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We consider the nonequilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited
band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the px and py

excited orbital degrees of freedom to act as a pseudospin. Starting from the full Hamiltonian for p-wave
interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic
lattice dynamics of the excited orbitals at low energy.We then show how dispersion engineering can provide a
viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and
lattice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with
only moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-
protected collective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a
one-axis twisting model for the orbital pseudospin that can be probed using conventional Ramsey-style
interferometry. Experimentally realistic protocols to prepare and measure the many-body dynamics are
discussed, including the effects of band relaxation, particle loss, spin-orbit coupling, and doping.

DOI: 10.1103/PhysRevLett.127.143401

Introduction.—Ultracold quantum gases in optical latti-
ces are among the leading platforms for quantum simu-
lation of strongly correlated matter and nonequilibrium
dynamics. While there has been impressive experimental
progress [1,2], most investigations thus far have been
limited to s-wave interacting systems in the lowest
motional band. A fascinating avenue yet to be explored
experimentally is many-body lattice physics with p-wave
interactions [3,4] in higher bands. P-wave interacting
systems can host long-sought phases, including topological
superfluids, Majorana fermions [5–7], and itinerant ferro-
magnetism [8–12]. At the same time, atoms in higher bands
are a unique resource [13] for emulating orbital degrees of
freedom in real materials [14] that give rise to heavy
fermions [15], Ruderman-Kittel–Kasuya-Yosida inter-
actions [16], and orbitally ordered Mott phases [17,18].
Despite these attractive features, control and manipula-

tion of p-wave interacting gases has remained a challenge
for ultracold atom experiments. The timescales on which
p-wave interactions contribute to dynamics tend to be slow
compared to coherence times [19] and lossy when
increased by a Feshbach resonance [20–22]. Moreover,
collisions in higher bands suffer from band relaxation
[23,24]. Important progress in mitigating relaxation has
been made via designed lattice geometries [25–27]
and symmetry protection [28], but further advances are
required to explore the full range of orbital physics in
optical lattices.
Here, we consider the problem of nonequilibrium orbital

physics in an optical lattice and identify a limit in which

collective dynamics emerge. Orbital dynamics in the first
excited bands are stabilized via Pauli blocking by preparing
a spin-polarized system with a completely filled ground
band, mimicking the conventional conduction-band con-
figuration of materials. P-wave interactions are enabled by
the orbitally antisymmetric two-atom wave functions.
We explore the use of Bragg dressing to suppress orbital
anisotropy, which allows an accurate mapping of the
p-wave Fermi-Hubbard model to an XXZ spin model in
which the conventional magnetic spin states are replaced by
orbital states. We delineate a specific regime in which the
collective dynamics can be further mapped to a collective
one-axis twisting (OAT) model thanks to the opening of a
many-body gap [29]. Dispersion engineering lowers the
demands on Feshbach-tuned interaction strength, and thus
elastic interactions can dominate over inelastic collisions
and other decoherence processes. We further discuss how
the p-wave induced mean-field dynamics can be observed
with a Ramsey protocol.
The conceptual map that we develop offers new ways to

understand p-wave orbital physics in an experimentally
accessible regime. We connect previously established real-
space pseudopotential formulations to a tractable extended
Fermi-Hubbard model and use laser driving as a tool to
coordinate interaction-driven dynamics. We show that a
simple collective model can explain the emergent gap-
protected dynamics.
P-wave Fermi-Hubbard model.—The scenario we con-

sider is a three-dimensional (3D) optical lattice loaded with
spin-polarized fermionic atoms in their ground electronic
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state. The system Hamiltonian can be written in terms of
field operators ψ̂ðR⃗Þ acting in real space R⃗ ¼ ðX; Y; ZÞ as

