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Abstract: 

Biomolecular thermodynamics, particularly for DNA, are frequently determined via van’t Hoff analysis 

of optically-measured melt curves. Accurate and precise values of thermodynamic parameters are 

essential for the modelling of complex systems involving cooperative effects, such as RNA tertiary 

structure and DNA origami because the uncertainties associated with each motif in a folding energy 

landscape can compound, significantly reducing the power of predictive models. We follow the sources 

of uncertainty as they propagate through a typical van’t Hoff analysis to derive best practices for melt 

experiments and subsequent data analysis, assuming perfect signal baseline correction. With 

appropriately designed experiments and analysis, a van’t Hoff approach can provide surprisingly high 

precision, e.g., enthalpies may be determined with a precision as low as a 10-2 kJ∙mol-1 for an 8 base 

DNA oligomer. 

Statement of Significance: 

Models to predict the behavior of complex cooperative nucleic acid systems, e.g., DNA origami, require 

high-quality thermodynamic data.  van't Hoff analysis is a ubiquitous tool for extracting thermodynamic 

parameters from ensemble measurements. In nucleic acid systems, where specific reactions can be 

readily labelled and melt curves gathered with high throughput, van't Hoff analysis can rapidly extract 

thermodynamic data. Ensuring that this data has the necessary precision requires that numerous 

experimental design decisions be optimized. We identify best practices that can improve precision by 

several orders of magnitude for minimal additional effort for a typical van’t Hoff analysis. 

 

Introduction: 

Biochemical and biomimetic systems exhibit complex responses to their environments because they 

sample numerous conformational states, which differ by amounts  ⪆ kT (≈ 2.6 kJ∙mol-1 or 0.6 kcal∙mol-

1) (1). For example, proteins are able to sample states over a wide range of energies, even when well-

folded, because their intrinsic energy fluctuations, resulting from their coupling with local energy 

fluctuations in the surrounding water, can be much larger than kT – on the order of 42 kJ∙mol-1 to 

84 kJ∙mol-1 (10 kcal∙mol-1 to 20 kcal∙mol-1 or 17 ×kT to 34 ×kT)(1).  Conformational changes are 

important in many situations, including binding of antibodies to pathogens to trigger immune 

response(2); ligand binding, e.g., of carbon monoxide to myoglobin in blood(3); and albumin binding, 

relevant in drug clearance from the body (4, 5).  For any biomacromolecule, the conformation is the 

sum of the states of all the motifs of which it is comprised.  The cooperation or competition between 

these motifs defines the overall conformational and energetic landscape and thus the interactions with 

the environment. 

Designing and engineering biomolecular and biomimetic energy landscapes to yield the desired range of 

conformational states requires reliable and accurate predictive tools. Developing such tools is 

challenging for many reasons(6), not the least of which is that the uncertainties in the motif energetics 

compound as they compete or cooperate. This significantly raises the bar for acceptable uncertainties 

above what is needed to predict the behavior of those motifs in isolation. 

Regardless of the technique used to obtain thermodynamic parameters, any mismatch between the 

assumed mechanism, or number of states, and what actually occurs in a sample can significantly 
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degrade predictions based on those parameters(7).  It is thus important to draw a distinction between 

model-form uncertainties and experimental uncertainties. Experimental uncertainties, as the name 

suggests, come from the execution of an experiment and include variations in sample preparation, 

equipment noise (precision), and inaccuracy. Model-form uncertainties occur in analysis, or in 

prediction, when the mathematical equation used to describe a system does not reflect reality. Such 

uncertainties must be evaluated using uncertainty propagation for each model choice. 

Examples of model-form uncertainties in nucleic acid systems might include assuming that a DNA 

system with multiple multivalent domains, e.g., origami, will form one or two states when in reality it 

might form three, four, or, if polymerization occurs, an indeterminate number(8). Similarly, it is 

common to assume a dsDNA strand will melt in a two-state process, but if the strand is long enough or 

stable enough, it may sample many partially melted states(9). Fitting the ensemble information to an 

incorrect model will create significant inaccuracies, and is an easy mistake to make(7). 

In the experimental measurement of thermodynamics, calorimetry is the gold standard as it directly 

measures evolved or absorbed heat. However, all flavors of calorimetry require a large sample mass to 

guarantee sufficient signal-to-noise, and will detect heat from the entire sample, not just the reaction of 

interest. Calorimetry is also comparatively low-throughput, the thermal isolation and long equilibration 

times needed for heat measurements are rarely amenable to rapid data acquisition. It is also worth 

noting that entropy values from calorimetry are not directly measured but are estimated through input of 

measured enthalpies and temperatures into the van’t Hoff equation.  

Given the limitations of calorimetry, fitting equilibrium constants from melt curves is a common 

alternative for extracting thermodynamic parameters. These curves are typically derived from optical or 

electrochemical signals, that, with appropriate experimental design, can be made specific to the reaction 

of interest(10, 11) and are compatible with high-throughput measurement, e.g., covalent modification of 

a target structure to enable Förster resonant energy transfer (FRET)(1, 12). The benefits of specificity 

and ease of data collection come at the cost of more complex uncertainty propagation from the 

measurement, through the statistical analysis, to the extracted thermodynamic properties and subsequent 

predictions. 

While the superficial ease with which van’t Hoff analysis can be performed has made it ubiquitous,(13, 

14) researchers seeking reliable results must navigate between the Scylla of reliance on simplistic 

approaches and the Charybdis of abandoning valuable data because of van’t Hoff analysis’s reputation 

as “in practice inaccurate”(14). We believe it timely to re-examine this topic, given the increasing 

popularity of high-resolution melting (HRM) DNA experiments(15, 16) and the growth of DNA 

nanotechnology(17–19).  

In revisiting uncertainty propagation in van’t Hoff analysis of melt curves, we focus on sources of 

uncertainty that are common to most or all melt curve analyses, and thus emphasize the role of 

experimental uncertainties over system-specific model-form uncertainties. While the rest of this article 

focuses on nucleic acids, with an eye towards modelling DNA nanotechnology, the insights and best 

practices we address are more broadly applicable. 

A robust discussion of best practice may also help to reconcile the divergences in advice and experience 

that arise in van’t Hoff analysis of nucleic acid melt curves. As the numerous tertiary structure 

prediction tools(20–23) and duplex thermodynamic webtools(24, 25) develop, it would be beneficial to 

know the degree to which minor disagreements in their results(26, 27) are definitional(28), represent 

meaningful distinctions, or are actually in agreement within uncertainty. 

A similar discussion of van’t Hoff analysis has occurred recently in the Isothermal Titration 

Calorimetry (ITC) community(28). ITC simultaneously generates both calorimetric  thermodynamic 



parameters and the ensemble information necessary for van’t Hoff analysis(29). Comparisons between 

values derived by each approach and discrepancies between them led to a reevaluation of uncertainty 

propagation for ITC(30–34). For a general paper that addresses experimental design we recommend 

work by Zhukov and Karlsson(35). 

