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We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold
atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially
delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the
mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis
twisting model. The quantum enhanced sensitivity of the states is combined with the subsequent
application of a compound pulse sequence that allows us to separate atoms by several lattice sites. This,
together with the capability to load small atomic clouds in the lattice at micrometric distances from a
surface, make our setup ideal for sensing short-range forces. We show that for arrays of 104 atoms, our
protocol can reduce the required averaging time by a factor of 10 compared to unentangled lattice-based
interferometers after accounting for primary sources of decoherence.
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Introduction.—Ultracold atomic systems offer tremen-
dous potential for quantum sensing applications including
time keeping [1] and gravimetry [2], and thus provide
opportunities for searching or constraining new physics in
outstandingly precise and compact experiments. Despite
the great advances in quantum sensing accomplished by
cold atom experiments, one of the most important mile-
stones that needs to be accomplished is to introduce
quantum entanglement to enhance the sensitivity of real-
world sensors beyond the so-called standard quantum limit
(SQL) attainable with uncorrelated particles [3–6].
Important steps towards this goal have been accom-

plished such as the generation of up to 19 dB spin
squeezing in cavities [7–10]. Nevertheless, the use of
entangled states in state-of-the-art inertial sensors has yet
to be achieved. Limitations include the spatial mismatch
between the lattice potential and the cavity mode which
degrades the utility of spin squeezing after releasing the
atomic cloud to free space [11]. Conventional free-falling
experiments also lack spatial resolution and suffer from
limited interrogation time [12]. Theoretical and experimen-
tal progress to overcome these challenges has been reported
in recent years although in different setups. For example,
homogeneous atom-cavity couplings have been engineered
by the use of commensurate lattices [7,13,14], ring cavities
[15–18], or via time averaging as atoms free fall along
the cavity axis [19]. In parallel, lattice-based interfero-
meters enjoying compact spatial volumes [12,20–23] have
reported capabilities to trap atoms near surfaces, and
have achieved up to 20 s holding time using uncorrelated
atoms [22].

Here we propose a quantum enhanced lattice-based
protocol that uses the motional eigenstates of the combined
lattice plus gravity potential, the so-called Wannier-Stark
(WS) states, to overcome relevant limitations faced by
current atomic sensors. The key idea is the use of
delocalized WS states over a few lattice sites, which
enables averaging out the inhomegeneities of atom-cavity
couplings at specific lattice depths. This allows for the
generation of uniform spin squeezed states via dynamical
one-axis twisting (OAT) evolution [24,25], or via homo-
geneous quantum nondemolition (QND) measurements
[26,27], even in incommensurate lattice-cavity geometries.
The uniformly generated spin squeezed states are not only
useful for quantum enhanced measurements of gravity [14],
but also ideal for fundamental tests of short-ranged forces
[12,22] which require loading small atomic clouds close to
a surface or a source mass, such as dark energy [28],
Casimir-Polder forces [29], and non-Newtonian corrections
of gravity [30,31]. Furthermore, the ability to tune the
inhomogeneities of couplings to a bosonic mode that
mediates interactions or introduces disorder opens new
possibilities in quantum many-body simulators [32].
Our work focuses on the dynamical generation of spin

squeezing and the interferometric sequence to transfer the
atoms to WS orbitals separated by several lattice sites to
improve phase accumulation. Moreover, the interferometric
phase can be mapped into a magnified rotation of the
atomic internal state by reversing the squeezing protocol,
which can be measured without the need of below-SQL
detection resolution [33–35]. After accounting for primary
sources of decoherence, we show that applying our scheme
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to arrays of 104 atoms, it should be possible to detect short-
range forces acting at μm-scale distances, with an averaging
time reduced by a factor of 10 compared to unentangled
lattice-based interferometers [12,20].
System.—We consider an ensemble ofN ultracold atoms,

with mass M trapped in a vertical standing-wave optical
cavity, as depicted in Fig. 1. The atoms are confined in the
lowest band of a one-dimensional (1D) optical lattice
oriented along the vertical direction ẑ. The gravitational
potential with local acceleration g generates a differential
energy shiftMgz between two atoms separated by a vertical
distance z. Two long-lived internal levels of the atoms, with
energy splitting ℏω0, are used to encode a spin-1=2
degree of freedom with states labeled as j↑i and j↓i. A
single cavity mode with frequency ωc and wavelength λc
couples the j↑i and j↓i states to an optically excited state
jei of the atoms separated by a frequency ωe from
the j↓i state. The atom-cavity coupling has a spatial profile
G↑;↓ðzÞ ¼ G0

↑;↓ cosðkczÞ, where kc ¼ 2π=λc. The cavity
mode is coherently pumped by an external field detuned
from the cavity resonance by Δc ¼ ωp − ωc.
We are focusing on the system operating in the dispersive

regime of atom-light interaction, where both the pump and
cavity mode are far detuned from the atomic resonances,
i.e., Δ↑;↓ ≫ G0

↑;↓

ffiffiffiffiffiffiffiffiffiffiffi

hâ†âi
p

, with Δ↑ ¼ ωp − ωe þ ω0 and
Δ↓ ¼ ωp − ωe. In this limit, the atomic excited state jei can

be adiabatically eliminated [36], leading to the following
Hamiltonian written in second quantized form in the
rotating frame of the external optical pumping field,

