

effector  
Performance degradation of a robot workcell consisting of two robots (initial scope 
is accuracy of a single robot tool center point with end effector) 

Problem(s) 1) Direct measurement systems of TCP and instead, relying on controller data 
2) Selection of factors and variables to include in data collection 
3) Selection and integration of data analysis tools with robot simulation 
4) Limitations of simulation modeling tools in representing factors and variables 

that affect the accuracy of a robot and the end effector 
Objective(s) 1) Understand how available technology can be put to develop a digital twin to 

improve decision-making in robot workcells 
2) Understand the relationships among and between variables that affect robot 

workcell accuracy 
3) Predict robot workcell accuracy based on these factors and variables 

Short description Robot workcell degradation due to faults in the robot or end effector leads to 
reduction in performance. Accuracy of the TCP is important because it determines 
the quality of the product.  A reduction in accuracy in the TCP indicates a 
degradation in the robot’s or end effector’s health. The digital twin is built in a 
virtual environment to represent the robot or robot workcell. At a high level, data on 
TCP is monitored while executing a given task. Data on position, velocity, and 
acceleration of joints are monitored and obtained and used in the simulation model 
of the robot. Other data are collected and used directly in data model for analysis.  

Stakeholders 1) Industries that use robotic systems in their operations 
2) Robot Manufacturers 
3) Robot system integrators 
4) PHM software developers 

Key  
technologies  

1) Data collection from the robot’s controller and used in the robot simulation 
environment. 

2) PLC to record the process information and raw sensor data  
3) Robot modeling and simulation technology and tools 
4) Data-based analytical models developed in MATLAB - the robot simulation 

tool has a MATLAB application programming interface (API) 
Relevant standards ISO 23247-4 
Standardization 
needs 

The standardization of robot programming, interfaces for real-time data exchange 
between the robot systems, virtual models, and analytics provided by established 
vendors  

Remaining issues 
and future works 

1) Factoring the end-effector into the digital twin 
2) Gathering and instantiating other data (e.g., temperature, current) from the 

controller that the digital twin cannot model and provide 
3) Exploring suitable and integrable tools and algorithms for data providing the 

analytics with RoboDK simulation and the robot workcell 
4) Integrating the various modules to form a digital twin of the robot workcell 
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5.1.2 Data acquisition from the robot workcell  

Figure 6 illustrates the interactions between a robot workcell and its digital twin. Physical data is collected 
from the robot workcell using sensors and the controller. The collected data includes position, velocity, and 
acceleration of the robot joints. The data may require preprocessing. The data is updated at the same 
intervals as the position and orientation of the TCP and used to update the status of the simulation model. 
In addition to the robot simulation data, there are also joint temperature and power consumption that are 
obtained from the robot controller. This data is obtained from the workcell. This data is fused with robot 
simulation data for analysis to determine the cause of performance degradation and the extent of 
deterioration of the robot component(s).  

 
Figure 6: Illustration of relationships between different components of the digital twin. 

5.1.3 Digital twin approach  

More effective PHM has to be proactive, i.e., predict when failures are expected to occur so that 
maintenance actions are carried out prior to the realization of a failure. Many PHM prediction models 
assume that sufficient past failure data exists and that future system behavior would follow past trends 
(Aivaliotis et al. 2019). These assumptions may not always hold, especially for new equipment or new 
processes. The digital twin, as an updated virtual replica of the workcell, overcomes these limitations by 
(1) fusing real-time data from different sources, (2) simulating to determine future status of the robot or its 
components based on action carried out, (3) performing analytics for prognostics, (4) helping to develop 
failure models of a robot or its component and then keeping them updated with real-time data so as to make 
accurate predictions of future performance including failure, and (5) enabling multilevel analysis (from 
workcell to robot component). Regarding points (3) and (4) above, analytics in the digital twin lead to 
developing models of relationships among collected data, and between them and robot performance with 
respect to accuracy. Such  models can be used to identify and predict faults and failures. 
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5.2 Digital representation and integration 

A robot workcell is a complex system where the components, their interactions, and operations cannot all 
be modeled using mathematical formulations. However, the positions, velocities, and accelerations of the 
robot links, joints, and end-effector can be modeled using a robot simulation tool. We used RoboDK as the 
robot simulation environment with which to create the digital twin. This software uses a physics engine to 
calculate the values of the kinematic variables. Other data such as power consumption cannot be represented 
in such tools. This data, together with simulation data, are to be used to develop a data-driven model.  

