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Abstract

A technique is presented for determining elastic nonlinearity of materials from
resonant frequency shifts as a function of signal amplitude during free vibra-
tional decay after tone-burst excitation. The technique differs from previous
nonlinear reverberation spectroscopy (NRS) techniques in that it employs
phase-sensitive superheterodyne reception. Time-dependent amplitudes of
in-phase and out-of-phase components of signals, relative to a reference si-
nusoid at the excitation frequency, are provided through analog hardware
processing in the absence of digitization of the signal from the vibrational
sensor. The time-dependent phase and amplitude of the signal are deter-
mined through software analysis of these in-phase and out-of-phase compo-
nents, and the instantaneous frequency during free decay is then determined
from the time derivative of the phase. With this approach, superheterodyne
reception and low-pass filtering of the phase-detector outputs lead to a great
reduction in noise and computation effort, relative to direct digitization and
software processing of the sensor signal, while retaining information on fre-
quency shifts on a relevant time scale during ringdown. As with other NRS
techniques, rapid acquisition of data on amplitude dependence of the reso-
nant frequency during ringdown leads to minimization of systematic errors
from temperature drift. The technique is demonstrated with noncontact-
ing electromagnetic-acoustic transduction on custom alloyed Al (0.2 at.%
Zn) and commercial Al 7075 cylinders with axial-shear resonant frequencies
between 658 kHz and 659 kHz. The precision of measurements of relative
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frequency shifts is found to be on the order of 0.1 parts per million (ppm),
exceeding by two orders of magnitude the best reported precision of nonlinear
resonant ultrasound spectroscopy (NRUS).
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1. Introduction

Nonlinear elastic measurements can be much more effective than linear
elastic measurements at detecting a variety of microscale and nanoscale fea-
tures in materials, including cracks, delaminations, dislocations, and precip-
itates [1, 2, B, 4, 5], 6]. As a consequence of this sensitivity, the development
and application of nonlinear acoustic techniques have been extensively pur-
sued in recent decades, especially in the context of nondestructively sensing
the presence and characteristics of flaws that affect the mechanical integrity
of metals, concrete, rock, bone, and composites [6, [7]. These techniques
include nonlinear resonant ultrasound spectroscopy (NRUS) [§], harmonic
evolution of propagating waves (most commonly second-harmonic genera-
tion, SHG [7]), generation of spectral side bands from nonlinear frequency
mixing (including nonlinear wave modulation spectroscopy (NWMS) [9]),
“vibroacoustic” mixing of high- and low-frequency excitations (VAM) [10],
amplitude modulation of high-frequency excitation (MHF) [11], and time-
domain nonlinear reverberation spectroscopy (NRS) [12], [13].

Each of these nonlinear measurement techniques has relative advantages
and disadvantages with respect to sensitivity, range of applicability, ease/speed
of use, specific information provided, and precision. For example, currently
established techniques that employ propagating waves are limited to speci-
mens with regular (e.g., planar or cylindrical) geometries and are complicated
by effects of frequency-dependent attenuation and diffraction, if focused on
harmonic or subharmonic generation [14]. Resonance techniques, while ap-
plicable to any geometry, are insensitive to defects located at nodal points of
the acoustic stress pattern (if a single mode is employed), and temperature
drift and associated shifts in resonant-frequency during acquisition of swept-
frequency spectra introduce uncertainties in measurements of peak frequen-
cies. Techniques that measure only one factor in the nonlinear stress-strain
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relation (e.g., quadratic nonlinearity) can be relatively insensitive to some
types of defects 6, [15].

Although less widely employed, NRS offers an advantage over swept-
frequency resonance techniques with respect to temperature drift during
data acquisition, because measurements are much more rapid. Previously
developed NRS techniques have employed various approaches for measuring
nonlinear shifts in resonant frequency as a function of vibrational amplitude
during free decay following excitation with a driving tone burst. Each of
these approaches begins with acquisition of signal voltages that are propor-
tional to vibrational displacement as a function of time. The signal is then
analyzed to determine the instantaneous resonant frequency as a function
of signal amplitude during the decay. Methods of performing this analysis
include (1) successive fitting of the signal to a decaying sinusoid in a series of
small time windows, with the frequency, log decrement, and phase offset as
adjustable fit parameters [12], (2) successive Fourier transforms in a series of
small time windows [16], (3) evaluation of zero crossings of the signal [17, 18],
and (4) derivatives of phase extracted from a Hilbert transform [19]. The ap-
plication of these methods has focused primarily on flexural modes at audio
or sub-audio frequencies (less than a few tens of kHz), with an exception in
the work of Polunin et al. [20] on MEMS resonances at 1.2 MHz.

This paper presents an NRS technique that employs hardware extrac-
tion of the time-dependent amplitude of the in-phase and out-of-phase com-
ponents of the signal, relative to the phase of a reference sinusoid that is
gated to produce the driving tone burst. With respect to signal process-
ing, the hardware system is functionally similar to a lock-in amplifier but,
additionally, employs superheterodyne reception to increase signal-to-noise
ratios. The instantaneous frequency is determined from the time deriva-
tive of the phase, which is determined from the amplitudes of the out-of-
phase and in-phase components of the signal. With hardware extraction of
these amplitudes, demands on digitization speed and computational effort
are greatly reduced, relative to direct digitization and analysis of the decay-
ing signal at the time-dependent resonant frequency. An additional feature of
the specific implementation presented here is noncontacting electromagnetic-
acoustic transduction, which eliminates systematic errors associated with
contacting transducers. This implementation is a nonlinear time-domain
variant of electromagnetic-acoustic resonance, EMAR.

