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Abstract

We propose a simple and generic definition of
a demarcation reconciling structural and dy-
namic frameworks when combined with the en-
tropy scaling framework. This crossover line be-
tween gas- and liquid-like behaviors is defined
as the curve for which an individual property,
the contribution to viscosity due to molecules’
translation, is exactly equal to a collective prop-
erty, the contribution to viscosity due to molec-
ular interactions. Such a definition is shown to
be consistent with the one based on the min-
ima of the kinematic viscosity. For the hard
sphere this is shown to be an exact solution. For
Lennard-Jones spheres and dimers and for some
simple real fluids this relation holds very well.
This crossover line passes nearby the critical
point and for all studied fluids is well captured
by the critical excess entropy curve for atomic
fluids, emphasizing the link between transport
properties and local structure.
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Fluids composed of molecules possessing at-
tractive interactions exhibit a critical point
which is a point in the pressure and tempera-
ture space beyond which distinct gas and liquid
phases do not exist.1,2 Above this critical point,
i.e in the supercritical state, the density of a
fluid continuously increases along an isotherm
as the pressure is increased without exhibit-
ing any first order transition (which introduce
a discontinuity in thermodynamic properties).
Supercritical fluids are naturally present on
earth, underground, as in oil and gas reservoirs3

or when considering water issuing from black
smokers found on the sea floor.4 They are also
widely used in a range of industrial processes
from fluid extraction2 to carbon dioxide geo-
logical sequestration5 taking advantage of their
high compressibility, their relatively low viscos-
ity and their good ability to dissolve materials.

This fascinating possibility of a continuous
transformation from gaseous to liquid states of
matter has attracted attention since the sem-
inal experiments of Andrews back in 1869.6

More recently, the possibility of defining a de-
marcation between liquid- and gas-like behav-
iors for the whole supercritical domain has been
the subject of numerous investigations.1,2,7–20

Determining such a signature of a subcritical
behavior, where the gas and liquid phases are
distinct, in the supercritical region is of obvious
fundamental interest but would also certainly
be beneficial for the design of modern equation
of states and transport properties models. This
topic has led to many debates, which were par-
ticularly vivid during the last decade,17–19 be-
cause of multiple definitions often not compat-
ible which one another, even within the same
family, e.g. Widom Lines, inversion lines or
Frenkel lines.2 Among the main reasons of such
incompatibility is that such a crossover can
be seen either from a structural point of view
(e.g. Widom lines2), a dynamic perspective
(e.g. kinematic viscosity minimum line9), or
from a free energy point of view.21,22 However,
as pointed out in a previous work,20 there is a
possible way to reconcile structural and dynam-
ics points of view by relying on the entropy scal-
ing concept, which was introduced by Rosenfeld
with little fanfare in 1977.23 Still, the entropy

scaling demarcation of gas- and liquid-like fluid
behaviors proposed so far,20 despite some inter-
esting features obtained on simple model fluids,
is not entirely satisfactory because it does not
start at the critical point in model fluids that
exhibit one and is difficult to interpret when
applied to molecular fluids.

To reconsider the definition of a demarca-
tion line between liquid- and gas-like behaviors,
valid for fluids composed of molecules possess-
ing or not attractive interactions and applicable
to both atomic and molecular fluids, we pro-
pose in this work to go back to the very na-
ture of what differentiates liquid- and gas-like
properties from a microscopic perspective. At
the molecular scale, gas properties are mostly
driven by the individual behaviors whereas liq-
uid properties are mainly controlled by collec-
tive behaviors. Such a decomposition is at the
very core of the modeling of fluid equilibrium
properties which are described by an “ideal”
term, related to individual behaviors, and a
“residual” contribution, corresponding to col-
lective behaviors.24 From the transport proper-
ties point of view, these two behaviors are exem-
plified by the two corresponding possible modes
of heat and momentum propagation in fluids:
(i) due to molecules’ displacements or (ii) due
to molecular interactions, both terms directly
emerging from the microscopic formulation of
the momentum and heat fluxes.25 Thus, within
that simple framework, we propose to define
the demarcation line between gas and liquid-
like behaviors as the curve for which an individ-
ual property, the contribution to viscosity due
to molecules’ translation, is equal to a collec-
tive property, the contribution to viscosity due
to molecular interactions. In the following this
line is denoted the crossover line. To emphasize
its generality, this simple and universal defini-
tion is tested in this work on the hard-sphere
fluid, i.e. a fluid that does not exhibit a criti-
cal point, as well as on the Lennard-Jones and
the Lennard-Jones dimers in their supercritical
regions. As it will be shown, the crossover line
so defined is fully consistent with the recently
proposed definition based on the kinematic vis-
cosity minimum7,9,26 and can be rationalized in
the framework of excess entropy scaling for both
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atomic and molecular fluids providing a link be-
tween structural and dynamic point of views of
such a demarcation.