The simulation model is developed at a level of detail sufficient for the collected data described in 
Table 1 to be used to update the model in real-time. Robot accuracy is monitored at the high level. Robot 
simulation tools have an application programming interface (API) for MATLAB and other high-level 
programming languages. The API allows creating robot programs from generic programming code to 
simulate specific tasks beyond those provided by the graphical user interface. The robot simulation and the 
data-driven analytics model constitute the digital twin of the robot workcell for monitoring, analysis, 
assessment, and decision-making. 

The different states of the system are saved to create a database of the workcell history. For example, 
if the digital twin is used to trace a specified degradation, the database will store the data related to both 
healthy and degraded states of that particular degradation type. Future data can be compared with this 
database to perform classifications based on this history. The history will also contain the robot performance 
before and after the maintenance action has been performed. 

5.3 Robot drivers in RoboDK 

A robot driver provides an interface between digital twin models and a physical robot. Robot simulation 
tools such as RoboDK provide such robot drivers to monitor and control a specific robot controller enabling 
a computer to control industrial robots (RoboDK, 2021). The reverse direction of communication is also 
possible. RoboDK has a macro that allows the analyst to monitor the state of a Universal Robot (UR) and 
update the position of the robot in RoboDK. This is how the robot simulation can update the position of the 
robot and will create targets as the robot is moved. It is also possible to monitor the robot position, speed, 
acceleration, and motor currents.  

Although most robot drivers use a Transmission Control Protocol/Internet Protocol connection, the 
real-time data exchange interface provides a way to synchronize external applications with the UR 
controller, without breaking any real-time properties of the UR controller (Universal Robots, 2019).  

6 DISCUSSION AND CONCLUSION  

PHM for robot workcells helps them to maintain the efficiency and flexibility they offer to manufacturing. 
The challenges for robot PHM have been identified. They are mostly related to the  difficulty in relating 
data to healthy and unhealthy system states and the lack of methods to relate faults at different levels of 
control. This paper proposed that a digital twin of a robot workcell can help overcome these challenges to 
train prediction models based on sufficient information. The ISO 23247 standard provides a framework to 
realize such a digital twin. The framework specifies digital twin definition, relevant terminologies, the 
requirements, and procedure for a digital twin implementation. 

Implementing a digital twin for robot systems requires specifying the different components of the 
digital twin. This is followed by selecting an appropriate type of twin for representing the physical robot 
workcell. Some data of the  robot can be represented directly by robot simulation models. Other data is used 
directly from the workcell for analysis. The combination of the robot simulation and data-driven model 
provides the needed PHM. The example used in the model is a six axis Universal Robot where the focus is 
the accuracy of the TCP with attached end-effector. 

The causes of robot and end effector degradation are challenging to locate and determine especially 
since the workcell continues operating after degradation has occurred but produces inferior products or uses 
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higher than expected energy. For example, degradations due to increased friction and wear leads to gear 
backlash, higher temperature of joints, or vibration. Vibrations on the other hand also increase wear. These 
are the variables affecting position, velocity, and acceleration of joints during execution of a task. Similarly, 
gripper pads can wear with repeated use leading to an erroneous pick or place activity of a part. The 
analytics on collected data within the digital twin through unsupervised learning can determine the 
relationships among the root causes (e.g., gear wear), intermediary effects (e.g., joint position), and the 
high-level effect such as accuracy. The analysis could be extended to other forms of performance 
degradations such as path straightness, (task and path) repeatability, or energy consumption.  

Developing measurement methods and PHM validation efforts are continuing at NIST and the next 
digital twin activity is to implement this use case on the workcell testbed, with multiple robots performing 
different tasks under control of supervisory PLC.  

7 DISCLAIMER 

Certain commercial systems are identified in this paper to facilitate understanding. Such identification does 
not imply that these software systems are necessarily the best available for the purpose. No approval or 
endorsement of any commercial product by NIST is intended or implied. 
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