This work is partly motivated by an industrial need for rapid nondestruc-
tive evaluation (NDE) of additively manufactured (AM) alloys with complex
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part geometries. In this context, the objective is detection of microstruc-
tural features that adversely affect mechanical performance, such as poros-
ity, cracks, unintended precipitates, excessive residual stress, and excessive
dislocation density. The basic measurement approach presented here was
previously employed, with some differences in the method of analysis, to
demonstrate correlations of nonlinearity with porosity in additively manufac-
tured stainless steel [21]. This paper presents the technique with exemplary
658 kHz waveforms obtained from conventionally manufactured aluminum
specimens. Although the presentation is focused on ultrasonic resonance of
metal specimens, the general method of hardware and software processing
is applicable to other types of nonlinear physical systems involving resonant
ringdown after tone-burst excitation.

2. Specimens

Two cylindrical aluminum specimens are employed in this study. One
specimen, denoted Al-Zn, is a custom cast alloy of aluminum containing 0.2
at.% Zn (Kamis, IHC.ED, with each of the two constituent elements 99.999%
pure. This specimen was turned on a lathe to a diameter of (8.0060 £ 0.0008)
mm and a length of (26.067 £ 0.006) mm. A second specimen, denoted Al-
7075, was turned on a lathe from a commercially manufactured 7075-T6
extruded aluminum rod with an initial diameter of 1.59 cm (5/8 inch). The
machined diameter of this specimen is (7.996 £+ 0.002) mm, and the length is
(26.06 4 0.002) mm. Measurements of the alloy composition of this specimen
were not performed. For the purposes of this study, it is only necessary to
note that standard concentrations of alloying elements in 7075 aluminum
are in the range (5.1-6.1) wt% Zn, (2.1-2.9) wt% Mg, (1.2-2.0) wt% Cu,
0.5 wt% Fe, 0.4 wt% Si, 0.3 wt% Mn, (0.18-0.28) wt% Cr, and 0.2 wt% Ti
[22]. From the measured dimensions and weights, the densities of Al-Zn and
Al-7075 were determined to be (2694 + 1) kg/m? and (2792 + 2) kg/m?,
respectively. The 3.6 % difference in density is attributed primarily to the
heavier alloying elements Zn and Cu in Al-7075.

The selection of these two specimens was motivated partly by an interest
in including materials with much different levels of nonlinearity. Specimen
Al-Zn, with a total impurity concentration comparable to commercially pure

Tdentification of commercial products in this document is provided for technical com-
pleteness and does not reflect an endorsement by NIST.
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aluminum, is expected to have relatively weak pinning of dislocations and,
therefore, a substantial dislocation contribution to nonlinearity. The much
greater concentration of alloying elements in Al-7075 is expected to provide
relatively strong dislocation pinning and correspondingly lower nonlinearity.
As described below, the data from this specimen with low nonlinearity also
provide information on the resolution limit of the measurements.

3. Hardware

3.1. FExcitation coil and magnetic field

A simple solenoid coil is employed here for electromagnetic-acoustic trans-
duction. The coil is wound from 32-gauge magnet wire (0.257 mm diameter,
including insulating varnish) on a Bakelite tube with an outer diameter of
(9.50 &+ 0.02) mm and a wall thickness of (0.57 £ 0.07) mm. The coil has 153
turns, a length of (41.0 & 0.5) mm, and an inner diameter of (9.58 £ 0.02)
mm, with low-conductivity tape between the coil and tube. As depicted in
Fig. [I] a cylindrical specimen is inserted in the tube and supported by the
inside surface of the tube with its principal axis Z horizontal and parallel to
the axis of the coil.

A static magnetic induction field By is introduced by an 8-segment cylin-
drical Halbach magnet (Magnetic Solutions Ltd., Dublin) with an inner di-
ameter of (5.4 £ 0.1) cm. The direction of the magnetic field is horizontal
and perpendicular to 2, as shown in Fig. [Il The magnitude of this field is
0.540 £ 0.005 T over the spatial region occupied by the coil and sample.

3.2. Electronic configuration

The coil is driven by a tone burst generated by a gated amplifier (RITEC
Inc., Model RAM-5000 SNAP). This instrument internally generates a pro-
grammable sine wave that is gated to a user-specified burst width and ampli-
fied to a user-specified power level. The burst is set to have a nominal width
of 2.6 ms and nominal repetition period of 2.0 s. The instrument slightly
adjusts the set burst width to be an integral number of cycles and adjusts
the timing and repetition period of the burst such that the beginning and
end of the burst are at a zero crossing of the sine wave. In other words, the
gating provides an exact “sine-wave” tone burst. Since the employed drive
frequencies are 658 kHz to 659 kHz, the automatic adjustments to the burst
width are on the order of a microsecond. The peak-to-peak voltage of the
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Figure 1: Configuration of coil, static magnetic field By, and specimen: (a) 3D view and
(b) cross-sectional view. The solenoid coil has 153 turns in a single layer wrapped around
a Bakelite tube that is shown in (b) but not (a). The specimen is supported on one side
along its length by the inside surface of the tube. An RF current I that passes through
the coil induces opposing eddy currents around the perimeter of the specimen and, in the
presence of By, axially-directed Lorentz forces in opposite directions on the left and right
sides of the specimen in (b).

burst at the output of the amplifier is (201 £ 2) V when loaded by the coil,
specimen, and coaxial cable that connects the amplifier to the coil.

A block diagram of the electronic system is shown in Fig. [2l The output
of the gated amplifier is passed through an active diplexer that connects
the gated amplifier to the coil during the tone burst, while isolating the
receiver and, then, connects the coil only to the input of the RAM-5000
receiver during free decay of resonant vibrations following the tone burst.
This switching is controlled by a TTL gate that is generated by the RAM-
5000.

The radio-frequency (RF) signal is passed through a filter with a band-
pass of 0.05 MHz to 20 MHz. It is then passed through an intermediate
frequency (IF) mixer, amplifier, and quadrature phase detector to extract
time-dependent amplitudes of the in-phase component PhDet1 and out-of-
phase component PhDet2 of the RF signal, relative to the reference sinusoid
that was gated to generate the tone burst. The phase-detector outputs have
a b0 kHz low-pass filter. The total gain in the electronic path from RF input
to phase-detector output is (19.3 + 0.2) dB. The digitized phase-detector
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outputs are passed to a computer for analysis.