Ĥ ¼
Z

d3R⃗ψ̂†
�
−
ℏ2

2m
∇⃗2 þ

X
ν¼X;Y;Z

VνErsin2
�
πν

a

��
ψ̂

−
X

ν¼X;Y;Z

3πℏ2b3ν
2m

Z
d3R⃗Wνðψ̂†; ψ̂†ÞWνðψ̂ ; ψ̂Þ; ð1Þ

where WνðÂ; B̂Þ ¼ ð∇⃗νÂÞB̂ − Âð∇⃗νB̂Þ. The first line
includes the kinetic energy and lattice potential, where
the lattice depth along ν ∈ fX; Y; Zg is VνEr with Er the
recoil energy, a is the lattice spacing and m is the atomic
mass. We assume that VX ¼ VY ≪ VZ, confining the
system to independent 2D planes. The second line contains
the collisional interactions, which are p-wave since the
s-wave channel is blocked for a spin-polarized gas. We
have used a pseudopotential approximation [30–33] with
two different scattering volumes due to dipole-dipole
splitting of the closed channel, b3X ¼ b3Y ≡ b3XY and b3Z,
controlled by a p-wave Feshbach resonance. We assume a
magnetic field pointed along the tight confined direction Z;
for such a field, we will show that only the transverse
volume b3XY is relevant for the interactions that our specific
configuration will exhibit. We also note that while the
p-wave scattering volume tends to have strong energy
dependence, we operate in the regime where the energy
dependence can be well approximated as an additional
constant shift in the position of the Feshbach resonance [34].
We seek to work in the ultracold regime where atoms

only occupy the ground band and the first excited bands of
the X and Y directions, with orbitals ϕγ

r⃗ðR⃗Þ given by

ϕg
r⃗ðR⃗Þ ¼ wX

0 ðX − iaÞwY
0 ðY − jaÞwZ

0 ðZÞ;
ϕ⇑
r⃗ ðR⃗Þ ¼ wX

1 ðX − iaÞwY
0 ðY − jaÞwZ

0 ðZÞ; and

ϕ⇓
r⃗ ðR⃗Þ ¼ wX

0 ðX − iaÞwY
1 ðY − jaÞwZ

0 ðZÞ; ð2Þ

where r⃗ ¼ fia; jag is the lattice position on the 2D plane,
γ ∈ fg;⇑;⇓g is the band index, and wν

nðν − iaÞ is the nth
lattice Wannier function localized at site i of direction ν.
Our desired configuration is a filling of N=L ¼ 2: each site
will have one atom in the g orbital, filling the ground band,
and a second atom in the degenerate subspace of the excited
orbitals f⇑;⇓g acting as a spin-1=2 degree of freedom.
The occupation of the ground state prevents collisional
relaxation since, for any energy-conserving two-atom
process, leaving the excited subspace would require an
atom to move down to the ground band; here, this is
forbidden by Pauli exclusion.
The low-energy Hamiltonian can be written as an

anisotropic multiorbital model by projecting Ĥ into the
Wannier basis defined by the three chosen orbital states,
yielding

ĤFH ¼ ĤJ þ Ĥint: ð3Þ

Here, ĤJ describes the kinetic energy of the excited atoms,
which tunnel to nearest neighbor sites at rate J0 or J1
depending on the tunneling direction and orbital: the ⇑
atoms tunnel at rate J1 along X and rate J0 along Y, while
the ⇓ atoms do the opposite [see Fig. 1(a)]. In general
J1 ≫ J0 since excited states have a larger spatial extent
along their excitation direction. Since the g atoms are in a
filled band, they are Pauli blocked and do not contribute to
ĤJ. For the excited atoms, the tunneling Hamiltonian can
be written in momentum space as

ĤJ ¼
X
k⃗

ϵk⃗ðn̂k⃗;⇑ − n̂k⃗;⇓Þ þ
X
k⃗

Ēk⃗ðn̂k⃗;⇑ þ n̂k⃗;⇓Þ; ð4Þ

with ϵk⃗ ¼ ðJ1 þ J0Þ½cosðkXaÞ − cosðkYaÞ� and Ēk⃗ ¼
ðJ1 − J0Þ½cosðkXaÞ þ cosðkYaÞ�. Here, n̂k⃗;γ ¼ ĉ†

k⃗;γ
ĉk⃗;γ and

ĉk⃗;γ ¼ L−1=2P
r⃗ e

ir⃗·k⃗ĉr⃗;γ , with k⃗ ¼ ðkX; kYÞ the lattice qua-
simomentum and ĉr⃗;γ annihilating an atom on lattice site r⃗
in band state γ ∈ f⇑;⇓g.
The second term Ĥint contains the interactions. Using the

