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Abstract

Nanoporous materials (NPMs) selectively adsorb and concentrate gases into their pores and
thus could be used to store, capture, and sense many different gases. Modularly synthesized
classes of NPMs, such as covalent organic frameworks (COFs), offer a large number of candidate
structures for each adsorption task. A complete NPM-property table, containing measurements
of relevant adsorption properties in candidate NPMs, would enable the matching of NPMs with
adsorption tasks. However, in practice, the NPM-property matrix is only partially observed (in-
complete); many different properties ofmany different NPMs have not beenmeasured. The idea
in this work is to leverage the observed (NPM, property) values to impute the missing ones. Sim-
ilarly, commercial recommendation systems impute missing entries in an incomplete product–
customer ratings matrix to recommend products to customers. We demonstrate a COF rec-
ommendation system to match COFs with adsorption tasks by training a low-rank model of an
incomplete COF–adsorption-property matrix constructed from simulated uptakes of CH4, H2O,
H2S, Xe, Kr, CO2, N2, O2, and H2 at various conditions. A low-rank model of the COF–adsorption-
property matrix, fit to the observed (COF, adsorption property) values, provides (i) predictions of
themissing (COF, adsorption property) values and (ii) a map of COFs, wherein COFs, represented
as points, with similar (dissimilar) adsorption properties congregate (separate). The COF recom-
mendation system is able to rank COFs reasonably well for most of the adsorption properties,
but imputation performance diminishes precipitously when the fraction of missing entries ex-
ceeds 60%. The concepts in our COF recommendation system can be applied broadly to impute
missing data pertaining to many different materials and properties.
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1 Introduction

Nanoporous materials (NPMs) [1] often exhibit permanent porosity and possess large-area internal
surfaces [2] decorated with functional groups. This enables them to (selectively) adsorb and concen-
trate gases in their pores [3–5]. As a result, NPMs have applications in storing [5], separating [4, 6],
and sensing [7] gases, as well as in catalysis [8].

Advanced families of NPMs, such as metal-organic frameworks (MOFs) [9], covalent organic frame-
works (COFs) [10], porous polymer networks (PPNs) [11], porous organic cages (POCs) [12], and
metal-organic polyhedra (MOPs) [13,14], are constructed modularly frommolecular building blocks.
The copiousness of compatible building blocks within many topologies, together with postsynthetic
modifiability [15], makes the number of possible NPM structures extremely large [16].

Figure 1: Recommendation system for
nanoporous materials (NPMs). In this toy
NPM–adsorption-property matrix, entry (m, p)

represents the value of adsorption property p
of NPM m. Many entries are unobserved (“?”)
because measurements are missing. The goal of
our NPM recommendation system is to use the
observed entries (values depicted by color) to
impute the unobserved entries, allowing recom-
mendation of NPMs for various adsorption tasks
(requiring a certain adsorption property). This
is analogous to commercial recommendation
systems that aim to make product recommen-
dations tailored for specific customers, with
NPM:product::adsorption property:customer.

Thus, we have a large list of candidateNPMs and a
list of their adsorptionpropertieswewish to know
for their many applications. If this NPM-property
data table were complete, both searching for (i)
the optimal NPM for a given application [1] and
(ii) the optimal application for a given NPM [17]
would be trivial look-up problems. However, in
practice, the NPM-property data table, whether
constructed from experimental adsorption mea-
surements [18, 19] or molecular simulations of
gas adsorption in libraries of NPMs [17], is likely
incomplete because many (NPM, property) val-
ues have not been observed, i.e., (i) for any given
NPM, only a proportion of its adsorption proper-
ties have beenmeasured, and (ii) for any given ad-
sorption property, it has beenmeasured in only a
proportion of the NPMs (see Figure 1).

The idea in this work is to leverage the observed
(NPM, property) values to predict the missing
ones, i.e., to impute the missing values of, or
complete, the NPM-property matrix. A machine
learning strategy to complete the NPM-property
matrix is much less expensive and time consum-
ing than experimentally measuring or computa-
tionally simulating these missing properties. The
machine-completed NPM-propertymatrix is valu-
able because it can be used to direct higher fi-
delity but more expensive (experimental or sim-
ulated) measurements toward the most promis-
ing materials, thereby using less resources in the
search for the optimal NPM for a given application.
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Our hypothesis, which would permit accurate matrix completion, is that the NPM-property matrix
exhibits a low-rank structure [20,21], owing to underlying structural and chemical similarities among
both NPMs and gases that dictate their interactions. Specifically, we assume a low-rank structure
where both NPMs and adsorption properties can be represented by low-dimensional vectors that
together express the affinity between a (NPM, property) pair. These latent representations can be
jointly machine learned using the observed (NPM, property) values, then used to impute the missing
ones [22,23].

Our goal to “fill in” the missing values in the NPM-property matrix—primarily to recommend NPMs
for specific adsorption tasks—is analogous to the goal of a commercial recommendation system
that recommends products to customers. For example, consider a movie recommendation system
at Netflix [23]. Movie ratings by Netflix users are stored in a movie-user rating matrix (rows: movies,
columns: users, entries: rating) [23]. The movie-user rating matrix is incomplete; most entries are
missing because (i) each user rated only a small proportion of the movies and (ii) each movie is rated
by only a small proportion of the users. A movie recommendation system leverages the observed
(movie, user) ratings (perhaps, in addition to features of the movies and users) to impute the miss-
ing ones [24]. The machine-completed movie-user rating matrix is then used to make user-specific
recommendations of movies. Thus, the (material, property) values in our material recommendation
system are analogous to (product, customer) ratings in commercial recommendation systems.