All parameters of signal acquisition and hardware processing are the same
for measurements on the two specimens in this study, with the exception of
the digitization rates, which are 6000 samples/s for Al-Zn and 4000 samples/s
for Al-7075 (set differently because of less rapid decay during ringdown of
Al-7075). To enable compensation for potential DC offsets in the baseline
of the phase-detector outputs, waveform digitization is triggered before the
beginning of the tone burst. 250 points before the tone burst are averaged
to determine the baseline voltage.

Receiver IN Q EMAT/
= Specimen

Gated Amplifier / | |
Phase-Sensitive Receiver

Active Diplexer
Gated Amp OUT TTL Gate OUT

O__L __[-'O

Figure 2: Configuration of electronics, electromagnetic transducer, and specimen.

4. Results

4.1. Resonant modes

In electromagnetic-acoustic transduction with Lorentz forces, the physical
process of generation of dynamic forces in a metallic specimen involves (1)
generation of an oscillating spatially-varying magnetic field vector H by a
driving RF current I that passes through a coil winding of the transducer,
(2) generation of eddy currents in the specimen by the time-dependent H,
(3) generation of Lorentz forces and associated momentum of electrons in the
eddy currents in the presence of a static magnetic induction field By, and
(4) transfer of this force to the lattice through electron/ion collisions. The
force density f in the specimen, as a function of cylindrical coordinates r, 6,
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z, and time t', is given by [23]
£(r,0,2,t')=J.(r,0,2,t) x By, (1)

where J, is the eddy current density.

With the geometry shown in Fig. [I| T is essentially parallel to the az-
imuthal unit vector 6 at each point in the coil, By is perpendicular to the
coil axis Z, the dynamic H is predominantly parallel to Z near the surface
of the specimen [23], eddy currents at each point in the specimen are ap-
proximately parallel to é, and Lorentz-forces are approximately parallel to Z.
Therefore, Eq. |1} is closely approximated by

£(r,0,2,t") = [0 - Jo(r, 0, 2, )] |Bo|(cos 0) 2, (2)

where the dot product is almost independent of 6.

This force distribution couples to resonant vibrational modes with dis-
placements predominantly in the Z direction and phase variation of 27 around
the circumference. In other words, the transducer excites modes with “axial-
shear” displacements |24, 25]. An analysis of detailed displacement patterns
and frequencies of these modes in finite cylinders is deferred to a subsequent
study. For our purposes here, it is sufficient to note that these modes are
similar to modes at cutoff in infinite isotropic cylinders (i.e., with zero ax-
ial wavenumber) with purely axial displacements. In both geometries, the
modes are doubly degenerate in the absence of transverse anisotropy. The
displacement pattern of each member of the degenerate pair is shifted in its
azimuthal dependence by 90° relative to that of the other member of the
pair. In infinite cylinders, the resonant angular frequencies w are solutions

of [26]
Ji(n) —nden) = 0, (3)

where
1= wa/vs, (4)

Jy is the Bessel function of the first kind of order n, a is the radius of the
cylinder, and v, is the velocity of axially polarized shear waves. Resonant
modes with frequencies between 658 kHz and 659 kHz, which correspond to
the second-lowest solution of Eq. |3] with 7 = 5.33144 and two radial nodes
in the displacement pattern (including a node at r = 0), are employed in
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this study. From these frequencies, 7, and the measured specimen diameters,
the shear velocities are estimated to be 3.1 mm/us, consistent with typical
ultrasonic shear velocities reported for pure and alloyed aluminum (e.g., [27,
29]).

In real polycrystalline cylinders, the degeneracy of axial-shear modes is
split, due to transverse material anisotropy and/or azimuthal variation in
diameter. In specimens Al-Zn and Al-7075, the fractional frequency splitting
of the modes corresponding to n = 5.33144 is found to be 0.17 % and 0.05 %,
respectively. Each mode of the nearly degenerate pair can be selectively
excited by adjusting the azimuthal orientation of the specimen relative to By
to maximize coupling to this mode while minimizing coupling to the other
mode in the pair, despite the fact that the bandwidth of the driving tone
burst is greater than the difference in the frequencies of the two modes.
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Figure 3: Frequency spectra of Al-7075 acquired with the azimuthal orientation of the
specimen, relative to the direction of By, tuned to optimize excitation of either the lower-
frequency mode (blue curve) or higher-frequency mode (red curve) of the axial-shear pair
corresponding to n = 5.33144.

Resonant spectra of Al-7075 between 658 kHz and 659 kHz with selective
excitation of each of the modes corresponding to n = 5.33144 are shown
in Fig. The azimuthal tuning before acquisition of each of these spectra
was accomplished by twisting the coil around its axis, with the specimen
inside, until the signal from one of the axial-shear resonances was close to

9
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zero with the driving frequency close to that resonance. The spectra were
acquired by stepping the driving tone-burst frequency in increments of 1 Hz
and, at each frequency, integrating each of the phase-detector outputs and
computing the square root of the sum of squares of these two integrals. When
the reference frequency of the tone burst is equal to a resonant frequency,
this calculated value is approximately equal to the integrated magnitude of
the combined output from the phase detectors. When the reference is offset
from a resonance but the bandwidth of the tone burst provides some level
of excitation of the resonance, the integrals of each of the phase detector
outputs is reduced by oscillations (beats arising from the difference in the
resonant and reference frequencies), and this effect leads to spectral peak
widths similar to those expected from the measured logarithmic decrement
of the signal ringdown.

One thing to note in Fig. [3]is the small unidentified peak near 658.94 kHz,
which appears in the spectrum when the azimuthal orientation is set to
maximize the higher of the two axial-shear modes. The coupling to this
mode leads to slightly greater interference (beats) in time-domain signals
during ringdown with excitation of the higher-frequency axial-shear mode.
A similar situation of greater interference occurs in measurements of the
higher-frequency axial-shear mode of Al-Zn. Because of this effect, the lower-
frequency axial-shear mode in both specimens is employed to illustrate the
time-domain measurement technique.