To quantitatively revisit the definition of the
demarcation line between liquid- and gas-like
behaviors, we start from the microscopic def-
inition of the shear viscosity, η, which char-
acterizes the transverse momentum transfer in
the linear response regime. From a molecu-
lar point of view, such momentum transfer can
occur by displacement of individual molecules
from one point in space to another point and/or
by collective interaction with other molecules.27

It is thus possible to define the shear viscosity
of any type of fluid as the sum of two terms
named hereafter the kinetic contribution to vis-
cosity, ηkk , and the configurational contribu-
tion to viscosity, ηcc.

28 The former is dominant
in low density fluids (gas like) while the lat-
ter term prevails in dense fluids (liquid like).
Such a shear viscosity decomposition into two
additive contributions naturally emerges when
performing reverse Non-Equilibrium Molecular
Dynamics (NEMD) simulations.29 In these non-
equilibrium simulations, shear viscosity is de-
duced from the ratio between the imposed shear
stress,30 i.e. the transverse momentum flux
which is composed of a kinetic term and a
configurational term, and the measured shear
rate29 as described in detail in the SI. In equilib-
rium molecular dynamics simulations (EMD),
shear viscosity can be computed from the auto-
correlation of the shear stress through a Green-
Kubo relation27 and a similar decomposition
can be done into kinetic ηkk and configura-
tional ηcc contributions, but an additional cross-
term ηkc is generated.31 These differing notions
of the various contributions to shear viscos-
ity can be reconciled by pragmatically splitting
the cross-term from EMD simulations in half,
and distributing half to each of the kinetic and
configurational contributions, i.e. ηkk,NEMD =
ηkk,EMD + ηkc,EMD/2 as demonstrated to hold in
the SI on the Lennard-Jones fluid.

As it will be shown later, the above defi-
nition of the crossover line is closely related
to a recently suggested one based on a spe-
cific signature of the kinematic viscosity, ν, in
the supercritical region.7,9,26 Indeed, kinematic

viscosity, i.e. shear viscosity divided by mass
density, is known to exhibit a minimum along
an isotherm in supercritical conditions, a re-
sult already known in the 1960s (see section
16.5 of Ref. 32). Interestingly, it has been
shown recently that the loci of the local min-
imum of the kinematic viscosity is a promis-
ing definition of the demarcation between gas-
and liquid-like behaviors in supercritical fluids,
that is also applicable to fluids without attrac-
tive interaction.26 In simple model atomic flu-
ids, it has been shown that such a definition is
consistent with the Widom line defined by the
loci of the local maxima of the isobaric specific
heat, even if not perfectly correlated.20 Further-
more, the demarcation so defined is also tightly
correlated to the dynamic crossover exhibited
by sound propagation, related to the positive
sound dispersion, in the Terahertz frequency
regimes.9 Application of the phonon theory33–37

also demonstrates qualitatively different behav-
iors passing through this crossover region, both
experimentally and in simulations.

To connect our shear viscosity based defini-
tion of the crossover line to the more classical
structural point of view, we will take advan-
tage of the excess entropy scaling framework in
the following. The core idea introduced by en-
tropy scaling is that the transport properties
are connected with the excess entropy, making
a link between structural and dynamic prop-
erties.23 Yoon et al. further demonstrate how
the entropy scaling approach is connected to
the Shannon entropy.38 The reduced excess en-
tropy is defined by s+ ≡ − sex/kB, kB being
the Boltzman constant, where sex is the entropy
per particle minus that of the ideal gas at the
same temperature, T , and number density, ρN;
i.e. sex = s(T, ρN) − s(ig)(T, ρN). Much of the
modern understanding of excess entropy scal-
ing comes from isomorph theory.39–43 A signifi-
cant body of theoretical and practical work now
exists on excess entropy scaling which shows a
promising means of modeling and understand-
ing transport properties of both atomic and
molecular fluids.20,44–50

The first test of our definition of the crossover
line concerns its application to the simplest
fluid model, the Hard-Sphere (HS). Such a fluid
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model, which is widely used in fluid physics, is
interesting as it does not exhibit any distinct
gas and liquid phases in its whole fluid domain
because it lacks attractive interactions. To do
so, we use the Enskog theory which gives the
expressions for the shear viscosity by:

ηEn = ηρN→0bρN

[
1

w̃
+

4

5
+

(
4

25
+

48

fη · 25π

)
w̃

]
(1)

where ηρN→0 is the dilute-gas contribution,
b = 2πσ3/3 is the hard sphere virial coefficient
(σ being the HS diameter), ρN is the number
density, and w̃ = p/(ρNkBT )− 1 is the reduced
virial, p being the pressure. The fourth-order-
corrected dilute-gas viscosity of hard spheres is
ηρN→0 = fη × 5π

16

√
mkBT
π3/2σ2 , with fη = 1.01600 and

m the mass of a particle. Even if not accurate at
very high densities,51 Enskog theory provides a
reasonable estimation of shear viscosities of the
HS fluid up to liquid-like densities.52

Enskog theory gave a decomposition into
kk, kc, and cc contributions, indicated by the
first, second, and third contributions inside the
brackets of eq. (1). By pragmatically splitting
the cross-term in half, as shown to be a valid
option for the Lennard-Jones fluid in the SI,
one can readily obtain from equating ηkk and
ηcc, that w̃ = (4/25 + 48/(fη · 25π))−1/2. In-
terestingly, as detailed in the SI, the same an-
alytical result is recovered when evaluating the
location of the minimum of the kinematic vis-
cosity. Thus, the exact solution from Enskog
theory is that the minimum of ν occurs when
the translational and configurational contribu-
tions to viscosity are equal. This means that
our definition of the crossover line and the one
based on the kinematic viscosity minimum are
strictly equivalent for the HS fluid. Figure 1
shows the curves from Enskog theory, indicat-
ing that the minima of kinematic viscosity and
crossing of contributions to viscosity occur at
the same density for all temperatures.

It is illuminating to define this crossover line
within the excess entropy framework, as shown
in Fig. 1. To do so, the excess entropy for
hard spheres is obtained from the integral s+ =∫ ζ
0
Z(a)−1

a
da where Z(ζ) is the equation of state
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Figure 1: Kinematic viscosity and contributions
to viscosity. Top: density as independent vari-
able; Bottom: excess entropy as independent
variable. In each pane, curves and markers use
the same color scale, the upper filled part of
pane is values of ν∗ = η∗/ρ∗, and lower part
of pane is the fractional contributions ηkk/η
and ηcc/η. Markers are for LJ monomer (cir-
cle: complete contribution, triangle: fractional
translational contribution, square: fractional
configurational contribution), smooth curves
(both solid and dash-dotted) for HS are from
Enskog theory. Values of s+ for LJ monomer
from Ref. 53.

(EOS) for the hard sphere, in terms of the pack-
ing fraction ζ = πρNσ

3/6 (or the volume of
spheres per total volume). The EOS of Ref.
51 is used, and the integral is evaluated with
adaptive quadrature, yielding a value for s+ on
the order of numerical precision. Interestingly,
this value of s+ at the crossing line (0.898) is
close to that of the critical point of the Lennard-
Jones monomer fluid (0.855 from the empirical
EOS in Ref.53), a significant result as will be
shown later on.

It is important to point out that the ex-
cess entropy scaling,23 or more generally the
isomorph theory (which correspond to curves
along which macroscopically structure and dy-

4



namics are constant), is an efficient framework
to connect structural and dynamic properties
in simple fluids. Excess entropy is a measure of
the number of accessible microstates relative to
that of the ideal gas, but it is as well a quantity
that can be related to the microscopic struc-
ture of the fluid. Indeed, its two-body contri-
bution which represents usually more than 85%
of the total excess entropy in simple fluids54–56

can be expressed in terms of the radial distri-
bution function and density only, the former
being a structural microscopic quantity which
describes how density varies as a function of
distance from a reference particle. Thus, by
connecting excess entropy and transport prop-
erties, the excess entropy scaling framework al-
lows to reconcile structural and dynamic points
of view of the crossover line as will be empha-
sized in the following.

As a step further in demonstrating the gener-
ality of our definition of the crossover line, we
have used the Lennard-Jones (LJ) fluid (with
the pair potential V given by V = 4ε[(σ/r)12−
(σ/r)6]) which is probably the most commonly
considered analog for fluids with both attrac-
tion and repulsion. As a consequence of this
model fluid having both attraction and repul-
sion, it exhibits liquid-vapor phase equilibrium,
a liquid-vapor critical point and so a supercrit-
icial region, and many other commonly experi-
enced physical features.