Herein, we demonstrate a prototype recommendation system, based on a low-rank matrix model
[22,23], that recommends COFs for various gas adsorption tasks. The COF–gas-adsorption-property
matrices pertain to 572 experimentally reported COFs [25] and the simulated adsorption of CH4,
H2O, H2S, Xe, Kr, CO2, N2, O2, and H2 in those COFs at various conditions [17] relevant to different
gas storage and separation applications. Advantageously, this COF–gas-adsorption-property matrix
is in reality complete, allowing us to ablate different fractions of the entries and investigate how
imputation performance depends on the fraction of missing values. From the observed (COF, gas
adsorption) values, we machine learn a low-rank model of the COF–gas-adsorption-property matrix,
giving low-dimensional latent vector representations of both the COFs and the adsorption proper-
ties. This low-rank model provides: (i) predictions of the missing (COF, gas adsorption property)
values and (ii) a “map,” wherein COFs are represented as points and COFs with similar (dissimilar)
adsorption properties congregate (separate). Such a map of COFs is useful for experimental design
to explore COF space and for the optimization of promising but still suboptimal “lead” COFs.

1.1 Review of Previous Work

Machine learning plays an important role in the discovery and deployment of NPMs [26–33]. Su-
pervised machine learning models have been widely used to predict the adsorption properties of
NPMs [34–43] from vectors of hand-crafted structural features [44, 45] or a graph representation
[46, 47]. Unsupervised machine learning methods have been used to embed NPMs into a low-
dimensional “material space” [48] and cluster together NPMswith similar structures [49–52]. Genetic
algorithms [53–56], Monte Carlo tree search [57], and Bayesian optimization [58,59] have been used
to more efficiently search for the NPM(s) with an optimal adsorption property. Finally, recently [60]
an autoencoder enabled inverse design [61,62] of NPMs, where one specifies a desired adsorption
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property, and the machine learning model generates a NPM structure with that property. To enable
machine learning approaches to NPM discovery, several open, structured databases [63–65] of (i)
crystal structure models of NPMs [25, 66–70], (ii) simulated [17, 69, 71, 72] and experimentally mea-
sured [19] adsorption properties of NPMs, and (iii) electronic properties of NPMs [73,74] have been
curated. Text mining and natural language processing could be used to extract data and knowledge
from the literature for machine learning studies as well [75–77].

Our material recommendation system deviates from previous data-driven approaches to predict
properties of NPMs by: (i) as a latent variable model, embeddingmaterials into a latent space, negat-
ing the need for explicit, hand-crafted features of the NPMs, and (ii) performing multitask prediction
while (a) transferring knowledge between tasks and (b) handling missing values in the target vectors
associated with NPMs. Loosely related, meta-learning has been used to predict an adsorption prop-
erty of materials at different conditions by learning an intermediate representation of the material
based only on available adsorption data [78]. N.b., recommendation systems have been built for
use in chemical sciences to impute missing gas permeabilities in polymers [79], antiviral activities of
molecules [80], and stabilities of inorganic materials [81,82].

2 Material Recommendation System

Here, we formulate the general problem of material-property matrix completion.

A material recommendation system jointly machine learns, from observed (material, property) val-
ues, low-dimensional latent vector representations of thematerials and properties that express (ma-
terial, property) affinities. These learned representations allow us to (i) impute missing (material,
property) values and (ii) draw a map of the materials, wherein materials with similar properties con-
gregate.

2.1 Material—Property Matrix

Suppose we haveM candidate materials with P properties of interest. Entry (m, p) of theM × P
material-property matrix A, Amp ∈ R, represents the value of property p of materialm.

2.2 Observations (Data)

We have observations of Amp for (m, p) ∈ Ω ⊂ {1, 2, ...,M} × {1, 2, ..., P}, which defines Ω as
the set of ordered pairs describing the entries inA that are observed. That is, the material-property
matrix A is not complete; some entries are missing (|Ω| < MP ).

2.3 Objective

The objective is to leverage the observations {Amp}(m,p)∈Ω to complete thematerial-propertymatrix,
i.e. to predict the missing entries, {Amp}(m,p)∈{1,2,...,M}×{1,2,...,P}\Ω.
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2.4 The low-rank matrix model

From an element perspective, the low-rank model [22,23] assumes that each element of the matrix,
Amp , decomposes into

Amp ≈ mᵀmpp + µm, (1)

where mm ∈ Rk and pp ∈ Rk are low-dimensional (k < M,P ), latent vector representations
of material m and property p, respectively, and µm ∈ R is a bias for material m. The material-
property interaction term, the dot productmᵀmpp , represents the “affinity” (if positive) or “aversion”
(if negative) of material m for property p. Geometrically, the interaction term (i) depends on both
the norm of the vectorsmm and pp and the angle between them and (ii) is positive (negative) if the
vectors point in roughly the same (opposite) directions. The material bias µm reflects variation of
the values of the properties of materialm independent of interactions; some materials may simply
tend to have higher or lower values of the properties.