4.2. Waveform acquisition and initial analysis

The initial procedure employed for analysis of phase-detector waveforms
includes compensation for receiver nonlinearity and time-dependent back-
ground subtraction. Nonlinearity of the receiver and relative gain imbalances
of the two phase-detector channels were determined through measurements
that employed a series of levels of continuous sinusoidal inputs as input to
the receiver, with the RF frequency slightly offset from that of the internally
generated reference sinusoid to provide sinusoidal outputs from the phase
detectors. The resultant data on phase-detector output vs. amplitude of the
RF input were fit to an an eighth-order polynomial, and this fit is used to
compensate for instrument nonlinearity in all acquired waveforms.

Small time-dependent voltages are present after a tone burst, even in the
absence of a specimen, because of finite recovery times of electronic compo-
nents. To enable compensation for this effect, waveforms without a specimen
in the coil are acquired and fit to a sum of two exponential decay functions
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plus a constant, and this fit is subsequently subtracted from all waveforms
acquired with a specimen in the coil. The detailed procedure for determin-
ing the background functions for each phase detector is described in the
Appendix. The background phase-detector voltages are -4 mV to -2 mV im-
mediately after the tone burst and decay to magnitudes less than 1 mV after
100 ms.

Fig. 4| shows an example of a pair of phase-detector waveforms from spec-
imen Al-Zn after excitation at 658.70 kHz. These data are adjusted for
receiver nonlinearity, and, then, time-dependent backgrounds (also corrected
for receiver nonlinearity) are subtracted. Apart from these corrections, the
data in this figure are raw acquired data. In other words, they are not de-
rived from a digitized RF signal and are, instead, the output from analog
signal processing.

o4

S
[\S}
M
1

Phase detector voltage (V)

-0.8 ] — 1T - - T - 1 T T T
0 20 40 60 80 100
Time (ms)
Figure 4: Phase-detector voltages vs. time, corrected for receiver nonlinearity and time-

dependent background, from a waveform during ringdown of Al-Zn after tone-burst exci-
tation at 658.70 kHz. The zero of time is defined as the end of the tone burst.

The instantaneous phase ¢(t) of the RF signal relative to the reference
sinusoid during ringdown is given by

#(t) = tan~ ' (PhDet2(t)/ PhDet1(t)), (5)

and the corresponding RF signal amplitude A(t) before amplification by the
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receiver, is given by
A(t) = 107 %e/2(Ph Det1? + PhDet?)Y/?, (6)

where Ggp is the receiver gain in dB. Neglecting voltage drops in the cables
and diplexer, A(t) is equal to the RF voltage on the coil during ringdown.
Fig. |5 shows ¢ and A(t) vs. t extracted from the pair of phase-detector
waveforms in Fig. [4] through the use of Eqs. [f] and [6]

The RF amplitude in Fig [5(b) shows small oscillations in voltage vs.
time with amplitudes that are approximately 1 mV at the beginning of the
waveforms and decay with time afterwards. These oscillations, which are also
reflected in the phase-detector waveforms (Fig. ] and phase (Fig[f|(a)), arise
from weak excitation of two unidentified resonant modes that are ~ 420 Hz
and ~ 490 Hz above the dominant axial-shear mode. The amplitude of the
oscillations are approximately 1.2 % of the RF amplitude of the dominant
axial-shear mode, corresponding to ~ 0.014 % of the excitation energy going
into excitation of the unidentified modes.

To reduce noise in further waveform analysis, 50 pairs of phase-detector
waveforms are acquired and separately processed in the sequence described
above, and the extracted values for ¢ and RF amplitude vs. ¢ are aver-
aged. The automated acquisition of these 50 waveforms takes approximately
5.6 min. During this acquisition, the temperature of the specimen changes
slightly. This leads to shifts in resonant frequency between waveforms, due
to thermal expansion or contraction and intrinsic temperature dependence of
acoustic velocities. Before acquisition of each waveform in the 50-waveform
sequence, the excitation frequency is automatically tuned in real time to
approximately match the current resonant frequency. This is accomplished
with a technique involving calculation of the resonant frequency from the av-
erage slope of the relative signal phase vs. time over a user-specified interval
(e.g., 100 ms for Al-Zn) without adjusting signals for receiver nonlinearity or
time-dependent background [29]. The relationship of resonant frequency to
the slope of phase vs. time is described in more detail, below, in the context
of extracting amplitude-dependent frequency shifts during ringdown. The
maximal drift in frequency during the acquisition of each set of 50 wave-
forms in this study is 8 Hz (fractionally, 12 ppm). From published values of
the thermal expansion coefficient and temperature dependence of the shear
velocity of aluminum [27, [30], this frequency shift is estimated to arise from
a temperature shift of approximately 0.04 °C.

12
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Figure 5: (a) Phase ¢ and (b) RF amplitude vs. time determined from the phase-detector
waveforms from Al-Zn in Fig.
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4.3. Resonant frequency during ringdown

A tone burst has a finite bandwidth given by the Fourier transform of
the gated sine wave. Specifically, if the gated frequency of a sine-wave burst
is frer, the bandwidth of the excitation is closely approximated by a sinc
function with its first pair of minima at fies £ 1/7), where Tj is the duration
of the tone burst. If a resonance is within the bandwidth of a driving tone
burst, it will be excited and, following the tone burst, decay at the resonant
frequency, not f..s. The instantaneous resonant frequency can also change
during ringdown, because of nonlinear dependence on vibrational amplitude,
and measurements of this effect are the focus of all NRS techniques.