Wannier expansion, these take the form of

Ĥint ≈
X

r⃗;r⃗0;r⃗00;r⃗000

X
α;β;σ;γ

Uαβσγ
r⃗;r⃗0;r⃗00;r⃗000 ĉ

†
r⃗;αĉ

†
r⃗0;βĉr⃗00;σ ĉr⃗000;γ;

Uαβσγ
r⃗;r⃗0;r⃗00;r⃗000 ¼ GXY

X
ν¼X;Y

Z
d3R⃗Wνðϕα�

r⃗ ;ϕβ�
r⃗0 ÞWνðϕσ

r⃗00 ;ϕ
γ
r⃗000 Þ;

ð5Þ

(a) (b) (c)

FIG. 1. Conceptual schematic. (a) Fermi-Hubbard physics on a
singleX-Y plane.The⇑ (X-excited) and⇓ (Y-excited) atoms tunnel
at rates J0 and J1 along their ground and excited directions,
respectively. There is an on-site p-wave interaction U⇑⇓ between
⇑, ⇓ atoms, as well as nearest-neighbor interactions Vee, V⇑⇓.
(b) Bragg dressing coupling⇑,⇓ can be implemented with beams
(shown in green) that copropagatewith the lattice beams (red) when
the Bragg-laser wavelength is half that of the lattice beams. The out-
of-plane lattice beam is not shown. (c) Effective Bloch sphere of the
Bragg-dressed spin states. The⇑,⇓ states are equal superpositions
of the two flavors of the dressed basis. Using standard coherent
control protocols, any direction of the Bloch vector can be
initialized.
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where GXY ¼ −½ð3πℏ2b3XYÞ=2m�, fr⃗; r⃗0; r⃗00; r⃗000g each run
over all lattice sites and fα; β; σ; γg over band states
fg;⇑;⇓g. Since all included orbitals have the same wave
function along the Z direction and we assume tight
confinement VZ restricting the system to 2D planes, only
contributions from the terms proportional to the transverse
volume b3XY are relevant.
We evaluate all these terms and keep the ones that have

non-negligible coefficient Uαβσγ
r⃗;r⃗0;r⃗00;r⃗000 on realistic timescales

and are not inhibited by a band gap or another
stronger interaction [34]. For a sufficiently deep lattice
VX ¼ VY ≫ 1 the relevant terms give rise to an extended
Fermi-Hubbard model that consists of on-site (OS) and

nearest-neighbor (NN) interactions, Ĥint ¼ ĤðOSÞ
int þ ĤðNNÞ

int .
The on-site term is

ĤðOSÞ
int ≈U⇑⇓

X
r⃗

n̂r⃗;⇑n̂r⃗;⇓; ð6Þ

corresponding to a density-density interaction between ⇑
and ⇓ atoms with strength U⇑⇓ ¼ 4U⇑⇓⇓⇑

r⃗;r⃗;r⃗;r⃗ . On-site
interactions between ⇑, g and between ⇓, g are also
present but amount to a constant of motion for VX ¼ VY
and can be dropped. The nearest-neighbor terms are
anisotropic density-density interactions given by

ĤðNNÞ
int ≈ Vee

X
r⃗

�
n̂r⃗;⇑n̂r⃗þr⃗X;⇑ þ n̂r⃗;⇓n̂r⃗þr⃗Y ;⇓

�

þ V⇑⇓

X
r⃗;ν¼X;Y

�
n̂r⃗;⇑n̂r⃗þr⃗ν;⇓ þ n̂r⃗;⇓n̂r⃗þr⃗ν;⇑

�
: ð7Þ

Here, r⃗ν is a lattice unit vector along the ν ∈ fX; Yg
direction. The interaction Vee ¼ 4U⇑⇑⇑⇑

r⃗;r⃗þr⃗X ;r⃗þr⃗X;r⃗
is between

nearest-neighbor pairs of atoms in the same excited
orbital along their excitation direction, as depicted in
Fig. 1(a). V⇑⇓ ¼ 4U⇑⇓⇓⇑