Figure 2: The low-rank model of the material-property
matrixA ≈MᵀP+µ1ᵀ. The columns ofM andP con-
tain the latent representations of theM materials and
P properties, respectively, which lie in a k -dimensional
space. The vector µ contains the M material biases.
Entry (m, p) of A is modeled as Amp ≈ mᵀmpp + µm.

From a matrix perspective, the low-rank
model factorizes thematerial-propertyma-
trix A as:

A ≈MᵀP+ µ1ᵀ (2)

with the columns of matricesM ∈ Rk×M
andP ∈ Rk×P containing the latent repre-
sentations of materials and properties, re-
spectively; the entries of the column vec-
torµ ∈ RM containing thematerial biases;
and 1 ∈ RP a column vector of ones. See
Figure 2. The dimensionality of the latent
space, k < M,P , imposes the constraint
rank(MᵀP) ≤ k , hence eq 2 is a low-rank
approximation of the matrix A.

2.5 The utility of the low-rank
model

The low-rank model of the materials-
property matrix is useful for two purposes
[22].

(1) Imputation of missing entries. The decomposition in eq 1 holds for both observed and unobserved
(material, property) values. Thus, once we learn M, P, and µ from the observed entries, we can
predict the unobserved entries, as is clear from eq 2.

(2) Construction of a low-dimensional map of the materials and properties. The rows of a fully observed
version of A, which lie in a P -dimensional vector space, can be viewed as feature vectors of the
materials. In this view, each material is represented by a list of its properties. The set of latent vector
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representations of thematerials, in the rows ofMᵀ, are embeddings/ compressions of the rows ofA
into a lower (k < P ) dimensional vector space. [22] Within this latent space, materials, represented
by {mm}, that tend to have similar (dissimilar) properties congregate (separate). Using dimension
reduction techniques, we can visualize the scatter of the materials in the low-dimensional space to
draw a “map” of materials. The latent representations of the materials, {mm}, and the map that
visualizes them are useful for: (i) grouping together/organizing materials with similar properties, (ii)
lead-optimization, where we search the map for materials nearby a “lead” material with a good but
still suboptimal property, (iii) selecting diverse materials to efficiently explore material space in an
experimental design, and (iv) training supervisedmachine learningmodels for other prediction tasks,
asmm is a feature vector for materialm.

Similarly, the columns of a complete version of A can be viewed as vector representations of the
properties, and the columns of P, the latent vector representations of the properties, are embed-
dings/compressions of them. Within this latent space, properties, represented by {pp}, that tend to
take on similar (dissimilar) values in NPMs congregate (separate).

The geometric interpretation of the dot product mᵀmpp in eq 1 makes a comparison between the
map of materials and the map of properties useful. The magnitudes of and the angle between a pair
of latent material and property vectors (mm,pp), taken together, indicate the affinity/aversion of
materialm with property p.

2.6 Machine Learning the low-rank model

We learn the latent representations of the materials and properties and the material biases from
the observed (material, property) values by balancing (i) the matching of the observed entries of the
matrix by the model given in eq 1 and (ii) the simplicity of the latent vector representations, to avoid
overfitting. Specifically, we aim to choose theM, P, and µ that minimize the loss ` = `(M,P,µ):

`(M,P,µ) =
∑

(m,p)∈Ω

[Amp − (mᵀmpp + µm)]2 + λ

(
1

M

M∑
m=1

||mm||22 +
1

P

P∑
p=1

||pp||22

)
. (3)

The first term is the approximation error, measured over all observations. The second term provides
L2 regularization of the latent vector representations of the materials and properties to prevent
overfitting and improve generalization, where λ > 0 is the regularization parameter. The sums are
normalized to properly weigh regularization of the latent material and property vectors.

Stochastic gradient descent or alternating minimization are commonly used to find a (M,P,µ) that
(locally [22]) minimize ` [22, 23]. In alternating minimization, we alternate between optimizing M
with P fixed and optimizing P withM fixed.

Two hyperparameters are involved in fitting a low-rank matrix model to the observed entries of A:
(1) k ∈ {0, 1, ...,min(M,P )}, the dimensionality of the vector space containing the latent represen-
tations of the materials and properties and (2) λ ∈ [0,∞), the regularization parameter that trades
off prediction accuracy on the training data and the simplicity of the latent vector representations.

6



3 Case Study: A COF Recommendation System

We now demonstrate a material recommendation system based on a low-rank matrix model. Here,
materials are COFs, and properties are the equilibrium uptakes of a variety of gases at different
conditions, obtained from molecular simulations. The Julia code to reproduce all of our work is
available at github.com/SimonEnsemble/material_recommendation_system.

3.1 Dataset

We construct the COF–adsorption-property matrix using an open data set (v9 on Materials Cloud
[64]) of simulated gas adsorption properties in M = 572 experimentally reported, porous COF
materials [17,25]. We selectedP = 16 simulated adsorption properties—the uptake [units: mmol/g]
and Henry coefficients [mmol/(g·bar)] of a variety of gases (CH4, H2O, H2S, Xe, Kr, CO2, N2, O2 and
H2) at various conditions pertinent to gas storage and separation applications (see Table 1). We
log10-transformed the Henry coefficients because of the relatively long tail of their distributions.
The resulting COF–adsorption-property matrix, Acomplete ∈ R572×16 is fully observed, allowing us
to study how imputation performance of the low-rank model depends on the completeness of the
matrix.