The approach employed here for determining the instantaneous resonant
frequency f(t) takes advantage of the relation between this frequency, the
reference frequency, and the derivative of the phase with respect to time ¢

[31]:
do(t)

o 21 [f(t) — fret]- (7)

Neglecting the small time-dependent oscillations in phase discussed in Sec.
the slope of ¢(t) vs. ¢ in Fig. [5a) and the corresponding average ¢(t) vs. ¢
from 50 waveforms is not constant, indicating that the resonant axial-shear
frequency changes as the RF amplitude decreases during ringdown.

Analysis of the data of averaged ¢(t) vs. t proceeds by incrementally
fitting these data to determine the time-dependent slope at each point in
the waveform. A Savitzky-Golay smoothing algorithm with incremental
second-order-polynomial fitting of windows of 100 points is employed, and
this largely cancels the effect of the unidentified-mode interference. With
the average of the set values of f..; known, the extracted slope is converted
through the use of Eq. to a corresponding time-dependent resonant fre-
quency f(t).

This approach for determining time-dependent resonant frequency is in-
novative. While time dependence of phase determined by RITEC systems
has been employed for measuring resonant frequencies in our labs at NIST for
almost three decades, such measurements, until recently, neglected the time
dependence of resonant frequencies during the period of a single ringdown.
In other words, specimens were approximated as elastically linear, so that
d¢/dt in Eq. 7| was approximated as constant during a single ringdown and f
was determined from a linear least-squares fit of ¢ vs. ¢ [29]. This approach
with an approximation of linear elasticity is, in itself, unusual with RITEC
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systems, which more commonly are employed in a stepped-frequency mode
when measuring resonant spectra (as in Fig. [3)).

The entire sequence of data acquisition and analysis, described above,
is performed on four additional sets of 50 waveforms from Al-Zn to provide
information on repeatability. Figure [6[a) shows an average of the results
for fractional frequency shifts vs. RF amplitude obtained from the five sets
of data, referenced to the frequency fy at an RF amplitude of 10 mV, and
Fig. @(b) shows the corresponding average RF amplitude vs. time. The reso-
nant frequency at the beginning of ringdown is (658.689 + 0.014) kHz (where
the uncertainty corresponds to the range of values from the five data sets).
Figure @(a) indicates that the frequency increases by ~ 6.2 ppm from the
beginning of ringdown to the time in the ringdown where the amplitude is
10 mV. The error bars in this plot correspond to + /- two times the standard
deviation o of the five values of (f-fy)/fo at the highest RF amplitude. All
of the five values are within the range of these error bars.

Figure [6] also shows data obtained in a similar manner from five sets
of 50 waveforms acquired from specimen Al-7075. At an RF amplitude of
82 mV, the magnitude of (f-fy)/fo obtained from this specimen is ~ 2 %
of that obtained from specimen Al-Zn and is opposite in sign. The resonant
frequency at the beginning of ringdown is (658.304 + 0.021) kHz. The range
of the error bars (£20, +0.036 ppm) on the highest-amplitude point in
this plot is approximately equal to half the diameter of the plotted symbols
and shows that the values of (f-fy)/fo differ significantly from zero at RF
amplitudes greater than ~ 55 mV.

As described in the previous section, each set of 50 waveforms is acquired
over a period of several minutes, and there were slight temperature-dependent
shifts in resonant frequency and f.o from one waveform to the next. The
specific sequence described here for the averaging of each set of 50 waveforms
is designed to eliminate this effect in the final result for average (f-fo)/ fo.
Accurate results would not, for example, be obtained by directly averaging
50 pairs phase-detector waveforms, because the waveforms change from one
ringdown to the next as a result of shifting resonant and reference frequencies.
¢(t) extracted from each waveform has a linear term in the time dependence,
corresponding to a constant term in (f(t) — fier) for that waveform. With
values of ¢ vs. t extracted separately from each waveform before averaging,
the linear contribution to the average ¢ vs. t from a set of waveforms is given
by the difference of the average constant contributions to f(t) and average
fret Of the set of waveforms. Note that this linear contribution does not affect

15
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Figure 6: Average results from five sets of 50 waveforms for (a) fractional change in
instantaneous resonant frequency f(¢) vs. RF amplitude, referenced to the frequency fo
at an RF amplitude of 10 mV, and (b) RF amplitude vs. time during ringdown. Error
bars in (a) correspond to 4 2¢ of the highest-amplitude points points from the five data
sets.
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the amplitude dependence of the fractional frequency shifts plotted in Fig. [6]
since it is removed by referencing the shifts to the frequency at a specified
RF amplitude.

Before the acquisition of each set of 50 waveforms, the azimuthal orien-
tation of the specimen was changed and, then, realigned to achieve approxi-
mately maximal signal amplitude. Therefore, the scatter in results from these
sets and associated error bars in Fig. [6] include uncertainty in the process of
manually maximizing the signal as a function of azimuthal angle.

4.4. Instrumental error in frequency shifts

Potential sources of error in the results presented in Fig. [0 also include
drift in the RITEC reference frequency and phase-detector electronics during
the 200 ms acquisition interval following tone-burst excitation. This issue
is of greatest interest with respect to the results for Al-7075 in Fig. [6]a),
because the measured frequency shifts for this sample are so small. To explore
the magnitude of such contributions to systematic errors in time-dependent
frequency shifts, tests were performed with a high-stability continuous-wave
frequency source providing input to the diplexer (i.e., replacing the signal
from the EMAT /Specimen in Fig. and with the high-voltage tone burst
of the gated amplifier turned on but not connected to the diplexer. For this
purpose, a Hewlett Packard 8662A signal generator was employed.