For this fluid model, molecular simula-
tions were performed to obtain viscosities,
the crossover points and excess entropy in
the supercritical region as follows. The non-
equilibrium calculations of viscosity have been
performed with an in-house code already val-
idated29 with the Reverse Non-Equilibrium
Molecular Dynamics scheme;30 numerical de-
tails are provided in Ref. 57 and all data are
provided in Table S1. Then, along a given
nominal isotherm, the density where η∗kk = η∗cc
was obtained by interpolation of a smoothed
curve fit to η∗cc/η

∗ as a function of ρ∗. A similar
approach was used for the minima of kinematic
viscosity; a curve was fit to η∗ as a function
of ρ∗, and then that curve was used to obtain
the density at the minimum of ν∗ = η∗/ρ∗.
Table S2 in the SI gives the numerical values.

Excess entropy calculations were carried out
with an in-house Monte-Carlo implementation
in this work, see Section 4.3 of the SI. For the
Lennard-Jones fluid, confirmatory excess en-
tropy values were obtained from the respective
EOS.

As shown in Figure 2, the first interesting
point is that our definition of the crossover line,
based on η∗kk = η∗cc, seems to start near the crit-
ical point for the LJ fluid. Such a behavior is
consistent with the idea of a crossover line pro-
longating, in the supercritical region, the de-
marcation between gas and liquid phases. The
second very interesting feature is that there is
clearly an excellent agreement between the lo-
cation of the points corresponding to the min-
ima of kinematic viscosity ν and those associ-
ated to the crossover line. Thus, the addition of
attractive interactions does not alter this strong
result noticed on the HS fluid, reinforcing the
idea of a fundamental link between these two
definitions of a liquid- and gas-like demarcation
in the supercritical region. A subtle point is
that the critical point itself is not a minimum
of the kinematic viscosity because the density
is finite at the critical point, while the viscosity
is infinite, leading to a local extremum in the
kinematic viscosity.

As exemplified by the HS fluid, the excess
entropy framework can simplify even more the
picture. As shown in Figure 1, the LJ fluid has
minima of kinematic viscosity ν whose density
are a strong function of temperature, which is
unlike the behavior of the HS fluid. So too, the
kinetic and configurational fractional contribu-
tions have both temperature and density depen-
dence. Considering the excess entropy as the
independent variable instead of density yields a
more harmonious result: i) the fractional con-
tributions to viscosity are now nearly mono-
variate functions of the excess entropy, agree-
ing with the hard sphere fluid of Enskog theory
ii) the minima of kinematic viscosity no longer
have temperature dependence, and they all oc-
cur at very nearly the same value of the excess
entropy. Even more interesting, Figure 1 shows
that this value of excess entropy is very nearly
the value of excess entropy corresponding with
that of the critical point which, in turn, is very
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close to that obtained for the HS crossover line.
This brings the three definitions of a liquid- gas-
like demarcation (critical point excess entropy,
equality of kinetic and configurational contribu-
tions, minima of kinematic viscosity) into near
agreement, reconciling the structural and dy-
namic points of view in atomic fluids.

So far we have considered atomic fluids only,
whereas real fluids are mostly molecular. Here
we have considered a Lennard-Jones dimer
fluid consisting of two tangent Lennard-Jones
spheres connected by a fixed bond of length σ
to remove the intramolecular potential energy.
The same methodology used for Lennard-Jones
was also used to obtain the crossover points,
the kinematic viscosity minima and the excess
entropy for the dimer. Results are shown in
Fig. 2; computed values are tabulated in Table
S1 and S2 of the SI.

The introduction of a bond into a molecule re-
sults in a qualitatively similar behavior to that
of the monomer. First, the crossover begins at
the critical point. Second, the ηkk = ηcc points
and the ones corresponding to the kinematic
viscosity minima are superimposed, i.e. the two
definitions of a dynamic crossover result in ef-
fectively identical densities for a given temper-
ature. Third, the curve of excess entropy em-
anating from the critical point is in qualitative
agreement with the crossover points, even if in
the density-temperature plane there is a sys-
tematic deviation increasing with temperature,
as shown in Fig. 2.

In a last test, we have considered small real
fluids as follows. Reference empirical mod-
els for thermodynamic and transport properties
are available in NIST REFPROP58 and Cool-
Prop59 that reproduce the most accurate ex-
perimental data to close to experimental uncer-
tainty. While we cannot have complete con-
fidence in the outputs of these empirical mod-
els, particularly as pertains to extrapolation be-
havior, Fig. 3 shows the locations of the cal-
culated minima of ν for three fluids with gen-
erally high quality models (argon60,61 (atomic
fluid), nitrogen61,62 (diatomic fluid), and car-
bon dioxide63,64 (triatomic fluid)) as a function
of temperature. The model implementations
in CoolProp version 6.4.159 were used because
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: min( * )
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Figure 2: Temperature of the interpolated
crossover points as a function of chain length N ,
segment number density ρ∗s (the total number
of segments per volume), indicated by mark-
ers, the solid curves indicating the vapor-liquid
equilibrium from the equation of state, the star
the interpolated critical point, and the dashed
curve smoothed values of s+crit interpolated from
thermodynamic integration.