In nucleic acid systems, especially those employed in DNA nanotechnology(36, 37), one must contend 

with complex topologies comprising a variety of tertiary and quaternary motifs. Predicting their energy 

landscapes involves grappling with the uncertainty in the energetics of these motifs as well as the sheer 

number of possible events in the folding funnel. For example, loop entropy in DNA origami(38), is not 

well-captured by existing models for biological systems, and requires sufficient sample mass to 

confound calorimetry data with significant background signal. This makes high-quality van’t Hoff 

analysis of optical melt curves, whose signal is only correlated to the motif of interest, highly desirable.  

The energetic contributions of such a motif are extracted from melt curves by measuring some reference 

sequence with, and without, the motif of interest, as shown in Fig. 1 B. The energetics of this motif, 

with its uncertainty, are then applied to some other system of interest, shown in Fig.1 C, to predict its 

behavior. When predicting complex systems, the uncertainty of a single measurement will be amplified 

by the number of motifs and competing states or structures, significantly raising the bar for what 

constitutes a sufficiently small uncertainty to enable useful prediction. 

 
Fig. 1. A - The uncertainties on motif thermodynamics for loops, aptamers, etc., compound in complex systems, including 

nucleic acid tertiary structures.  These comprise numerous motifs and often contain multiple competing states, as 

illustrated by two possible tertiary structures for 255 bases of the M13mp18 origin of replication. Energetic uncertainties 

on folding motifs are important in DNA origami where a large viral scaffold is incrementally folded into a rigid shape 

during the annealing process. B - Typically, the excess energetics, e.g., loop entropy, for motifs which cannot be 

measured independently are found by comparing separate measurements of a reference sequence (green), and reference 

sequence attached to the motif (black). C - Data from the motif is used to predict its effect on a new system (blue).  A 

large uncertainty (20 %) in the energetics of the motif propagates, leading to a large spread in predicted melt temperature 

for the new system. 

 For both nanotechnology and tertiary structure prediction, it is worth mentioning the toehold-mediated 

catalysis method for designing a van’t Hoff experiment(39, 40). While this technique also feeds 



ensemble information through the van’t Hoff equations, by clever design of competing strand 

displacement, it directly probes competition between a sequence with and without a motif of interest in 

a single sample, which significantly reduces uncertainty. We note that that it is best suited for 

motifs(40) with modest energetic contributions, e.g., dangling ends and mismatches, while melt-curve 

analysis is better suited to motifs whose energetic contributions are larger, e.g., aptamers and loops, but 

not large enough to make calorimetry a viable option. 

The relationship between the energetics of a reference and motif for measurement may most easily be 

derived for unimolecular systems, shown in SI Section 2, and depicted in Fig. 2. Ideally, a motif should 

shift the melt curve as much as possible, but not beyond the measurable range in liquid water.  To 

satisfy this constraint, in a typical unimolecular system, the motif may contribute as much as 20 % of 

Gtotal. Larger shifts can be tolerated in bimolecular systems by changing concentrations and making 

use of the concentration dependence of Tm to move the melt curve back into the measurable range. 

However, for systems where the energetics are not precisely known a priori a useful heuristic is that the 

energetics of the motif should be ≈ 10 % of those of the reference. Toehold-based techniques which 

measure the ensemble between the reference strand with, and without, the motif directly would 

correspond to a Gref of zero(39, 40). This allows for precise evaluation of very small Gmotif, as in 

dangling ends, but precludes measurement of motifs with a larger energetic contribution(40). 

 

Fig. 2. Relationship between the relative stability of 

the motif of interest and reference sequence. There is a 

clear optimal measurement zone in which the melt 

curve is shifted through as much of the measurable 

range as possible but not beyond it. The vertical 

dashed line denotes the end of the measurable range 

and the boiling point of water. 

This 10 % rule of thumb is especially useful as the uncertainties on the extracted thermodynamics are 

proportional to the magnitude of the terms themselves. As there are two measurements whose 

uncertainties are added in quadrature, 𝜎𝑚𝑜𝑡𝑖𝑓 = √𝜎𝑟𝑒𝑓
2 + 𝜎𝑟𝑒𝑓+𝑚𝑜𝑡𝑖𝑓

2 = √𝜎𝑟𝑒𝑓
2 + 1.12𝜎𝑟𝑒𝑓

2, we can 

therefore approximate the uncertainty on the motif to be slightly greater than √2𝜎𝑟𝑒𝑓. As the reference 

must be proportionally larger than the motif, i.e., 10×, such an experiment is expected to have 10 ∙ √2 

higher uncertainty than one directly measuring the motif energetics. 

Evaluating these uncertainties is further complicated by the ease with which the thermodynamics are 

perturbed. If FRET pairs, rather than UV-vis, circular dichroism, or electrochemistry, are used to obtain 



the ensemble information in Fig.1 and Fig. 2, they can shift hybridization thermodynamics in a 

sequence-dependent manner(41), similarly, dangling DNA bases make sequence-specific energetic 

contributions to hybridization(40, 42, 43).   

For van’t Hoff analysis of melt curves, perturbations from FRET pairs will cancel as they exist in both 

the reference and motif sample. However, they will contribute to uncertainty the same way any change 

in the reference energetics would, i.e., by increasing Gref. The contributions of dangling ends(44, 45), 

or base stacking, between the motif and reference sequence do not cancel in this way. However, any 

complex system of interest will have such a contribution where the motif is connected to the system.  

We consider this a system-specific model-form consideration and encourage the experimentalist to 

carefully describe the context of the measurement and the theorist to carefully consider that context 

when developing their predictions.  

We revisit the sensitivity of van’t Hoff analysis of optically measured nucleic acid melt curves to 

experimental uncertainties through simulation. In doing so, we aim to develop a physical intuition of 

how uncertainty propagates through van’t Hoff analysis of melt curves to the extracted thermodynamic 

parameters, and how experimental choices can exacerbate or minimize that uncertainty. 

Most of our recommendations can be inferred from the observation that for van’t Hoff analysis, the 

measured quantity is the melt curve, rather than the thermodynamic quantities themselves. Anything 

which allows better sampling of the distribution of melted versus unmelted states will significantly 

increase the accuracy of the thermodynamic parameter extraction. We additionally observe that both 

neglect of ΔCp and the use of numerical derivatives significantly reduce the quality of the analysis. 

Finally, we reiterate that we leave many model-form considerations for future work. We assume a 

statistically rigorous signal baseline subtraction technique which accurately represents the ensemble, 

and do not consider the role of the variety of available approaches(46–48). Similarly, we neglect the 

role of least-squares algorithm settings in finding the broad and shallow minimum in fit quality as a 

function of ΔH°, ΔS°, and ΔCp, nor do we consider advanced fitting techniques which fit the melt curve 

directly using nonlinear regression. 