The sequence of data acquisition and analysis described in Secs. and
4.3| was performed with the signal generator providing a sine wave at 658.0
kHz (close to the axial-shear resonant frequencies of samples Al-Zn and Al-
7075) and an RF amplitude of 70.2 mV at the input to the diplexer. As
described in Sec. [4.2] the acquisition and analysis included averaging of 50
waveforms with the RITEC reference frequency automatically adjusted be-
fore each waveform to approximately match the signal frequency (which, in
this case, was constant). Such sets of waveforms were acquired repeatedly
over a period extending from 3 hours to 6 hours after turning on the RITEC
system and HP 8662A signal generator. This time period after turning on
the instruments is similar to that employed in the measurements of Al-7075.
At the beginning of this period, extracted frequencies were found to increase
with time during the 200 ms acquisition interval during ringdown: a lin-
ear least-squares fit of these data found a statistically significant slope of
(2.02 £ 0.07) x 107° ppm/ms. Analysis of subsequent data sets shows that
the slope during ringdown decreased to (—2.98 +0.06) x 10~° ppm/ms at the
end of the test (6 hours after the instruments were turned on). This final
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value corresponds to a fractional frequency shift of —0.006 ppm during the
200 ms interval of ringdown. Additional analysis shows that omitting the
subtraction of background waveforms (described in Sec. had no signifi-
cant effect on the fit slope of the frequency shifts vs. time (within the stated
uncertainty).

These tests of the stability of the RITEC reference frequency and phase
detectors show that instrumental uncertainty in frequency shifts during ring-
down are significant but smaller than other sources of uncertainty that con-
tribute to the measurement variations between data sets indicated by the
+ 20 error bars in Fig. [6] In addition, the results of these tests indicate that
the total frequency shift of 0.14 ppm measured for Al-7075 during ringdown
does not arise from instrumental instability.

4.5. Logarithmic decrement

Values of the log decrement ¢ of Al-Zn and Al-7075 are determined to be
(3.75 £ 0.01)x107° and (1.85 £ 0.01)x107°, respectively, from linear least-
squares fits on a semi-log scalel of the data in Fig.[6|(b) that have RF ampli-
tudes greater than 20 mV. The data points in this fit were equally weighting
on the log scale. These fits, extended to an RF amplitude of 7 mV, are plot-
ted in this figure. The RF amplitudes immediately after the tone burst are
determined from the fits to be (76.90 + 0.05) mV and (80.4 £ 0.1) mV for
Al-Zn and Al-7075, respectively.

5. Discussion

5.1. Precision

The error bars in Fig. @(a) indicate a precision of +0.10 ppm and + 0.04 ppm
in the highest-amplitude data points for (f-fy)/fo of Al-Zn and Al-7075, re-
spectively, based on £ 20 of values extracted from the five data sets from
each specimen. These precisions are approximately two orders of magni-
tude better than the best reported fractional precision of 10 ppm for NRUS
measurements [32]. Greater repeatability of the NRS measurements is un-
derstood to arise primarily from information on amplitude dependence being
entirely contained within each waveform, which decays much more rapidly
than the time scale required for NRUS measurements and, therefore, has less
temperature-related uncertainty.
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Specifically, as described in Sec. .1, the maximal fractional frequency
drift during the 5.6 min interval employed here to acquire a set of 50 wave-
forms is found to be 12 ppm, and, for aluminum, this corresponds to a
temperature drift of approximately 0.04 °C. The temperature drift during
a 200 ms time interval of an individual waveform (such as those acquired
for Al-7075) is estimated to be smaller by a factor approximately equal to
the ratio of this interval to the acquisition time of the entire 50-waveform
sequence: on the order of 2 x 107 °C. This corresponds to a temperature-
related frequency drift of approximately 0.01 ppm. The order-of-magnitude
greater uncertainty of +0.10 ppm indicated by the + 20 error bars for Al-Zn
in Fig. [6[a) is understood to arise from other sources, most likely dominated
by irreproducibility in azimuthal alignment of the specimen and associated
variations in electromagnetic-acoustic coupling strength.

In contrast, NRUS measurements require acquisition of multiple stepped-
frequency spectra with different drive amplitudes, and such measurements are
significantly affected by ambient time-dependent temperature variations [32].
To accurately measure resonance spectra in NRUS, the dwell time at each
frequency in the spectrum must be great enough to essentially achieve the
CW excitation level (i.e., substantially greater than the time to drop to 1/e
in exponential decay). Therefore, the time required to acquire a single NRUS
spectrum is greater than that of a single NRS measurement by a factor greater
than the number of frequency steps in the NRUS spectrum, and acquisition of
multiple NRUS spectra at different drive amplitudes takes much longer. To
address this issue, Pasqualini et al. [33] implemented an NRUS system with
long-term temperature stability of 1072 °C, leading to frequency stability on
the order of +100 ppm in measurements near 1 kHz. Haupert et al. [32]
established an approach involving, for each specimen, repeated acquisition
of low-amplitude reference spectra before acquisition of each spectrum at a
higher drive level, and they reported frequency precision on the order of 10
ppm in measurements on several materials. To our knowledge, this is the
best precision reported for NRUS measurements.

Other NRS techniques also offer the advantage of minimal temperature
drift during measurements of amplitude dependence of resonant frequencies.
However, the precision of NRS measurements does not appear to be reported
in published studies, which have focused predominantly on audio and sub-
audio frequencies. Relative to these other NRS techniques, the technique
presented here offers further advantages of noise reduction through super-
heterodyne and phase-sensitive reception. Specifically, phase-sensitive (lock-
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in) reception enables low-pass hardware filtering of the phase of the signal,
relative to the reference sinusoid, providing information on changes in reso-
nant frequency on a relevant time scale during ringdown (e.g., on the order
of several milliseconds in the examples presented here), rather than requir-
ing software analysis of noisier RF signals acquired with digitization rates
greater than the resonant frequency.

The number of waveforms (50) employed here in the data averaging se-
quence was chosen arbitrarily, and the dependence of uncertainty of the re-
sults on this number has not yet been not explored. In light of the hypothesis
offered in the previous section that scatter in values of (f-fy)/fo (error bars
in Fig. [6(a)) is dominated by irreproducibility of azimuthal alignment of
specimens, it seems likely that the number of acquired waveforms and asso-
ciated acquistion times could be substantially reduced without much effect
on uncertainties.