Table 1: List of Equilibrium Adsorption Properties Included in Our COF Recommendation System.

adsorption property thermodynamic condition units
O2 uptake 298 K, 5 bar mmol/g
O2 uptake 298 K, 140 bar mmol/g
CO2 uptake 300 K, 0.001 bar mmol/g
CO2 uptake 300 K, 30 bar mmol/g
N2 uptake 300 K, 0.001 bar mmol/g
N2 uptake 300 K, 30 bar mmol/g
H2 uptake 77 K, 5 bar mmol/g
H2 uptake 77 K, 100 bar mmol/g
H2 uptake 298 K, 5 bar mmol/g
H2 uptake 298 K, 100 bar mmol/g
CH4 uptake 298 K, 65 bar mmol/g
CH4 uptake 298 K, 5.8 bar mmol/g
H2O Henry coefficient 300 K mmol/(g·bar)
H2S Henry coefficient 300 K mmol/(g·bar)
Xe Henry coefficient 300 K mmol/(g·bar)
Kr Henry coefficient 300 K mmol/(g·bar)

Figure 3 displays the distribution of and pairwise relationships between [standardized] adsorption
properties, and Figure S1 displays a pairwise correlation matrix of properties. Some properties are
strongly correlated, e.g., CH4 uptake at (298K, 65bar) and O2 uptake at (298K, 140bar), while oth-
ers, such as H2 uptake at (77K, 5 bar) and H2S Henry coefficients at 300K, are not. The low-rank
model exploits these correlations between properties to learn low-dimensional representations of
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materials and properties.
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Figure 3: The distribution of (diagonal) and pairwise relationships between (off-diagonal; each point
represents a COF) the simulated gas adsorption properties of the COFs (data from Ref. [17]). Each
property was z -score standardized to have zero mean and unit variance.

3.2 Methods

3.2.1 Simulating the Process of Data Collection

We simulate the stochastic process of incomplete data collection to construct an incomplete COF–
adsorption-property matrix A(θ) (stillM = 572 × P = 16) with a fraction θ ∈ [0, 1] of observed
entries. We construct A(θ) by (uniform) randomly sampling, without replacement, (1 − θ)MP en-

8



tries to ablate (change to missing) from the MP entries of Acomplete. Figure S2 in the Supporting
Information visualizes an instance of an incomplete COF–adsorption-property matrix A(θ=0.4).

3.2.2 Standardization of Adsorption Properties

In accordance with standard practice [22], we z -score standardize each adsorption property, i.e.,
we subtract from each column of A(θ) the mean of the corresponding adsorption property and
then divide by its standard deviation (each computed using only the observed, training examples).
We z -score standardize the adsorption properties for two reasons. First, standardization prevents
properties with a larger range/variance from dominating the loss function in eq 3. Second, z -score
standardization centers the latent vectors at the origin and is consistent with underlying model as-
sumptions, e.g., a probabilistic interpretation of (closely related) principal component analysis [83] is
that the data matrix is observed with normally distributed errors, justifying z -score standardization
as opposed to Min–Max normalization [22].

3.2.3 Training, Hyperparameter Tuning, and Testing

Given an incomplete COF–adsorption-property matrix A(θ), we outline how we arrive at a low-rank
model for deployment and test its imputation performance. Naturally, the [simulated] observed
entries of A(θ) are used for training and hyperparameter tuning, while the [simulated, but actually
known] unobserved entries are used as test data to evaluate the generalization error of the final
deployment low-rank model.

3.2.4 Fitting

To fit a low-rank matrix model to training observations, we use LowRankModels.jl [22] in the
Julia programming language [84]. LowRankModels.jl implements alternating proximal gradient
descent [22] to minimize the loss in eq 3 over the training observations.

3.2.5 Hyperparameter Selection

We aim to determine the optimal hyperparameters (k
(θ)
opt , λ

(θ)
opt) for the low-rank model. We ran-

domly partition the [simulated] observed entries of A(θ) into an 80/20% training/validation set. We
then fit a set of low-rank models, each with different hyperparameters, to the training data. The
optimal hyperparameters follow from those of the model that gives the lowest imputation error
(RMSE) over the validation set. The hyperparameter search is conducted over a regular 2D grid of (1)
k ∈ {1, 2, ..., 15} and (2) 25 values of λ ranging from 10 to 1000 and evenly spaced on a log scale.

3.2.6 Deployment of Low-Rank Model and Testing

Finally, the deployment low-rankmodel is a new low-rankmodel fit to all [simulated] observed entries
in A(θ) with hyperparameters (k

(θ)
opt , λ

(θ)
opt). We evaluate the performance of the deployment model

by comparing its predictions of the missing entries to the actual values of the missing entries that
comprise the test data.
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N.b., the loss and performance metrics are computed on the standardized and, in the case of Henry
coefficients, log10-transformed values.

3.3 Results for Observed Fraction θ = 0.4

We now demonstrate the utility of a low-rank matrix model, using a particular instance of an incom-
plete COF–adsorption-property matrix A(θ=0.4), for (i) imputing missing (COF, adsorption property)
values and (ii) drawing of a map of COFs and adsorption properties. Figures 4–6 all pertain to the
same deployment low-rank model trained using the instance ofA(θ=0.4) visualized in Figure S2. Our
hyperparameter sweep found k (0.4)

opt = 9, λ(0.4)
opt = 100.