r⃗;r⃗þr⃗X;r⃗þr⃗X ;r⃗
is an interaction between

nearest neighbor atoms in different excited orbitals.
For a sample atom choice of 40K and parameters of
VX ¼ VY ¼ 25, VZ ¼ 100, bXY ¼ 292 a0 with a0 the
Bohr radius (a 20-fold increase in background volume),
we predict coefficients of J0 ¼ 5 Hz, J1 ¼ 130 Hz,
U⇑⇓ ¼ 900 Hz, Vee ¼ 0.3 Hz, and V⇑⇓ ¼ 0.1 Hz.
These parameters are used in the following calculations,
unless otherwise specified.
Momentum-space spin model.—The implementation of

an anisotropic extended Fermi-Hubbard model, Eq. (3),
already offers exciting opportunities for quantum simula-
tion [37]. However, as a first step we are specifically
interested in regimes amenable for theoretical analysis,
starting from a fully polarized initial state, where never-
theless p-wave interactions play a dominant role. For our
p-wave system, however, the large spin dependent
dispersion in ĤJ will induce fast single particle dynamics

that quickly depolarizes the initial state. To favor ordering
of the orbital states, one can reduce competitive depolari-
zation via the introduction of a laser field that couples ⇑
and ⇓:

ĤΩ ¼ Ω
2

X
k⃗

�
ĉ†
k⃗;⇑

ĉk⃗;⇓ þ H:c:
�
: ð8Þ

Experimentally, such a term can be generated by an optical
field whose Bragg grating is oriented along a diagonal
reciprocal lattice vector [see Fig. 1(b)]. We assume that the
drive couples only atoms with equal quasimomentum,
which can be ensured with appropriate laser wavelengths
and orientation [34]. Dressed with this coupling, the single-
particle eigenenergies E�

k⃗
of the atoms change from Ēk⃗ �

ϵk⃗ to Ēk⃗ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2
k⃗
þ ðΩ=2Þ2

q
. When Ω=2 ≫ jϵk⃗j, the aniso-

tropic part of the spectrum ϵk⃗ is flattened, which allows
interactions to play a more dominant role in the spin
dynamics.
Under the assumption of a strong drive Ω=2 ≫ jϵk⃗j,

the flattened spectrum suppresses quasi-momentum-
changing collisions between the atoms, which renders each
atom frozen in a given k⃗ mode when evolving from a
collective initial product state. In this regime, also known
as the collisionless regime [38,39], we can approximate
the Fermi-Hubbard model with a spin-1=2 model
ĤFH þ ĤΩ ≈ ĤS:

ĤS¼
X
k⃗;k⃗0

Uk⃗;k⃗0 σ⃗k⃗ · σ⃗k⃗0 þ
X
k⃗;k⃗0

Vk⃗;k⃗0 σ̂
x
k⃗
σ̂x
k⃗0
þ
X
k⃗

�
ϵk⃗σ̂

x
k⃗
þΩ
2
σ̂z
k⃗

�
;

with coefficients

Uk⃗;k⃗0 ¼−
U⇑⇓

4L
−
V⇑⇓

2L
½cosðkXa−k0XaÞþcosðkYa−k0YaÞ�;

Vk⃗;k⃗0 ¼
Vee−2V⇑⇓

4L
½2−cosðkXa−k0XaÞ−cosðkYa−k0YaÞ�:

Here, we define spin operators σ̂α
k⃗
¼ â†

k⃗;μ
σαμμ0 âk⃗;μ0 , σ

α the

standard 2 × 2 Pauli matrices for α ∈ fx; y; zg, summing
over new dressed atom flavors μ; μ0 ∈ f↑;↓g that are
eigenstates of the drive [see Fig. 1(c)]:

âk⃗;↑ ¼ 1ffiffiffi
2

p ðĉk⃗;⇑ þ ĉk⃗;⇓Þ and âk⃗;↓ ¼ 1ffiffiffi
2

p ðĉk⃗;⇑ − ĉk⃗;⇓Þ:

ð9Þ

The on-site contribution proportional to U⇑⇓ is SU(2)
symmetric, because only the orbital singlet state of the two
excited bands can interact, while the nearest-neighbor terms
yield XXZ-type anisotropicity.
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Ramsey spectroscopy.—To probe the system dynamics,
we consider the time evolution of a collective product state

jψ0i ¼ eiθŜ
y
Y
k⃗

j →ik⃗; ð10Þ

where j →ik⃗ ¼ ðj ↑ik⃗ þ j↓ik⃗Þ=
ffiffiffi
2

p
is an X-excited (⇑)

band state and Ŝα¼x;y;z ¼ 1
2

P
k⃗ σ̂

α¼x;y;z

k⃗
are collective-spin

operators. This state corresponds to either all spins pointing
along the x direction of the dressed Bloch sphere, or
inclined at some angle θ into the x-z plane [see Fig. 1(c)].
Such a state can be prepared from a band insulator by using
Raman coupling schemes and control over the lattice depth
[34]. We still assume ideal filling of 2 atoms per site,
although a small hole fraction can be tolerated [34].
To probe the dynamics of this initial state, we propose a

Ramsey-style protocol. The system is initialized and
evolved for a time t=2 under the full Hamiltonian. The
sign of the drive is then quenched from þΩ → −Ω with,
e.g., a fast pulse of the laser detuning, and the system is
evolved for another time t=2, undoing the drive’s single-
particle rotation. Then the collective observable hŜþi ¼
hŜxi þ ihŜyi≡ CðtÞeiϕðtÞ is measured where C ¼ ðhŜxi2 þ
hŜyi2Þ1=2 is the contrast, and ϕ ¼ arghŜþi an interaction-
induced phase shift.
Measurements of such collective-spin observables are

straightforward to implement as the excited bands have
different spatial distributions upon being released from the
lattice. Turning off both the drive and the lattice and
measuring the resulting gas cloud’s X-band population
(⇑) via band-mapping [40] allows measurements of hŜxi.
Leaving the drive on for an additional time tΩ ¼ π=2 after
the Ramsey protocol rotates y into x, allowing the meas-
urement of hŜyi via an hŜxi measurement. While hŜzi is in
principle conserved for Ω=2 ≫ jϵk⃗j, we can also measure it
by advancing the relative phase of the Bragg beams ahead
by π=2, which allows us to use the drive for a π=2 pulse that
rotates z into x and then measuring hŜxi once more.
Figures 2(a),(b) show the single-particle spectrum E�

k⃗
and representative time evolution of the contrast for both
the driven Fermi-Hubbard model ĤFH þ ĤΩ and the spin
model ĤS, starting from jψ0i and setting θ ¼ 0. Panel
(a) corresponds to the case of a weak drive Ω=2≲ jϵk⃗j and
(b) to the case of a strong drive Ω=2 ≫ jϵk⃗j. We see a
characteristic crossover from fast single-particle dynamics
to a slow collective interaction-induced decay. To more
clearly identify these regimes and benchmark our spin
model mapping, we compare the time evolution of the two
models in Fig. 2(c) with a root-mean-square error of the
contrast. The spin model is valid when either the lattice
depth is very shallow and single-particle tunneling domi-
nates, or when the drive is strong enough to flatten the
spectrum and make the single-particle dispersion

subdominant with respect to the p-wave exchange inter-
actions. At this point, a many-body gap energetically
suppresses single-particle dynamics and keeps the spins
aligned, allowing for collective behavior [29,41].
One-axis twisting.—When in the collective, gap-

protected regime, the dominant spin model terms are
the Heisenberg term −ðU⇑⇓=4LÞ

P
k⃗;k⃗0 σ⃗k⃗ · σ⃗k⃗0 and the

drive ðΩ=2ÞPk⃗ σ̂
z
k⃗
. Both these terms conserve the total

spin S, defined by S⃗ · S⃗jS;Mi ¼ SðSþ 1ÞjS;Mi where
S⃗ ¼ ðŜx; Ŝy; ŜzÞ, and jS;Mi are collective-spin eigenstates
with non-negative S ∈ ðL=2Þ; ðL=2Þ − 1;… and projection
M ∈ S; S − 1;…;−S (satisfying ŜzjS;Mi ¼ MjS;Mi). A
spin-polarized initial state in the fully symmetric Dicke
manifold S ¼ L=2 will be confined to that manifold, as
transitions to other manifolds induced by the kinetic terms
will be energetically suppressed by the many-body gap
[29,41,42]. This permits us to further simplify the
Hamiltonian by projecting it into the Dicke manifold
[34], yielding ĤS ≈ ĤOAT, where