Van’t Hoff analysis at a glance:  

The goal of van’t Hoff analysis is to use ensemble information to extract thermodynamic parameters for 

a state change. The van’t Hoff relation, Eq.(1), connects the equilibrium constant, K, with the Gibbs free 

energy change between states, ΔG(T), gas constant, R, and temperature, T. 

The concentrations of both products and reactants are found by assuming the melt curve represents the 

fraction of ssDNA (FssDNA), and that the transition is from fully hybridized dsDNA to fully melted 

ssDNA. If these assumptions are not valid, additional care must be taken in the analysis(49). Eqs. (2) 

and (3) describe the equilibrium constant, [K], for bimolecular and unimolecular cases, respectively. [C] 

is the known concentration of the component strands, which cancels out for unimolecular reactions, and 

σ is the uncertainty on FssDNA. To limit the number of variables being tested, we assume for bimolecular 

systems that [Strand1] = [Strand2] in Eq. (2). 

Eq.(1): [𝐾] = 𝑒
−𝛥𝐺(𝑇)

𝑅𝑇  

Eq.(2): [𝐾𝑏𝑖] =
[Products]

[Reactants]
=

[dsDNA]

[Strand1][Strand2]
=

1−(𝐹𝑠𝑠𝐷𝑁𝐴±𝜎)

(𝐹𝑠𝑠𝐷𝑁𝐴±𝜎)(𝐹𝑠𝑠𝐷𝑁𝐴±𝜎)[𝐶]
 

Eq.(3): [𝐾𝑢𝑛𝑖] =
[Hairpin]

[ssDNA]
=

1−(𝐹𝑠𝑠𝐷𝑁𝐴±𝜎)

(𝐹𝑠𝑠𝐷𝑁𝐴±𝜎)
 



The right side of Eq.(1) gives the thermodynamic quantities of interest, specifically the temperature-

dependent change in Gibbs free energy, ΔG(T), which is further divided into temperature dependent 

enthalpy, ΔH(T), and entropy, ΔS(T). These in turn are described as temperature independent terms, ΔH° 

and ΔS°, where temperature dependence is represented by the change in heat capacity, ΔCp, at a given 

reference temperature, Tref, as shown in Eq.(4) , Eq.(5), and Eq.(6). 

Eq.(4): 𝑙𝑛( [𝐾]) =
−𝛥𝐺(𝑇)

𝑅𝑇
= −

𝛥𝐻(𝑇)

𝑅𝑇
+

𝛥𝑆(𝑇)

𝑅
 

Eq.(5): 𝛥𝐻(𝑇) = 𝛥𝐻° + 𝛥𝐶𝑝(𝑇 − 𝑇𝑟𝑒𝑓) 

Eq.(6): 𝛥𝑆(𝑇) = 𝛥𝑆° + 𝛥𝐶𝑝 𝑙𝑛 (
𝑇

𝑇𝑟𝑒𝑓
) 

These combine to give Eq.(7), which may be fitted to extract thermodynamic quantities from ensemble 

information as a function of temperature. 

Eq.(7): 𝑙𝑛( [𝐾]) = −
𝛥𝐻°

𝑅𝑇
+

𝛥𝑆°

𝑅
−

𝛥𝐶𝑝

𝑅
((1 −

𝑇𝑟𝑒𝑓

𝑇
) − 𝑙𝑛 (

𝑇

𝑇𝑟𝑒𝑓
)) 

Typical analysis of optical data involves plotting ln([K]) vs 1/T, and fitting the ΔH°, ΔS°, and ΔCp as the 

slope, the intercept at infinite temperature, and the curvature respectively. From Eq.(7) it is not 

straightforward to determine how uncertainties on T and on FssDNA will propagate through to ΔH°, ΔS°, 

and ΔCp. Variations in concentration due to uncertainties in pipetted volume have a negligible effect on 

the extracted parameters as they typically occur in single-digit percentages, and the concentration terms 

are inside a logarithm, shown further in SI Section 11.  We therefore neglect pipetting uncertainty, 

however, for samples prepared via serial dilution, uncertainties compound, and may become non-

negligible. 

Three important insights from Eq.(2) and Eq.(3) may be obtained at a glance.  First, we see that as 

FssDNA approaches the values of 0 and 1, the uncertainty, σ, will dominate [K]. This is why many 

approaches to van’t Hoff analysis only use the melt temperature, Tm, defined as the temperature where 

FssDNA = 0.5. At the Tm, uncertainty in [K] is at its lowest. A more phenomenological explanation is to 

say that the signal-to-noise ratio of the measured reaction is highest in the center of the sigmoid and 

lowest on the plateaus. 

The second insight is that noise in FssDNA propagate asymmetrically into ln([K]). By examining Eq.(2), 

we can see that, at the plateau where FssDNA = 1, noise creates only small perturbations in [K], while at 

the plateau where FssDNA = 0 the small denominator amplifies the effects of noise and thus perturbations 

in [K]. This can distort the fit, particularly if normalization or selection of fractional data range is sub-

optimal, discussed in section 15 of the SI. 

The third insight is the statistical nature of entropy-enthalpy compensation. The relatively narrow range 

of accessible 1/T values, coupled with the inevitable experimental uncertainties in ln([K]) means that a 

shift in fitted slope, ΔH°, will result in a compensating fit in intercept, ΔS°, as illustrated in Fig. 3. 

While entropy-enthalpy compensation may exist as a result of genuine physical phenomena, one should 

be cautious in inferring its existence from thermodynamic data obtained via van’t Hoff analysis(50, 51). 



 
Fig. 3. Illustration of extraction of entropy and enthalpy 

from a van't Hoff plot, and mapping of uncertainty in K 

on to statistical compensation in ΔH° and ΔS°. The 

uncertainty envelope in K is narrowest at the Tm. The red 

and blue lines illustrate compensating fits that could 

appear equally valid in the presence of experimental 
uncertainty. For graphic simplicity the effects of ΔCp, are 

neglected in this illustration. 

 

While Fig. 3 neglects curvature in ΔH(T) and ΔS(T), i.e., ΔCp, for visual clarity, it is of sufficient import 

to address directly. While the choice of Tref is arbitrary (typically standard temperature, 25 °C, or 

physiological temperature, 37 °C), ΔCp describes the curvature in the van’t Hoff plot (example in SI 

Section 1) and the Tm is the center of that curvature for any given melt experiment. The uncertainty in 

ΔCp therefore propagates from that data center of mass at the Tm on to both ΔH(T) and ΔS(T) as a 

function of (T-Tm), as shown in Eq.(8) and Eq.(9) (assuming no correlation in uncertainty between ΔH° 

and 𝛥𝐶𝑝, and no uncertainty in temperature) and which is readily derived from Eq.(5).  