3.3.1 Imputing the Missing Entries

We judge the performance of the deployment low-rank matrix model for imputing the missing en-
tries of the COF–adsorption-property matrix A(θ=0.4) by comparing the predictions of the missing
entries to the actual values in the test data set, composed of the [simulated] unobserved entries.

The parity plot in Figure 4a shows the joint distribution of the predictions for and actual values of
the missing (COF, adsorption property) entries in the test data set. The density is greatest along
the diagonal line of equality. The mean absolute error (MAE), root mean square error (RMSE), and
coefficient of determination (R2) are 0.3, 0.52, and 0.71, respectively. Themagnitude of the RMSE and
MAE are directly interpretable as units of a standard deviation in the adsorption property because
they are computed on the z -score standardized properties. Thesemetrics indicate that the low-rank
model imputes the missing entries of the matrix with reasonable accuracy.

The ultimate utility of the recommendation system is to rank COFs according to specific proper-
ties (for specific applications). Spearman’s rank (here, a ranking of COFs) correlation coefficient, ρ,
between the prediction of a missing (COF, adsorption property) value by the deployment low-rank
model and its actual value (from the test set), grouped by adsorption property, is shown in Figure 4b
(blue bars). If the recommendation system were to randomly rank the COFs, ρ would be zero, and
the search for the optimal COF orchestrated by the recommendation system would be equivalent
to a random, trial-and-error search; a perfectly accurate ranking of the COFs would result in ρ = 1.
With the exception of H2O Henry coefficients, the recommendation system ranks COFs according to
their properties reasonably well, with ρ > 0.6. The relatively poor ranking of COFs by H2O Henry
coefficient is explained by its very weak correlation with the other properties (see Figure S1).

Figure S3 shows the correlation between and the distributions of the material biases {µm} and the
interaction terms {mᵀmpp}, for the unobserved entries, in the deployment low-rank model. The
distributions are centered around approximately zero and exhibit a similar range, indicating that
both play a role in the prediction of the missing adsorption properties.

3.3.2 Comparing Imputation Performance to a Benchmark Model Amp ≈ µm.

As a baseline to judge the imputation performance of our recommendation system, we also train
and test (on the same data) a benchmark model that excludes the interaction term mᵀmpp in eq 1
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Figure 4: Performance of the deployment low-rank model in the task of imputing the missing (COF,
adsorption property) values in A(θ=0.4) comprising the test set. (a) Parity plot showing the joint dis-
tribution of the predictions for and actual values of the missing (COF, adsorption property) values.
The diagonal line represents perfect prediction. (b) Bar plot showing Spearman’s rank correlation
coefficient ρ between the predictions for and actual values of the missing (COF, adsorption prop-
erty) values, grouped by adsorption property. For comparison, the stars show ρ for the benchmark,
material bias model where Amp ≈ µm and the interaction term is excluded.

( =⇒ k = 0). This material bias model Amp ≈ µm [naively] considers only whether the COF
in question tends to exhibit high or low values of the properties (reflected in µm) when predicting
Amp. By comparing the imputation performance of this k = 0 material bias model with the k > 0

low-rank model, we quantify the extent to which the interactions between the COFs and the gas
adsorption properties—encoded in mᵀmpp terms for k > 0—are useful in the recommendation
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system for imputing the missing values.

For each adsorption property, the stars in Figure 4b show Spearman’s rank correlation coefficients
between the predictions of the missing (COF, adsorption property) values made by the benchmark
material bias model Amp ≈ µm and the actual values. Indeed, the interaction term enhances the
ability of the recommendation system to rank COFs according to each adsorption property, though
by different margins depending on the property. O2 adsorption at (298K, 5 bar) and N2 adsorption
at (300K, 0.001bar) are two properties where the interaction term is playing only a marginal role.
Overall, this indicates that our recommendation system is (i) learning interactions between COFs and
the adsorption properties and (ii)more likely to suggest high-performing COFs for an application than
a simpler strategy that selects COFs purely based on how they perform on average (as in thematerial
bias model).

Unsurprisingly, the material biases µm in the k > 0 low-rank model in eq 1 are strongly correlated
with the material biases in the benchmark material bias model Amp ≈ µm (see Figure S4).

3.3.3 The COF biases

The learned material bias of COFm, µm in eq 1, roughly describes the typical value of the (standard-
ized) gas adsorption properties of COF m. Figure 5 shows a partial, sorted bar plot of the material
biases {µm} of the COFs and displays the COF structureswith the lowest and highestmaterial biases.
Py-1P-quasi-AB (COF-LZU8) has the largest (smallest) µm, indicating that Py-1P-quasi-AB (COF-LZU8)
tends to exhibit the highest (lowest) values of the (standardized) gas adsorption properties among
the COFs. Given a new gas adsorption task for which we seek a maximal uptake, the high material
biasµm of Py-1P-quasi-ABmakes it a good candidate for measurements, in the absence of any other
information; in the analogy of movie recommendation systems, Py-1P-quasi-AB is like a movie that
is widely liked. Figure S3 shows the distribution of {µm}.

3.3.4 Learned Map of COFs and Gas Adsorption Properties

We now visualize and analyze the learned latent vector representations of the COFs, {mm}, and of
the adsorption properties, {pp}, in the deployment low-rank matrix model ofA(θ=0.4). We resort to
principal component analysis (PCA) to project {mm} and {pp}, contained in the columns ofM and
P, respectively, onto the 2D subspace spanned by the first two principal components ofM‖P, where
· ‖ · denotes horizontal concatenation. The dimension reduction incurred a relative reconstruction
error of 63% based on the Frobenius norm.