ĤOAT ¼ −ðU⇑⇓=LÞS⃗ · S⃗þ χŜzŜz þΩŜz: ð11Þ

This is a one-axis twisting (OAT) model, which is well
studied for its entanglement generation in the form of spin
squeezing [43]. The coefficient χ is

χ ¼ 1

L − 1

2ðJ0 þ J1Þ2U⇑⇓

Ω2 −U2
⇑⇓

−
1

L
ðVee − 2V⇑⇓Þ: ð12Þ

(a) (c)

(b)

FIG. 2. (a),(b) Single-particle spectrum E�
k⃗
¼ Ēk⃗ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵ2
k⃗
þ ðΩ=2Þ2

q
and characteristic contrast time evolution for

(a) a weak drive Ω=2≲ jϵk⃗j and (b) a strong drive Ω=2 ≫ jϵk⃗j
for the Fermi-Hubbard+drive model ĤFH þ ĤΩ (green) and
spin model ĤS (purple). (c) Benchmark comparison of the
two models’ agreement. Both models are evolved from a
product state jψ0i with θ ¼ 0 to a fixed time tf ¼ 50=J1,
and their contrast C is compared with a root-mean-square error
ΔC ¼ ½ð1=tfÞ

R tf
0 dtjð2=LÞðCS − CFHþΩÞj2�1=2, truncated to

minðΔC;0.2Þ for clarity, using a small system L ¼ 3 × 3. The
representative evolutions in panels (a),(b) are indicated by the
circle and triangle, respectively. The purple dashed line indicates
the collective regime explored further in Fig. 3.
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The first term comes from the tunneling, and the second
from the nearest-neighbor interactions.
The coefficient χ can be measured using our Ramsey

protocol through the phase shift ϕ. At the mean-field level,
under the OAT model the collective spin rotates about the z
axis of the Bloch sphere at a rate hŜþi ¼ ðL=2ÞeiϕðtÞ, with
ϕðtÞ ¼ 2χhŜzit ¼ χL sinðθÞt where hŜzi ¼ ðL=2Þ sinðθÞ is
conserved. Figure 3(a) shows sample time evolutions of
hŜxi ¼ Re½hŜþi� with a tilt angle θ ¼ π=4 for both the OAT
and the underlying Fermi-Hubbard and spin models. We
see the expected oscillation with period set by 2χhŜzi.
In Fig. 3(b), we show the same dynamics for a larger
system using only the OAT. The frequency of the oscil-
lations is not very sensitive to system size since χ ∼ 1=L
and hŜzi ∼ L sinðθÞ. Since the amplitude of the oscillations
is proportional to the contrast, which decays more slowly
with increasing L, better visibility of the oscillations is
possible in larger systems.
Conclusions and Outlook.—We have shown a robust and

experimentally realistic protocol for observing long-sought
p-wave physics in optical lattices. Our specific band
configuration and laser dressing allows one to isolate the
interaction dynamics via collective enhancement and see a
signal on realistic timescales without the usual challenges
of band relaxation or losses due to strong Feshbach
resonance. The system can be reduced to a simple one-
axis twisting model described by a single interaction
parameter χ, which is straightforward to measure while
capturing the dominant many-body p-wave effects.
While in this work we focus on simple dynamics probed

via mean-field Ramsey spectroscopy, well controlled
spin interactions such as OAT provide avenues to useful

many-body entanglement generation and nonequilibrium
quantum simulation. Further progress can realize more
complex and interesting extended Fermi-Hubbard models
[44] that are theoretically challenging and yet straightfor-
ward to implement in experiment using extensions of our
basic scheme. This system also allows the exploration of
noncollective physics, including pairing, the effects of
vacancies, or local quantum correlations, using tools such
as quantum gas microscopes already implemented in
several state-of-the-art optical lattice experiments [45–49].
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