Eq.(8): ∆𝐻(𝑇) = 𝛥𝐻𝑇𝑟𝑒𝑓=𝑇𝑚

° + 𝛥𝐶𝑝(𝑇 − 𝑇𝑚) 

Eq.(9): 𝜎𝛥𝐻(𝑇) = √𝜎𝛥𝐻°
𝑇𝑟𝑒𝑓=𝑇𝑚

2 + (𝜎𝛥𝐶𝑝
(𝑇 − 𝑇𝑚))

2

 

The initial Tm must be reported in order to recapitulate temperature dependent uncertainties and 

evaluate the excess thermodynamics of arbitrary motifs, since their temperature dependent uncertainties 

become more complicated, as the 𝜎𝛥𝐻(𝑇) from two separate measurements (Fig.1 b) are added in 

quadrature. 

The uncertainty in the ΔH° and ΔS° at a reference temperature, whether standard or physiological, will 

be amplified by the uncertainty in ΔCp by (Tref -Tm). Given that the Tm changes as the phenomenon of 

interest shifts the energetics, this can cause non-negligible systematic trends in uncertainty. Predictions 

of uncertainty over a broad temperature range require both the uncertainty on ΔCp and the value of Tm. 

It is not possible to simply define what constitutes a sufficiently precise uncertainty. A motif with some 

kiloJoules per mole of uncertainty in its enthalpy might contribute more or less to the envelope of 

predicted behavior depending on whether that motif contributes an entropy change and whether 

compensation is accounted for. Similarly, a measurement that is good enough to predict behavior close 

to the Tm might fail entirely at much higher or lower temperatures.  What constitutes an acceptably 

accurate and precise measurement of thermodynamics depends intrinsically on how one wishes to use it 

and should always be evaluated on a case-by-case basis. 

Methods Simulations: We apply a Monte Carlo method: equilibrium melt curves are calculated from 

input thermodynamic quantities, noise is then applied to the melt curves to generate pseudo-

experimental data, which is then analyzed. This process is automated and can rapidly compare the 



precision of extracted thermodynamics for different experimental designs and analysis styles and is 

discussed in depth in SI section 4 and 5.  

Despite the speed and simplicity of each simulation, the size of parameter space in van’t Hoff analysis 

is vast, especially when including experimental choices. Parameters worth considering include values 

for ΔH°, ΔS°, and ΔCp, number of sample replicates, concentration, Tm ranges, method for determining 

Tm, criteria for what fraction of the melt curve to analyze, whether analyzing a unimolecular (hairpin) or 

bimolecular reaction, etc. These multifarious choices present both a logistical hurdle and a complex data 

presentation/communication problem. 

As our emphasis in this work is on general lessons for experimental design, we bound this space 

whenever possible. We separately vary noise and accuracy in temperature (x-axis) and noise only on the 

readout (y-axis). We assume all melt curves report from 0 % to 100 % completion and that any y-axis 

shifts are removed in normalization. We fix the density of measurements on the x-axis to the 

temperature imprecision, i.e., an instrument with 0.1 °C temperature imprecision cannot reasonably 

measure optical intensity at temperature intervals smaller than 0.1 °C. 

Finally, we do not address the complex issue of optical melt curve baseline correction here, as it is 

sufficiently nuanced and signal-dependent that it merits its own in-depth evaluation(46, 47, 52). 

Default simulation inputs: We choose a 10 base sequence as being sufficiently short for accurate van’t 

Hoff analysis.  We assume measurement uncertainties consistent with those of a typical laboratory PCR 

system.  Our simulation inputs are therefore as follows: 

Thermodynamic: Bimolecular reaction, ΔH° = -292.0 kJ∙mol-1 (-69.8 kcal∙mol-1), ΔS° = -815.9 J∙mol-

1.K-1 (-195 cal∙mol-1∙K-1), ΔCp = -4.18 kJ∙mol-1.K-1 (-1.0 kcal∙mol-1∙K-1) 

Reference temperature: Tref = 37 °C, physiological temperature, unless otherwise stated 

Model uncertainties: 0.1 % readout noise (y-axis), 0.1 °C temperature imprecision, no temperature 

inaccuracies 

Analysis: Fractional data range 0.8, Tm range of ±10 °C associated with varying concentration for multi-

melt curve experiments and default concentration of 40 µmol∙L-1. When varying concentration both 

[ssDNA] are set to be equimolar. 

Replicates: 2 000 replicates of each data point were performed.  This is significantly more than could be 

performed experimentally and ensures accurate sampling of the uncertainty on the uncertainty envelope 

of the extracted thermodynamic parameters.  

Reporting uncertainties: We have found it simplest to report relative rather than absolute 

uncertainties. We choose to divide our uncertainty into the Relative Standard Deviation (RStD) to 

represent variance and precision, Relative Systematic Deviation (RSyD) to represent accuracy, and 

Relative Total Deviation (RTD) to represent total uncertainty. We use Relative Deviation (RD) for axis 

labels when these are plotted together. These are shown respectively in Eq.(10), Eq.(11), and Eq.(12), 

where i is the ith of n replicates, 𝛥𝐻°̂  is the average extracted enthalpy, and 𝛥𝐻°
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑  is the input 

enthalpy. 

Eq.(10): 𝑅𝑆𝑡𝐷𝛥𝐻° =
1

𝛥𝐻°
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

√1

𝑛
∑ (𝛥𝐻°

𝑖 − 𝛥𝐻°̂ )
2

𝑛
𝑖  

Eq.(11): 𝑅𝑆𝑦𝐷𝛥𝐻° =
1

𝛥𝐻°
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

∑ (𝛥𝐻°
𝑖 − 𝛥𝐻°

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) 𝑛⁄𝑛
𝑖  



Eq.(12): 𝑅𝑇𝐷𝛥𝐻° = √𝑅𝑆𝑡𝐷𝛥𝐻°
2 +  𝑅𝑆𝑦𝐷𝛥𝐻°

2
 

The RStD, RSyD, and RTD are defined similarly for ΔS°, and ΔCp. 

We plot RTD and RSyD as a function of any given source of uncertainty. The RTD provides a measure 

of what might be expected for a typical analysis, which would converge towards the RSyD if an infinite 

number of samples were analyzed under the same conditions to remove all uncertainty due to random 

variation.  

While the use of relative uncertainties allows for easier generalization of trends and comparison 

between noise conditions and experimental systems, it can complicate comparison between 

measurements. In such cases, we may report the total uncertainty in real units, which we will denote as 

TD, SyD, and StD.  

To facilitate evaluation of how ‘good’ a measurement or experimental design must be, we choose a 

benchmark uncertainty, which represents the RTD on a single measurement, propagated to the 

uncertainty on the motif of interest, that would shift the predicted melt curve by 0.25 ⁰C. This condition 

is satisfied when the relative uncertainty is less than 0.0006 RTDΔH°, 0.00069 RTDΔS° or 0.176 kJ∙mol-1 

and 0.57 J∙mol-1∙K-1, respectively (derived in SI Section 3).  This benchmark is shown as a downward 

arrow on the y-axis in Figs. 8 and 9, and sets a high bar for what constitutes an acceptable uncertainty.  