The resulting map of COFs in Figure 6a visualizes the organization of COF vectors {mm} in the latent
space. Because the learned latent representation of COFm,mm, encodes its adsorption properties,
COFs with similar (dissimilar) adsorption properties are expected to congregate (separate) in the
map. To illustrate, each COF vector in Figure 6a is colored by the (left) CH4 adsorption at (298K,
65bar), (middle) H2S Henry coefficient at 300K, and (right) H2O Henry coefficient at 300K. Indeed,
nearby COFs in the map tend to exhibit similar values of a given adsorption property: COFs with the
highest CH4 uptake at (298K, 65bar), H2S Henry coefficients at 300K, and H2O Henry coefficients at
300K, respectively, tend to lie on the bottom left, top, and top right of the latent COF space. Figure S7
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Figure 5: Ranked COF biases, {µm}, from the deployment low-rank model. Only the COFs with the
lowest and highest µm are shown. The bottom row visualizes the three top- and bottom-ranked COF
structures.

shows the COF map colored by the remaining adsorption properties.

Figure S8 shows the complete map of adsorption properties–i.e., the organization of the adsorption
property vectors {pp} in the latent space. Because the interaction term in eq 1 is the dot product
mᵀmpp , the location of the latent property vector pp indicates the region of latent space that tends
to contain COFs with high values of adsorption property p. To illustrate, compare (i) the location
of the latent property vectors {pp} pertaining to the CH4 adsorption at (298K, 65bar), H2S Henry
coefficient at 300K, and H2O Henry coefficient at 300K in Figure 6b and (ii) the location of the COFs
with the highest and lowest values of these properties in Figure 6a. The COFs whose latent vectors
are oriented in the same (opposite) direction of the latent vector of a property tend to have large
(small) values of that property.

In summary, Figure 6 illustrates that a low-rank model of an incomplete COF–adsorption-property
matrix machine learns a “map” of COFs, wherein COFs with similar adsorption properties congre-
gate. These latent representations were learned from the observed values in an incomplete COF–
adsorption-property matrix. The map of COFs, wherein proximity implies similarity of adsorption
properties, is practically useful for: (1) lead optimization, where we search the latent space for near-
est neighbors of a lead COFwith good but insufficient performance, (2) selecting diverse sets of COFs
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in an experimental design strategy to efficiently explore COF space, and (3) building supervised ma-
chine learning models to predict other properties of COFs, where the latent representations of the
COFs can serve as feature vectors.

In movie recommendation systems, the latent variables of the movies, contained in the vector rep-
resentations of the movies learned via a low-rank model from the observed (movie, user) ratings,
may correspond to interpretable, intuitive features of movies such as genre or orientation toward
children; however, they may also be uninterpretable [23]. It would be interesting to inspect the re-
lationship between the learned latent variables in the vectors {mm} and the structures of the COFs
they represent, which were not explicitly input to the recommendation system.
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Figure 6: Learnedmap of COFs and gas adsorption properties: the latent representations of (a) COFs,
{mm}, and (b) a subset of the adsorption properties, {pp}, projected onto the 2D subspace spanned
by the first two principal components (PCs) ofM ‖ P. (a) Each point represents a COF, colored by
(left) CH4 adsorption at (298K, 65bar), (middle) H2S Henry coefficients at 300K and (right) H2OHenry
coefficients at 300 K. (Outlier: Py-1P-quasi-AB.) (b) Each point represents an adsorption property.
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3.4 Effect of Observed Fraction θ on Performance

How complete must the COF–adsorption-property matrix be for the recommendation system to re-
liably rank COFs according to their adsorption properties? Because the COF–adsorption-property
matrix is in reality complete, we have the luxury of studying the impact of the fraction of observed
entries, θ, on the imputation performance of the recommendation system.
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Figure 7: Effect of the fraction of observed values θ on the performance of the recommendation
system for imputing missing (COF, adsorption property) values. Blue circles show the mean (over
50 simulations of data collection) Spearman’s rank correlation coefficient between the prediction
of the missing (COF, adsorption property) value and its true value, as a function of θ, grouped by
adsorption property. Yellow stars show the mean Spearman’s rank correlation coefficient for the
benchmark material bias model. Shaded bands signify the standard deviation.

For fraction of observed values θ ∈ {0.1, 0.2, ..., 0.9}, we sampled an ensemble of COF–adsorption
property matrices A(θ) (50 simulations of data collection for each θ). For each instance of A(θ), we
conducted a hyperparameter sweep using a training/validation split of the observed entries, trained
a deploymentmodel on all observed entries using the optimal hyperparameters, and then tested the
imputation performance of the deployment model on the unobserved entries serving as test data.
Figure S5 shows the distribution (among the simulations of data collection) of optimal hyperparam-
eters (k

(θ)
opt , λ

(θ)
opt) for each θ. Figure 7 shows Spearman’s rank correlation coefficient, ρ, between the

prediction of the missing (COF, adsorption property) value by the deployment low-rank model and
its actual value, grouped by adsorption property, as θ varies. The bands show the standard devia-
tion over the 50 simulations of data collection. As in Figure 4b, ρ for the H2O Henry coefficient is
unsatisfactory ∀θ owing to its poor correlation with the other properties. For the majority of the gas
adsorption properties, the recommendation system ranks COFs according to the property reason-
ably well (i.e., a reasonably high ρ > 0.7), until θ is reduced below θ = 0.4. With such a paucity
of training examples for θ < 0.4, the low-rank model cannot learn useful latent representations of
COFs and adsorption properties, resulting in diminished imputation performance. For comparison,
ρ for the baseline material bias model is also shown in Figure 4b; the interaction term provides sig-
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nificant predictive value, with the exception of N2 adsorption at (300K, 0.001 bar) and O2 adsorption
at (298K, 5 bar).