5.2. Transduction efficiency

The measured RF signal amplitudes in Fig. @(b) are proportional to
the instantaneous vibrational amplitudes in the specimens during ringdown.
Since both specimens are aluminum, the electromagnetic-acoustic transduc-
tion efficiency and associated constants of proportionality between the signal
amplitudes and vibrational amplitudes are expected to be close to the same
for the two specimens, so that Figure[6|(a) provides information on the rela-
tive dependence of resonant frequencies on vibrational amplitude.

The validity of the approximation of equal transduction efficiencies for
these specimens is considered by comparing the ratio of the measured RF
amplitudes at the beginning of ringdown with an estimate of this ratio based
on the logarithmic decrement and material properties. The resonant vibra-
tional amplitude A.y(2) at an arbitrary point Z within a resonator subjected
to a continuous-wave (CW) sinusoidal excitation at the resonant frequency
is proportional to the resonator quality factor @ (equal to 7/§ [34]) and in-
versely proportional to the effective elastic stiffness [35]. In the specific case
of CW excitation of an axial-shear mode, the corresponding elastic stiffness
is pv? [36], where p is density and v, = wa/n (Eq.|3). From the measured
values of a, w, p, and 0 of Al-Zn and Al-7075 (Secs. [2[ and , the ratio of
the resonant vibration amplitude of Al-Zn to that of Al-7075 with equal CW
electromagnetic-acoustic excitation is expected to be approximately 0.51.
The dominant factor contributing to this ratio is 4, and the 0.02 % difference
in v, has an insignificant effect.
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With tone-burst excitation at a resonant frequency, the vibrational ampli-
tude A(Z,t') of a linear resonator during excitation is a superposition of the
solution of the equation of motion with CW excitation and a time-dependent
solution in the absence of excitation, with the prefactor of the time-dependent
part selected to match the initial condition of A(Z,0) = 0 (where time ¢’ is
defined to be zero at the beginning of the tone burst). If § is approximately
constant during ringdown, A(Z,t') increases with time towards the CW level:

A(Z ) = A (2) [1 — exp (—“‘;‘Sﬂ . (8)

This equation leads to an estimate of the vibrational amplitude of Al-Zn at
the end of a 2.6 ms tone burst that is approximately 1.017 times greater than
that of Al-7075. The reason that this ratio is slightly greater than 1, even
though the CW amplitude of Al-Zn is smaller than that of Al-7075, is the
greater p of Al-7075 and the approximate cancellation of the effect of § when
t' < 27 /wé. The amplitudes would be predicted to be approximately equal
if the tone burst had a duration of 5 ms.

The actual measured RF amplitude from Al-Zn at the end of the tone
burst (determined from the logarithmic fit of RF amplitude vs. time in
Fig. [6(b)) is (4.3 £ 1.9)% less than that from Al-7075 (where the indicated
uncertainty is based on 20 of the amplitudes from the five data sets for each
specimen). This 5.9 % discrepancy between predicted and measured signal
levels of Al-Zn, relative to Al-7075, corresponds to a (3.0 £ 0.9)% difference in
the one-way electromagnetic/acoustic coupling efficiency for the two samples.

One factor that has not been considered, thus far, in estimating the rela-
tive received RF amplitudes is a difference in electrical conductivity. Al-Zn
is expected to have higher conductivity than Al-7075 because of its lower
concentration of alloying elements, and this difference is reflected in a mea-
sured impedance of the coil plus connecting BNC cable that is (1.5 £ 0.1
%) lower with Al-Zn inserted in the coil than with Al-7075 inserted. This
slightly lower impedance will lead to an increase in the current in the coil
with the fixed V|, that is employed in the measurements. For a given coil cur-
rent, the conductivity dependence of the conversion efficiency between the
current and the force on the sample is expected to be insignificant. Specifi-
cally, Thompson [37] showed theoretically and Gaerttner et al. [38] showed
experimentally (for shear plane waves) that differences in specimen conduc-
tivity have an insignificant effect on this conversion efficiency if the ratio of

21



560

565

570

575

580

585

590

595

the electromagnetic skin depth to the acoustic wavelength is much less than
1. The axial-shear modes in aluminum near 658 kHz in this study are well
within this regime of acoustic wavelength relative to skin depth. As explained
by Thompson [37], the reason for this insensitivity to conductivity in highly
conducting metals at low ultrasonic frequencies is that the magnitude of the
total RF current in the specimen per unit surface area (integral of the cur-
rent density vs depth) is independent of conductivity. Therefore, the higher
driving coil current with Al-Zn is predicted to lead to a slightly (~ 1.5%)
greater excitation force on the specimen and a corresponding increase in the
discrepancy between the predicted and measured signal amplitudes of Al-Zn,
relative to Al-7075.

As described in Sec. [£.3] beats in the RF amplitude from Al-Zn during
ringdown (Fig. [5| (b)) indicate that a fraction of the excitation energy (~
0.014 %) is channeled into excitation of two unidentified modes. Similar
beats are present in waveforms from Al-7075 (arising from excitation of a
mode ~ 560 Hz above the dominant axial-shear mode, which is visible near
658.84 kHz in Fig. , but the amplitude of these beats is approximately 1/3
of those observed in the signals from Al-Zn. The greater fraction of excitation
energy being channeled into unidentified modes in Al-Zn is not great enough
to explain the discrepancy in the measured and predicted signal amplitudes
from this specimen.