However, it is necessary for quantitative prediction of complex nucleic acid tertiary structure or DNA 

nanostructures which exhibit multiple layers of cooperativity and competition. As we will show, it is 

also achievable. 

We note that the uncertainties on our uncertainties (RStD, RSyD, & RTD), as quantified by box 

averaging, are sufficiently low to fit within the data markers, and are thus not plotted. 

A note on notation: It is rare to delve into thermodynamics in any depth without being pursued by the 

spectre of sign errors. In nucleic acid systems, thermodynamics may be referenced either to melting or 

hybridization. While experimental work often reports in reference to melting, and predictive work often 

reports in reference to hybridization, this is by no means universal. In this work, we use and report the 

energetics of hybridization 

Results & Discussion 

Common experimental designs, van’t Hoff analyses, and resultant features: There are two common 

setups of a van’t Hoff melt-curve experiment. The first, shown in Fig. 4 A, involves measurement of the 

melt curve at only one concentration and uses some fraction of the data points around the Tm. This is 

necessary for unimolecular interactions where varying the concentration will not shift the Tm and allows 

sampling in ln([K]) vs. 1/T space. 



 

Fig. 4. A - Single curve, full-width analysis illustration and resulting uncertainty as a function of fractional data range for 

0.1 %, 1.0 %, and 2.0 % read noise. The upper bound of each shaded region represents the total uncertainty, RTD, and the 

lower bound represents systematic contributions, RSyD, and thus the smallest possible uncertainty. B - Concentration 

variation analysis illustration, the table shows experimentally achievable Tm for example oligomers of different lengths of 

base pairs (bp), and corresponding plots show relative and real-unit uncertainties as a function of the achievable Tm range. 

It should be noted that a 100 bp strand would be highly unlikely to melt in a two-state reaction. 

 

For this approach, it is important to note that the uncertainties in Eq.(2) and Eq.(3) are magnified at 

values of FssDNA close to 0 or 1. In short, the further a data point is away from the Tm the more noise, and 

the less signal, it contributes to the fitting. There is some ideal fractional data range of the melt curve for 

which any additional data points will degrade the quality of the analysis.  This optimal fractional data 

range depends on the steepness of the curve, density of data points in T, and read noise of the 

equipment, as depicted in Fig. 4 A. For our default analysis condition, we choose a fractional data range 

of 0.8 of the melt curve around Tm, as this is close to the optimum value for the three different read 

noise conditions shown in Fig. 4 B. This is not a universal, optimal, fractional data range, which we 

hope to pursue analytically in later work. Rather, this is a reasonable rule of thumb, in line with our 

understanding of typical practice for van’t Hoff analysis of melt curves. This range will avoid 

contributing more noise than signal except in only the most egregious cases and readily captures the 

lowest uncertainty for ln([K]) in the melt curve. 

In the second, and more common experimental setup, illustrated in Fig. 4 B, the concentrations of one 

or both the ssDNA reactants are varied, while only the Tm is used for the analysis. This minimizes the 

effect of the uncertainty in FssDNA, in Eq.(2), but at the cost of much additional experimental work as 

most of the data available from the melt curve is discarded.   



The range over which Tm can be varied by changing concentrations is bounded by solubility and 

sensitivity limits for the maximum and minimum achievable concentrations, respectively. As longer 

oligomers experience less of a Tm shift with concentration (see Fig. 4 B) they can only sample a smaller 

ΔTm range, resulting in a less precise van’t Hoff analysis. The RTD in ΔH° for the example oligomers 

are plotted as a function of ΔTm, where dashed RTD lines indicate ΔTm values outside of the 

experimentally achievable range. The RTD for longer oligomers at the same ΔTm is slightly lower than 

for short oligomers, as the change in concentration for the former is larger at that same ΔTm, slightly 

increasing the sampled space in ln([K]).  When reported in real units, van’t Hoff analysis is far more 

accurate for weaker interactions, even before accounting for the larger achievable ΔTm range accessible 

with them.   

It is worth considering how the shape and position of the curves changes the quality of the parameter 

extraction. This will also provide a good example of temperature dependent uncertainties. Fig. 5 A and 

B, shows two sets of systems in which the thermodynamics were varied in ways not representative of 

real DNA strands, in order to independently vary the width and position of the melt curves. In the first, 

we varied the width of the melt curve by changing the input ΔH° and choosing a value of ΔS° to keep Tm 

constant, the ΔCp was scaled with ΔH° to minimize shifts in Tm, and to prevent the curve from 

exhibiting cold denaturation. In the second, we varied the Tm by keeping ΔS° constant and varying ΔH°. 

Details for both sets of simulations are given in the SI Section 5. All of these melt curves were analyzed 

using the default fractional data range of 0.8. 

 
Fig. 5. A - Example illustrating the effect of melt-curve width on uncertainty where the upper line represents the 

uncertainty on a typical experiment, RTD, while the lower line of a pair represents the systematic contributions, RSyD. B 

- Large changes in Tm have minimal effects on the RTD and RSyD. Both A and B are evaluated at Tref = Tm as opposed to 

Tref = 37 °C to allow comparison before the projection of uncertainty in ΔCp across Tm-Tref. 

 

As shown in Fig. 5 A, steeper curves result in higher RTD and RSyD. Additionally, it should be noted 

that, because narrower widths correspond to larger thermodynamic parameters, the uncertainty in real 

units is also larger.   

The RTD ΔH° of systems with identical melt-curve widths but different Tm, when evaluated at Tref = Tm, 

as plotted in Fig. 5 B, yields essentially identical values of RTD ΔH°.  Comparison with Fig. 6 A, which 

shows the temperature-dependent RTDΔS(T) and RSyD ΔS(T), in which the uncertainty on ΔCp is projected 

across T onto ΔS(T), illustrates how important this effect is. It should be noted that for each of these 

curves the input ΔS° is identical. The difference in size and position of the uncertainty envelope is solely 

due the difference in Tm and compensation of uncertainty between the varied input ΔH° and ΔS°. In Fig. 

6 B the RTD of ΔH° and ΔS° are plotted as a function of Tm at Tref = 37 ° C, as opposed to Tref=Tm in 



Fig. 5 B.   As one might expect from Fig. 3, the uncertainty on the thermodynamics increases the further 

the Tm is from Tref, resulting in a systematic trend in RTD. As many phenomena of interest to the 

experimentalist systematically shift the Tm, care must be taken when fitting across numerous 

experiments weighted by their uncertainties, as it is possible to accidentally introduce systematic errors. 