In conclusion, the imputation performance of the low-rank matrix model rapidly diminishes when
more than 60% of the entries in the COF–adsorption-property matrix are missing. As the fraction
of observed entries θ in the matrix increases, the recommendation system ranks COFs according to
their adsorption properties more reliably.

3.5 Uncertainty Quantification

Suppose our material recommendation system predicts some missing (material, property) value to
be optimal for an adsorption-based engineering application. To motivate an experimental measure-
ment in the lab, we may wish to quantify the uncertainty associated with this prediction. One ap-
proach to quantify the uncertainties associated with the (material, property) values imputed by the
low-rank model in eq 2 is through bootstrap resampling of the observed entries.

We demonstrate uncertainty quantification via bootstrapping for our COF recommendation system
based on an instance of an incomplete COF–adsorption-property matrix, A(θ=0.4). First, we select
100 bootstrap samples of the observed (COF, adsorption property) values (bootstrap sample = ran-
dom sample of the observations Ω, with replacement, of size |Ω|). Then, we fit a low-rank model
to each bootstrap sample of observations, giving us an ensemble of 100 different low-rank models.
The point prediction of a missing (material, property) value follows from themean prediction among
the ensemble of low-rank models; the associated uncertainty follows from the standard deviation of
the predictions. Figure S9a shows bootstrap confidence intervals overlaid on the true values of the
missing (COF, adsorption property) values. The width of each bootstrap confidence interval reflects
the uncertainty in the prediction. To assess whether the uncertainty estimates via bootstrap resam-
pling indeed capture uncertainty, we show the sharpness and calibration/honesty of the uncertainty
estimates [85] in Figures S9b and S9c. Indeed, the uncertainty estimates are satisfactorily honest,
demonstrating that bootstrap resampling is an easy-to-implement, but computationally expensive
means to quantify uncertainty in a recommendation system.

4 Discussion

4.1 Challenges

The success of a recommendation system for NPMs is predicated on structured, open, and high-
fidelity databases of NPMs and their adsorption properties [86–88]. The NIST/ARPA–E Database of
Novel and Emerging AdsorbentMaterials [19] (NIST-ISODB) is a collection of compiled gas adsorption
measurements in NPMs from the literature, from both experimental and simulation sources, for a
variety of gases at a wide range of conditions. We initially set out to develop a recommendation sys-
tem using Henry coefficients extracted from experimental data in the NIST-ISODB, but we found the
resultant recommendation system to perform poorly. We discuss this further and provide possible
explanations in Section S7.
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Our material recommendation system suffers from the cold start [24] problem. Suppose a new ma-
terial is reported, but none of its properties have been observed. Then, the model in eqn 1 is unable
to make a prediction about any of this material’s properties because we do not have data to learn
its latent representation,mM+1.

Some material properties of interest may be derived from properties that appear in the material–
property matrix. Owing to error propagation, the ranking by the recommendation system according
to a derived property may be less accurate than according to a property that directly appears in a
column of the matrix. We illustrate this in Section S9 for dilute Xe/Kr selectivity in the COFs, which
follows from the ratio of the Xe and Kr Henry coefficients that appear in two separate columns. For
this reason, it may be beneficial to include the derived property of interest as a separate column in
the matrix; however, if it is derived from many other properties, this column will be sparse.

Likely, new (material, property) observations, perhaps pertaining to new materials and new proper-
ties, will be continually acquired. To update the recommendation system in light of newly acquired
data, we do not need to retrain the low-rankmodel from scratch. The loss in eq 3 (withΩ augmented)
can be minimized on-line with, e.g., alternating minimization. Given new observations pertaining to
existing materials and properties, the current low-rank model serves as a warm start for minimizing
the loss, and a few more iterations of alternating minimization will update the latent vectors of the
materials and properties and the material biases. Given new observations pertaining to a new ma-
terial (property), we can learn the latent vector of the new material (property) by treating the latent
vectors of the properties (materials) as static, much like conducting an iteration of alternating min-
imization [22]. That said, the run time of training a new low-rank model from scratch is likely to be
insignificant given the typical size of (material, property) data sets. For example, in this work, the run
time to fit a low-rank model with LowRankModels.jl, on the 572 × 16 COF–adsorption-property
matrix, is on the order of seconds.

We introduced missing entries in the (in reality, fully observed) COF–adsorption-property matrix by
(uniform) randomly selecting entries to ablate. In practice, however, (i) some properties are more
commonlymeasured than others, (ii) somematerials aremore commonly studied than others owing
to e.g., ease of synthesis, and (iii) there are likely correlations between and temporal trends with the
binary random variables that represent whether the (material, property) values are observed. To ex-
pandon (iii), for example, amaterial with a superior (inferior) value of a desired propertymay become
popular (unpopular) for measurements of other properties. In Section S8, we show the imputation
performance of a low-rank model fit to an incomplete COF–adsorption-property matrix where en-
tries were observed in a bias manner; 10% of the COFs were popular for measurements and 10%
of the COFs were unpopular. Unsurprisingly, the imputation performance of the recommendation
system was enhanced and diminished among the popular and unpopular COFs, respectively.