the new carbon dioxide viscosity formulation65

appears to yield non-physical crossover behav-
ior. The location of the ηkk = ηcc condition
cannot be obtained from the empirical mod-
els, so instead we consider the point where the
viscosity in the zero density limit ηρ→0 is half
of the total viscosity. The agreement between
ηkk and ηρ→0 is exact in the zero-density limit
but is only approximate as the density increases
to values corresponding to the crossing points
(see Figure S1 in the SI). In the case of argon,
the high-temperature minima of ν are near the
value for the hard-sphere fluid, while the di-
atomic and triatomic fluids show larger values
of s+ at all temperatures at the minima of kine-
matic viscosity. In the case of the Lennard-
Jones monomer, we also plot the points for the
dilute viscosity (from Ref. 66) being equal to
half of the total viscosity (red stars). The qual-
itative behavior of this condition is similar to
that of argon, highlighting that if it were possi-
ble to obtain ηkk for argon, the ηkk = ηcc condi-
tion would likely be similar to that of Lennard-
Jones.

To summarize the results from this study, we

6



0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
s +

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T/
T c

ri
t

0.
89

82

Figure 3: Supercritical values of s+ for real
fluids (at the minima of ν (solid curve) and
ηρ→0/η = 1/2 (dashed curve)), minima of ν
for monomer and dimer (filled triangles), and
η∗ρ→0/η

∗ = 1/2 for monomer (stars). The color
corresponds to the number of “segments” –
1(argon): red, 2(nitrogen): blue, 3(CO2): or-
ange. The vertical dashed-dotted line is that of
the HS.

plot in Fig. 4 the crossing points for real fluids
and the Lennard-Jones monomer on the same
set of axes. The coordinates are reduced by
the respective values at the critical point (ob-
tained from the equation of state). In these
coordinates, the two crossing points (minima
of ν and ηρ→0/η = 1/2) show a striking simi-
larity between model fluids and real fluids. In
pressure-temperature coordinates, the distinc-
tions would be even more difficult to make out.
These results highlight that the two definitions
of crossover (kinetic and configurational con-
tributions being equal and the minimum of ν)
also appear to be consistent with each other
for real fluids. On the contrary, these crossing
points do not follow the curve of constant ex-
cess entropy emanating from the critical point
as in the case of the Lennard-Jones monomer.
These results pose as many questions as they
answer pertaining to the interplay between the
crossing points, the details of the pairwise inter-
actions, the intramolecular degrees of freedom,
the quality of the empirical models, and the ex-
cess entropy. Recent modifications to isomorph
theory67,68 suggest that a more complete under-

standing of molecules in this context is possible.
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Figure 4: Crossing points (minima of ν
(O) and ηρ→0/η = 1/2 (×)) in reduced
temperature-density coordinates for real fluids
(argon (red), nitrogen (blue), CO2 (orange), ac-
cording to empirical models) and the Lennard-
Jones monomer (filled markers). The solid col-
ored curves are constant s+ emanating from the
critical point, and the dashed black curve is the
same quantity for Lennard-Jones. The black
curves are the vapor-liquid equilibria obtained
from the respective equation of state.

In this work we have shown that the loca-
tion of the points for which the kinetic and
configurational contributions to viscosity are
equal provides a simple and generic definition
of the demarcation between gas- and liquid-like
behaviors in the supercritical region of simple
model and real fluids. When combined with the
excess entropy framework, this definition allows
to reconcile structural and dynamic points of
view. In addition, it is shown that the mini-
mum in kinematic viscosity corresponds closely
to the kinetic and configurational contributions
to viscosity being equal. This behavior holds
for atomic fluids (hard sphere and Lennard-
Jones), dimers, and small real fluids. Although
thermodynamics and transport properties can
never be fully reconciled according to current
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theory,69 this study provides evidence that the
link between them is stronger than perhaps is
expected. Furthermore, from an applied point
of view the use of such a crossover could help in
providing a reference line for further developing
transport properties models and theory.

The results presented are for pure species,
while in practical applications most fluids are
multicomponent mixtures. It would be of inter-
est to apply this analysis to that of mixtures, in
particular to those that have been already stud-
ied in the excess entropy scaling framework70

such as the Kob-Andersen 4:1 binary system.71

Supporting Information Avail-

able

The supplementary information includes a) ad-
ditional figures providing more detailed results
b) tabular values for all simulation results.
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