The Tm variation example system in Fig. 5 B and Fig. 6 A also serves to illustrate the uncertainty 

propagation for the measurement type shown in Fig. 1, by extracting the excess ΔH° between the two 

most disparate curves in Fig. 5 B. The temperature dependent uncertainties, Eq.(9), for the reference 

and reference+motif are added in quadrature and plotted in Fig. 6 C. This shows that the temperature-

dependent uncertainty of the motif is larger than for either constituent measurement and has a shallower 

minimum between the data-centers-of-mass for each constituent measurement. This is reported in real 

units, as relative uncertainties cannot be added if they are relative to different quantities.  

 
Fig. 6. A - Uncertainty on ΔS(T) for three of the Tm 

variation examples in Fig. 5 B, where the upper line 
bounding a shaded region represents the typical 

experiment uncertainty, RTD, and the lower line 

represents the systematic contributions, RSyD. B - 

Data from Fig. 5 B, evaluated at Tref = 37 °C, showing 

the projection of uncertainty in ΔCp on to ΔS° and ΔH° 

for RTD, upper curves and RSyD, lower curves. As 

this plot shows both ΔS° and ΔH° we did not shade the 

uncertainty envelope. C - Uncertainty (TD) in real 

units for the excess ΔH° calculated from the ΔH°= -

300 kJ∙mol-1 and -275 kJ∙mol-1 melt curves as the 

‘reference+motif’ and ‘reference’, respectively. Note 

that the extracted excess ΔH° is 25.1 kJ∙mol-1, with 
uncertainty of (± 31, ± 18, and ± 11) kJ∙mol-1 at 4 °C, 

25 °C, and 37 °C respectively. 

 

These differences are useful to consider when interpreting studies which neglect ΔCp. The quality of fit, 

and exact value of ΔH° and ΔS°, as evaluated at Tref = Tm only change subtly when ΔCp is not included, 

shown in SI section 6.  As demonstrated in the preceding discussion, ignoring the temperature 

dependent uncertainty on the fitted parameters introduces systematic errors when comparing the 

energetics of systems with different Tm. 



For the experimentalist, we highlight the following as key features of van’t Hoff analysis:  first, that 

sampling too much, or too little, of the melt curve can significantly reduce accuracy, and that the 

optimum sampling will be system dependent; second, melt curve width and accessible concentration 

variation are important and, where possible, reference strands with smaller energetics should be used; 

third, the temperature dependence of fitting uncertainty should be considered. 

While it may seem counterintuitive that a larger energetic change is harder to measure than a smaller 

one, it is critical to emphasize that in van’t Hoff analysis one is not measuring the thermodynamics but 

measuring the melt curve and extracting the thermodynamics. 

Individual melt curves, instrumental uncertainties: Before comparing full simulations in which 

numerous replicates are measured and analyzed, it is informative to observe the basic behavior of the 

van’t Hoff analysis of an individual melt curve as a function of the different sources of uncertainty. To 

do so, we separately varied readout noise, temperature imprecision, and temperature accuracy using the 

default energetics and a bimolecular reaction, with a 1:1 ratio between the ssDNA strands and at a 

concentration of 40 µmol∙L-1.  

Examples of the noise applied to the melt curve, and its effect on the extracted thermodynamic 

parameters in real units, and their uncertainties in relative terms are shown in Fig. 7. Each data point in 

the middle rows of plots in Fig. 7 represent a single Monte Carlo simulation of van’t Hoff analysis. In 

the bottom two rows, the RTD and RSyD are plotted with and without data markers respectively. 

While the red melt curves at the top of Fig. 7 may not appear excessively noisy, the corresponding ΔH°, 

ΔS°, and ΔCp plots reveal significant variation. As the temperature imprecision determines both the 

minimum temperature increment and data density along the x-axis, its effect on analysis precision is 

particularly pernicious, damaging it twofold. 

In short, a melt curve which “looks good” may still be of insufficient quality for accurate parameter 

extraction. 

A second feature of note is the correspondence between the cartoon in Fig. 3 and the middle rows of 

Fig. 7. These simulations replicate the appearance of entropy/enthalpy compensation(50, 51) solely 

through the effect of experimental uncertainty on the fit in ln([K]) vs 1/T. Similarly, there is a 

temperature dependent compensation between either ΔH° or ΔS° and ΔCp, as shown in the SI section 14, 

when Tref = Tm, the distribution in ΔCp appears more random.  This makes sense as the variation in ΔCp 

propagates onto ΔH° as a function of (Tref - Tm). 

Generally, the uncertainties in the bottom two rows match our expectations for the propagation of 

equipment uncertainties through the analysis. It is important to note that for ΔH° and ΔS° the RTD is 

orders of magnitude higher than our benchmark uncertainty – this is unsurprising, as it is unlikely that a 

single replicate of an experiment would provide sufficiently precise thermodynamic information. 



 
Fig. 7. Single curve van’t Hoff analysis. Top – Effect on melt curve of readout noise (left), temperature noise (center), and 

temperature accuracy (right).  The black curve is the ground truth, while the red points represent the simulated 
measurements. Middle – scatter plots of the extracted ΔH° and ΔS° (upper row) and the ΔH° and ΔCp (lower row) for 

individual simulations, where black, blue, and red indicate varying readout noise (0.0125 %, 1 %, 2.5 %), temperature 

imprecision (0.025 °C, 0.5 °C, 1 °C), and temperature accuracy (0.01 °C, 1 °C, 5 °C), respectively. Bottom – uncertainty 

where the top curve represents a typical single curve measurement, RTD, and the lower represents the limit imposed by 

systematic effects, RSyD, for ΔH° and ΔS° (upper row) and for ΔCp (lower row). All simulation inputs not being explicitly 

varied in the plot were set to default conditions, including Tref  = 37 °C. 



Full experiments, choices in experiment and analysis: In actual experiments, van’t Hoff 

analysis is generally applied to many replicate measurements of a system of interest. As 

discussed briefly above, the two most common experimental setups and analytical approaches 

for van’t Hoff analysis are to vary the concentration and only use the Tm, or to average melt 

curves from many replicates of a single concentration and use some fraction of that averaged 

curve. Here we present a third, hybrid approach which combines the multiple concentrations 

of the first with the more complete data utilization of the second. 

These approaches will be referred to as the “Avg. Replicate, Full Curve”, “Varied Conc., Tm 

Only”, and “Varied Conc., Full Curve”, respectively. 

Examples of both the melt curves and van’t Hoff plots of these three approaches are 

presented in the first two rows of Fig. 8. As is immediately apparent, the hybrid analysis has 

two advantages. First, the increase in data density makes identification and quantification of 

curvature in the van’t Hoff plot, i.e., ΔCp, far easier. Second, it provides redundancy in 

ln([K]) vs 1/T space where data from multiple curves overlap. Errors in fluorescence, 

ultraviolet-visible absorbance, or circular dichroism baseline correction may be revealed as 

mismatches between the ends of overlapping curve segments. 