Below, we propose future research directions to address each of these challenges and improve the
imputation performance of a material recommendation system.
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4.2 Future Research Directions

4.2.1 Include Structural and Chemical Features of the Materials

Most importantly, we propose to build a recommendation system that leverages structural and
chemical features of the materials, in addition to the observed adsorption properties, to impute
the missing entries in the material-property matrix. A strength of the low-rank model in eq 1 is that
vector representations of thematerials are not needed to impute themissing entries of thematerial-
property matrix; rather, the vector representations of the materials are learned from their observed
properties. However, a recommendation system that uses chemical and structural features of the
materials to learn structure-property relationships will boost imputation performance and solve the
cold start problem for new materials or properties.

A list of hand-crafted features of the materials, such as the void fraction, surface area, pore size,
percent carbon atoms, etc., could be input to the recommendation system for it to learn their re-
lationships with the properties. In the analogy with movie recommendation systems, this is like
including features about the movies, such as the genre, directors, year of production, and actors.
A simple approach to include hand-crafted features of the materials is to append each feature as a
(fully observed) column to the material-property matrix. However, then the latent material vectors
will encode the structural features of the materials in addition to the (more relevant to applications)
properties.

4.2.2 Address Selection Bias

To characterize selection bias, it would be interesting to construct a temporal model for the process
by which materials and properties are selected for experimental investigation. More, we can work
to debias a recommendation system trained on experimental data with selection bias [89].

4.2.3 Active Learning and Bayesian Optimization in a Low-Rank Model Framework

In an active learning strategy, we aim to decide which missing (material, property) values to ob-
serve/measure in order to reduce the uncertainty in the predictions by the recommendation sys-
tem [90, 91]. In Bayesian optimization [92], we aim to find the material with the optimal property
in a column of the material-property matrix using the fewest experiments—by revealing the fewest
missing entries in the column. The property of interest could be a property currently covered by the
recommendation system, or a new, unseen property. Both active learning and Bayesian optimization
will require a matrix completion method that quantifies uncertainty in its predictions.

4.2.4 Uncertainty Quantification

We demonstrated bootstrap resampling of the observations for quantifying uncertainty in the pre-
dictions of the recommendation system. However, training many low-rank matrix models, one for
each bootstrap sample, is computationally expensive. More advanced, probabilistic matrix comple-
tion methods are designed to quantify uncertainties in the imputed entries of the matrix [93,94].
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4.2.5 Nonlinear Models

The low-rank model in eq 1 models property p of materialm as a linear model in terms of the ma-
terial vector input: Amp ≈ fp(mm) = pᵀpmm + µm (view pp as parameters of the function fp(·)).
In contrast, a non-linear version of matrix factorization [95] that treats fp(·) as a non-linear func-
tion may grant us more expressiveness for capturing complex relationships between materials and
adsorption properties, thereby improving imputation performance.

5 Conclusions

In materials science, we are often interested in many different properties of many different materi-
als. The corresponding material-property matrix often, in practice, has many missing entries since
every property of every material has not been measured. The idea of a material recommendation
system is to leverage the observed (material, property) values to impute the missing ones. Inter-
estingly, the (material, property) values in a material recommendation system are mathematically
analogous to (product, customer) ratings in commercial recommendation systems. A material rec-
ommendation system is useful for recommending (i, application-led material search [1]) a material
that optimizes a specific property or (ii, material-led application search [17]) an optimal application
for a given material.

A material recommendation system constituted by a low-rank model of the incomplete material-
propertymatrix, fit to the observed (material, property) values, (i) provides predictions of themissing
entries in the material-property matrix and (ii) generates a map of materials, wherein materials with
similar properties congregate.

We demonstrated a recommendation system that recommends COFs for different gas adsorption
tasks. We constructed incomplete COF–adsorption-propertymatrices from16 simulated gas adsorp-
tion properties of 572 COF structures from Ongari et al. [17]. Then, we trained low-rank models [22]
of the incomplete COF–adsorption-property matrices and (i) assessed their performance on the task
of predicting the missing entries and (ii) inspected their learned map of COFs. Given that fewer
than 60% of the entries of the matrix were missing, the recommendation system was able to rank
the COFs according to their (missing) adsorption properties reasonably well (Spearman’s rank cor-
relation coefficient > 0.6), with the exception of H2O Henry coefficients. Imputation performance
diminishes rapidly when more than 60% of the entries in the material-property matrix are missing.
Though the 60% figure does not necessarily generalize to other data sets, this demonstrates that the
success of amaterial recommendation system is predicated on having a sufficient amount of training
data. Finally, we drew the map of COFs and colored each COF vector by the adsorption properties to
find that, indeed, COFs with similar (dissimilar) adsorption properties clustered together (separated)
in the map.

We conclude that material recommendation systems, if sufficient training data is available, could
be widely useful for leveraging existing measurements of properties of materials to fill in missing
measurements. In turn, this could accelerate the matching of materials for specific applications.
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