In the absence of other viable explanations for the discrepancy of several
percent in measured and predicted relative signal amplitudes, we are appar-
ently left with the possibility that a difference in the resonant vibrational
patterns of the two specimens affects the degree to which the Lorentz forces
(with spatial dependence given by Eq. [2) match the vibrational patterns and,
therefore, affects the transduction efficiency. The measured modes of these
specimens are nominally the same types of “axial-shear” modes, as evidenced
by the fact that they are each one of two overwhelmingly dominant nearly-
degenerate modes in the frequency range expected for axial-shear modes with
n = 5.33144 (Eq. |3) in homogeneous transversely isotropic aluminum cylin-
ders. However, differences in material homogeneity or anisotropy would lead
to differences in resonant vibrational patterns and associated matching of
these patterns to the driving axial Lorentz forces (Eq. . An hypothesis of
greater transverse inhomogeneity or anisotropy and associated reduction in
coupling strength in Al-Zn is supported by the fact that the splitting of the
frequencies of the two nominally degenerate axial-shear modes is approxi-

mately four times greater in Al-Zn than in Al-7075 (Sec .
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5.83. Noncontacting electromagnetic-acoustic transduction

Contacting piezoelectric transducers have been reported to introduce ir-
reproducibility in nonlinear measurements [39] and frequency shifts in linear
RUS measurements [40]. The noncontacting electromagnetic-acoustic trans-
duction method employed here to demonstrate phase-sensitive NRS mea-
surements offers the advantage of essentially eliminating nonlinearity and
acoustic loss associated with mechanical contact.

5.4. Physical source of nonlinearity

A detailed analysis of physical mechanisms responsible for the amplitude
dependence of resonant frequencies shown in Fig. @(a) is beyond the scope
of this study. However, a couple of points about the interpretation of these
data should be briefly noted.

In a previous study of nonlinearity of additively manufactured 17-4 stain-
less steel specimens with various levels of built-in porosity [21], we suggested
that dislocations are the dominant contribution to amplitude dependence of
resonant frequencies observed in phase-sensitive NRS measurements. This
hypothesis is supported by the results in Fig. [6fa), which show the magni-
tude the nonlinearity of Al-7075 to be a factor of ~ 50 smaller than that of
Al-Zn. The alloying-element concentration in Al-7075 is expected to be 55
to 80 times greater than that in Al-Zn (Sec. [2)) and is, therefore, expected to
produce greater pinning of dislocations and associated suppression of the dis-
location contribution to nonlinear acoustic strain. The difference in acoustic
loss in the two specimens (Fig.[f[(b)) is also consistent with dislocations being
the predominant source of loss in these materials, with anelastic motion of
dislocations being more inhibited by pinning in Al-7075.

As in our previous measurements of 17-4 stainless steel, the resonant fre-
quency of Al-7075 is found to increase with increasing vibrational amplitude
(Fig.[6(a)). The sign of this dependence indicates the presence of higher-order
nonlinear terms in the stress-strain relation (assuming classical nonlinearity),
since the lowest-order nonlinear term (quadratic in strain) can only lead to
frequencies decreasing at higher amplitudes [41]. The fact that Al-7075 and
Al-Zn have opposite signs of amplitude-dependent frequency shifts, in addi-
tion to having much difference magnitudes of these shifts, indicates that the
ratios of multiple nonlinear coefficients are different in these two specimens.
This type of behavior and detailed functional forms of amplitude dependence
are anticipated to be a focus of future work.
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6. Conclusion

The NRS technique presented in this paper offers advantages, relative
to previous NRS techniques, of a reduction in signal noise through phase-
sensitive superheterodyne reception and a reduction in computational signal-
processing effort. Digitization of signals from a vibrational sensor is bypassed
through analog signal processing, while preserving all information on ampli-
tude dependence of resonant frequencies during resonant decay. The specific
hardware described here can be applied to resonant modes with frequencies
as great as 20 MHz with no increase in computation time or complexity.
The general measurement technique can also be implemented with instru-
ments that operate at frequencies below the ultrasonic range, such as lock-in
amplifiers without superheterodyne reception, enabling nonlinear acoustic
characterization of large structural components.

The precision of measured fractional changes in frequency is found to
surpass the best reported precision of nonlinear resonant ultrasound spec-
troscopy (NRUS) by two orders of magnitude, and this is attributed primar-
ily to less temperature drift during resonant ringdown than that which occurs
in intrinsically more time-consuming acquisition of stepped-frequency spec-
tra. The technique is sensitive to multiple orders of nonlinearity, which are
reflected in the detailed amplitude dependence of resonant frequency shifts,
and, unlike propagating-wave harmonic-generation techniques, extraction of
information on the contributions from multiple nonlinear terms in the stress-
strain relation is not complicated by the frequency dependence of acoustic
attenuation and diffraction.

The specific electromagnetic-acoustic transduction method employed here
to demonstrate phase-sensitive NRS provides the additional advantage of
noncontacting excitation and reciprocal detection of resonant vibrations. Al-
though this method is employed here with a regular cylindrical geometry to
enable clear identification of excited modes, it is readily applicable to more
complex geometries. Therefore, phase-sensitive NRS with electromagnetic-
acoustic transduction provides an attractive option for nondestructive detec-
tion of material variations in geometrically complex additively manufactured
parts.
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7. Appendix

The following procedure is employed to determine the time-dependent
75 background for each phase detector:

e 100 pairs of waveforms (PhDetl and PhDet2 vs. time) are acquired
with the excitation frequency fixed at a value approximately equal to
the frequency of the specimen resonance.
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e For each of these waveforms, the average voltage of points before the
tone burst is subtracted and a correction for instrument nonlinearity
is applied (using the polynomial-based correction factor, described in

Sec. [4.2)).

e The resultant waveforms are averaged to provide a single pair of back-
ground waveforms for PhDet1 and PhDet2 with reduced noise.

e The two averaged waveforms are separately fit to a sum of two expo-
nential functions plus a constant. The statistical R? values of fits are
0.997 for PhDet1 and 0.988 for PhDet2, and the standard deviations
of both fits are 0.05 mV.

29



	Introduction
	Specimens
	Hardware
	Excitation coil and magnetic field
	Electronic configuration

	Results
	Resonant modes
	Waveform acquisition and initial analysis
	Resonant frequency during ringdown
	Instrumental error in frequency shifts
	Logarithmic decrement

	Discussion
	Precision
	Transduction efficiency
	Noncontacting electromagnetic-acoustic transduction
	Physical source of nonlinearity

	Conclusion
	Appendix