The bottom third of Fig. 8 shows the RTDΔH° for these three styles of experiment as a 

function of the number of samples measured in a single experiment, and as a function of the 

fractional data range. In the former, the concentration for each sample in an experiment was 

set such that each experiment sampled the same range of ΔTm (10 °C), such that individual 

sample Tm values were evenly spaced across the ΔTm range. 



 
Fig. 8.  A – melt curve and van’t Hoff plots for three different types of van't Hoff exper'iment: ‘Average of 

replicates, full curve‘, ‘Varied concentrations, Tm only‘, and ‘Varied concentrations, full curve‘. B – 

uncertainty on  ΔH° as a function of the number of samples measured for each type with the same 

instrumental uncertainties (left), and  as a function of fractional data range for the two relevant types (right).  
The upper line bounding a shaded region represents the uncertainty on a typical experiment, RTD, while the 

lower line represents the systematic contributions, RSyD. The small arrows on the y-axis indicate the 

benchmark acceptable uncertainty. All simulations were run with inputs set to default conditions. 

It is unsurprising that Fig. 8 would indicate that precision in the “Varied Conc., Tm Only” is 

most sensitive to the number of samples. It uses the fewest data points of all three 

approaches, so it is furthest from the point of diminishing returns in data density. Similarly, 

the precision of the “Avg. Replicate, Full Curve” has a weak dependence on the number of 

samples, N, as averaging will only reduce the uncertainty on the noise in the melt curve by 

√𝑁. From Fig. 7, one would anticipate averaging curves to result in only moderate 

improvements in accuracy compared to measuring additional concentrations as the latter will 

increase the range of the measured data in 1/T. Finally, as one might anticipate from data 

density in the top plots of Fig. 8, the “Varied Conc., Full Curve” achieves the best precision 

for the least experimental effort. 

For the two “Full Curve” methods, the behavior of RTD as a function of the fractional data 

range is not dissimilar to that presented in Fig. 4. The precision for the “Varied Conc., Full 

Curve” approach is less sensitive than that of the “Avg. Replicate, Full Curve”, which is 

unsurprising as overlap between melt-curves in ln([K]) and 1/T can mitigate the effect of the 

asymmetric propagation of noise in FssDNA on to ln([K]). 

Full experiments, instrumental uncertainties: Fig. 9 and Fig. 10 show the uncertainty as a 

function of equipment uncertainties identical to those used in Fig. 7 for the three 

experimental approaches shown in Fig. 8. As the RTDΔH° and RTDΔS° are nearly identical, we 

choose to present only RTDΔH° and RTDΔCp to reduce visual clutter. As in the initial 



assessment of analysis approaches, the “Varied Conc., Full Curve” method is approximately 

30 × to 40 × more precise than either of the other two. 

One reason for this lower uncertainty is that the higher data density allows for a much better 

fit of the curvature of the van’t Hoff plot, thus reducing errors in ΔCp, Fig. 10 A, which, in 

turn reduces uncertainties when extrapolating other parameters to a given reference 

temperature, e.g., physiological temperature, as illustrated in Fig. 9. The various levels in ΔCp 

precision for the different experimental approaches, shown Fig. 10, are consistent with 

observations of ITC sensitivity(35), in that the analysis is also sensitive to the temperature 

range over which a transition is measured. 

The effects of averaging multiple melt curves on RTDΔH°, detailed in section 4 of the SI, 

shown in Fig. 9 are consistent with the expected 1 √𝑁⁄  scale reduction in noise associated 

with averaging N samples in a full-curve analysis for a single melt curve like the one shown 

in Fig. 7.  

 
Fig. 9. Comparison of the RTDΔH° evaluated at physiological temperature for different types of van't Hoff 

analysis as a function of read noise, temperature imprecision, and temperature accuracy under default 

conditions. The top line of each shaded region represents the uncertainty on a typical experiment, RTD, while 

the lower line of a pair represents the systematic contributions, RSyD. The small arrows on the Y axis 

indicate the benchmark uncertainty. 

The “Varied Conc., Full Curve” approach performs better than the benchmark for all the 

equipment uncertainty conditions. For a relatively efficient FRET pair and typical real time 

PCR equipment, read noise and temperature imprecision of < 0.1 % can be attained. 

 
Fig. 10. Comparison of RTDΔCp between van't Hoff approaches as a function of read noise, temperature 

imprecision, and temperature accuracy under default conditions. The upper line bounding a shaded region 



represents the uncertainty on a typical experiment, RTD, while the lower line of a pair represents the 

systematic contributions, RSyD and thus the smallest possible uncertainty. 

The results presented here are consistent with the observation that measurements with more 

data points, and data points over a broader range in a fitting space, i.e., the hybrid 

approach, will be less sensitive to sources of uncertainty.  

Full experiments, numerical derivatives and Tm: It is common in the literature, particularly 

with experimental data gathered using intercalating dyes, to use a numerical derivative 

(ΔFssDNA/ΔT) of the raw melt curve, typically without baseline correction but with some level 

of smoothing, to determine Tm, as shown in Fig. 11 A. Here, Δ denotes the change in the 

fraction of ssDNA over a corresponding temperature interval to obtain a numerical 

derivative, rather than as the change between two states for thermodynamic properties.  

This choice has serious limitations and significant drawbacks. The least of which is the 

validity of the claim that taking the numerical derivative of a melt curve ‘removes’ the 

temperature dependent baseline of its fluorescence reporter – this is only true if the baseline 

is perfectly linear and its contribution is added to the signal, rather being multiplied by the 

sigmoid. If the baseline is multiplicative to the signal, by the chain rule of differentiation, the 

Tm will be offset in proportion to the magnitude of the baseline temperature dependence. For 

many applications this may be a small difference, but the decision to ignore it should be made 

only after careful consideration. This is discussed further in SI Section 13. 

A more serious flaw of this approach, and a subject of previous work(28), is in the definition 

of Tm. For thermodynamic purposes, the Tm is defined as FssDNA = 0.5, or the halfway point of 

the reaction. However, the peak of ΔFssDNA/ΔT only gives FssDNA = 0.5 if the melt curve is 

odd-symmetric about the Tm, which is generally not the case, especially for bimolecular 

reactions. 

For the more mathematically inclined, the melt curve is a cumulative distribution function 

(CDF) of the density of hybridized versus melted states, while ΔFssDNA/ΔT is the probability 

density function (PDF). The peak of ΔFssDNA/ΔT gives the mode of this CDF, while the Tm is 

defined as the median. The median and mode are only the same if the CDF is odd symmetric. 

For a rigorous consideration of this problem, albeit neglecting the complication of a non-zero 

ΔCp, we direct the reader work by Owczarzy(28). 

Finally, and most importantly, numerical derivatives inherently increase noise. While 

smoothing algorithms are often used, this merely sweeps the uncertainty propagation out of 

sight. In short, using numerical derivatives to find the Tm results in an estimated value that 

has higher uncertainty and is inherently inaccurate.  

A preferable approach would be to fit a linear or quadratic function to a limited number of 

points about the Tm and interpolate that fitted function to FssDNA = 0.5. While this approach is 

susceptible to its own artifacts, especially if too many data points are fitted, it is more 

physically representative of the Tm and less likely to amplify noise in the data. 

To show this directly, we plot ΔFssDNA/ΔT and Tm by both interpolation and differentiation for 

several different melt curves in Fig. 11 A. These simulations were run under default 

instrumental uncertainties. The Savistky-Golay smoothing for ΔFssDNA/ΔT , and the number of 

data point used to interpolate across the linear fit, to FssDNA = 0.5, were both set at 11 to 

ensure a fair comparison where both approaches use the same amount of data. Plotting the 

known Tm against the extracted value, Fig. 11 B, clearly shows that the ΔFssDNA/ΔT technique 

is both less accurate than linear interpolation and has a large systematic inaccuracy.   It 



should be noted that a less-than-perfect signal baseline correction would also degrade the 

identification of Tm by interpolation. 

 

Fig. 11. A - numerical derivative of FssDNA with 

Savitsky-Golay smoothing. B - Extracted Tm versus 
true Tm value for both methods. Uncertainties lie 

within the symbol for the y-value interpolation. C - 

uncertainty on ΔH⁰ for the “Varied Concentration Tm 

Only” approach for both methods of Tm 
identification.  The upper bound of each shaded 

region represents the uncertainty on a typical 

experiment, RTD, while the lower bound represents 

the systematic contributions, RSyD. 

 Fig. 11 C shows how the use of numerical derivatives affects the RTDΔH° from the “Varied 

Conc., Tm Only” approach. Unsurprisingly, the use of a numerical derivative, ΔFssDNA/ΔT, 

results in an extraction of ΔH° that is at 100 × to 500 × less precise than interpolation. 



Quality of van’t Hoff analysis in real units: So far, we have used relative uncertainty (RD) 

to minimize visual clutter.  Here, we present some examples in real units to provide concrete 

examples and further illustrate the value of the simulation approach in guiding experimental 

design. 

In previous experimental work(38), we observed an ΔH° of -229.5 ± 3.2 kJ∙mol-1 (54.9 ± 0.76 

kcal∙mol-1) for a unimolecular looping event. A set of simulations using the experimental 

mean value of ΔH° as the input, discussed in detail in SI Section 9, yielded -231.0 ± 0.98 

kJ∙mol-1 (55.2 ± 0.23 kcal∙mol-1). It is encouraging that these Monte Carlo simulations return 

comparable uncertainties.  

A typical Monte Carlo simulation takes minutes to run, enabling an experimentalist to rapidly 

explore how modifications to an experimental design are likely to improve or degrade its 

results. For example, our experiments above would have realized a three-fold improvement in 

precision and reduced the systematic inaccuracy by half had they been performed with a 0.1 

⁰C temperature increment rather than 0.61 ⁰C. In the case of readout noise, the benefit of 

reducing the noise is less significant.  Our simulations (Fig. 7) show a relatively weak, close-

to-linear dependence of uncertainty on read noise, in good agreement with the relative error 

predicted analytically by Xi et al.(53).  As detailed in SI section 12, our test case for use of 

more precise and accurate equipment yields thermodynamic parameters approximately 2 × 

more precise.  Insights of this nature can be valuable in designing experiments to achieve a 

desired precision while ensuring the best return on equipment time, person-hours, and 

reagents. 

The benefits of using better equipment can be dwarfed by other experimental design choices.  

For example, the thermodynamic parameter extraction uncertainties for a random 8 base 

oligomer as compared to those for a random 30 base oligomer are 300 to 600 × smaller, as 

detailed in SI section 10. 

The same care and attention required to produce high-quality data from melt-curve 

experiments should also be exercised in choosing to do a melt-curve experiment in the first 

place.  Motif energetics may be determined most effectively using toe-hold-mediated 

catalysis, melt-curve methods, or calorimetry, depending on their magnitude and the presence 

of confounding factors. 

Conclusions 

As we have shown, van’t Hoff analysis of melt-curve data is much more sensitive to 

experimental design and the thermodynamics of the measured system than it is to equipment 

uncertainties. However, for any given combination of equipment and experimental design, 

the uncertainty in the analysis comes predominantly from random, equipment-related effects, 

rather than systematic effects.  We caution the reader that this conclusion does not reflect the 

effects of model-form errors, which will cause large systematic inaccuracies.  By avoiding 

the common pitfalls and applying the experimental design principles that we have described 

here, melt-curve experiments can deliver thermodynamic information that can be up to four 

orders of magnitude more precise1 for the same level of experimental effort. 

 
1 We observed improvements in precision of 100 × to 500 × when using interpolation versus a numerical 

derivative, 300 × to 600 × by using an 8 base oligomer versus a 30 base oligomer reference sequence, 30 × to 

40 × by using the “Varied concentrations, full curve” approach versus either the “Varied Conc., Tm Only” or 

“Avg. Replicate, Full Curve”, approaches, 5 × by using more concentrations than replicates, and 3 × by 

increasing data density in T (see SI sections 9, 10, & 12). The effects of these choices will vary by system, but 



Further improvements in thermodynamic predictions would be enabled by reliable models for 

per-base ΔCp. This would necessarily include accounting for systematic uncertainties that 

arise because variations in GC content cause variations in Tm, which, as we have discussed, 

change the propagation of uncertainty in ΔCp as a function of (Tm – Tref). 

We reiterate that van’t Hoff analysis does not directly measure thermodynamics, rather the 

melt curves are measured, and thermodynamics are extracted. In addition, as noted above, the 

uncertainty of van’t Hoff analysis degrades the further Tm diverges from Tref.  As an 

overarching principle, one should maximize the amount of ln([K]) vs. 1/T space one samples, 

while minimizing unnecessary propagation of noise, e.g., from the melt curve plateaus.  This 

principle leads to the following best practices: 

• Avoid using numerical derivatives. 

• Use the smallest feasible reference sequence. 

• Focus on acquiring data at more concentrations versus more replicates.  

• Maximize the data density across the melt transition. 

• Do not neglect ΔCp without careful consideration. 

 

We again note that the fitting landscape in terms of ΔH°, ΔS°, and ΔCp is shallow, i.e., there 

are many slightly different sets of thermodynamic values that yield similar fit quality. In 

combination with the entropy-enthalpy compensation artifact, this shallow fitting landscape 

means that results can vary with fitting algorithm settings and numerical precision. We plan 

to investigate these factors in future work. 

Finally, we emphasize that the best practices discussed here may be usefully applied to 

ensemble data of many kinds of reversible biomolecular interactions, e.g., protein binding. 
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