Ĥ ¼
X

β¼↑;↓

Z

dzψ̂†
βðzÞ

�

p̂2

2M
þ V0sin2ðklzÞ þMgz

þ ℏjGβðzÞj2
Δβ

â†â

�

ψ̂ βðzÞ þ Ĥcav þ Ĥdrive: ð1Þ

Here, V0 is the lattice depth, kl ¼ 2π=λl is the wave
number of lattice beams that sets the atomic recoil
energy ER ¼ ℏ2k2l =2M and the lattice spacing al ¼ λl=2,
where λl is the wavelength of the lattice. The operator
â is the annihilation field operator for cavity photons,
and the operator ψ̂βðzÞ annihilates an atom of spin β at
position z. The cavity Hamiltonian is given by Ĥcav=ℏ ¼
−Δcâ†âþ εâ† þ ε�â, where ε is the amplitude of
the injected field. The drive Hamiltonian Ĥdrive=ℏ¼
R

dzf½Ωψ̂†
↑ðzÞψ̂↓ðzÞþH:c:�−δψ̂†

↑ðzÞψ̂↑ðzÞg describes a
switchable external microwave drive, with Rabi frequency
Ω, drive detuning δ that uniformly couples the spin-1=2
degree of freedom when applied.
We expand the atom field operators ψ̂ βðzÞ in terms of

the Wannier-Stark (WS) orbitals: ψ̂βðzÞ ¼
P

n ĉnβϕnðzÞ,
where ĉnβ annihilates an atom of spin β in the WS state jϕni
centered at site n. In the tight-binding limit, the
wave function of the WS state jϕni takes the form
ϕnðzÞ ¼

P

m J m−nð2J0=MgalÞwðz −malÞ [37], where
J nðxÞ is the Bessel function of the first kind, J0=ℏ is
the nearest-neighbor tunneling rate, and wðxÞ is the ground
band Wannier function. If we assume the cavity-induced ac
Stark shifts ℏjG0

↑;↓j2hâ†âi=Δ↑;↓ are smaller thanMgal [36],
so transitions between WS orbitals are suppressed, the
atom-cavity dynamics can be simplified into the following
Hamiltonian,

Ĥ ¼ ℏ
X

n

ð−δþ ηnâ†âÞŜzn þHcav þ ℏ
X

n

ΩŜxn: ð2Þ

Here, the spin operators are defined in terms of atomic
creation and annihilation operators for j↑ni≡ j↑;ϕni and
j↓ni≡ j↓;ϕni states, Ŝx;y;zn ¼ P

β;β0 ĉ
†
nβσ

x;y;z
ββ0 ĉnβ0 , where

σx;y;zββ0 are the matrix elements of the corresponding Pauli
matrices and β; β0 ∈ f↑;↓g. It is also convenient to
define the collective spin operators Ŝx;y;z ¼ P

n Ŝ
x;y;z
n

for later discussions. The dispersive atom-light coupling
ηn ¼ η↑n − η↓n , with η↑;↓n ¼ R

dzjG↑;↓ðzÞϕnðzÞj2=Δ↑;↓, can
be evaluated analytically,

ηn ¼ η

�

1þ CJ 0

�

4J0
Mgal

sinðφ=2Þ
�

cosðnφÞ
�

; ð3Þ

FIG. 1. Protocol schematics: An ensemble of ultracold atoms
are trapped in the lowest band of a lattice supported by a standing-
wave optical cavity oriented along the direction of the gravita-
tional acceleration g. The cavity decay rate is κ=2 on each side.
The two long-lived internal levels of an atom with energy
splitting ℏω0 act as a spin-1=2 degree of freedom labeled as
j↑i and j↓i. These two states are coupled through a single cavity
mode to the excited state jei, with energy ℏωe and spontaneous
emission rate γ. The cavity mode is coherently pumped by an
external light field with detuning Δc ¼ ωp − ωc from the cavity
resonance which generates a net injected field in the cavity with
amplitude ϵ.
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where η ¼ 1
2
ðjG0

↑j2=Δ↑ − jG0
↓j2=Δ↓Þ is the mean value of ηn

over all possible n, φ ¼ 2πλl=λc, and C is a parameter of
order one [36]. We also replace Δc by an effective cavity
detuning Δ̃c ¼ Δc −

P

n Nnðη↑n þ η↓nÞ=2 in Ĥcav, where Nn
is the total atom number in j↑ni and j↓ni states.
The last step is to adiabatically eliminate the injected

light field and intracavity fluctuations, possible in the limits
Δ̃c ≫ ηα

ffiffiffiffi

N
p

; κ [36], where α ¼ ε=ðΔ̃c þ iκ=2Þ is the
steady-state value of the cavity field, and κ is the cavity
intensity decay rate. With these reasonable approximations,
the system can well described by an effective Hamiltonian
involving only the spins,

Ĥeff=ℏ ¼ −
X

n

ðδ − ηnjαj2ÞŜzn þ
X

nm

χnmŜ
z
nŜ

z
m þ Ω

X

n

Ŝxn:

ð4Þ
When the microwave drive is off, the Hamiltonian above is
the so-called one-axis twisting model, with χnm ¼
ηnηmjαj2Δ̃c=ðΔ̃2

c þ κ2=4Þ the OAT interaction strength,
which is an iconic model for the generation of spin
squeezed states [24,25].
Engineering homogeneous couplings.—One limitation

of spin squeezing generation protocols with frozen atoms in
deep lattices (J0 ≈ 0) is the inhomogeneous couplings
arising from incommensurate lattice and cavity mode
wavelengths (φ ≠ πj with j an integer). However, in a
relatively shallow lattice (V0 < 10ER) where J0 ∼Mgal,
the wave function of WS states can extend over a few
adjacent lattice sites [see Fig. 2(a)] due to non-negligible

nearest-neighbor tunnel couplings, instead of being local-
ized in a single site. The lattice depth can thus be used as a
control knob to vary the extension of the WS and for tuning
the inhomogeneitiy of the spin coupling parameters [see
Fig. 2(b)]. In particular, at the magic lattice condition,

J 0

�

4J0
Mgal

sinðφ=2Þ
�

¼ 0; ð5Þ

we can completely average out the inhomogeneities and
obtain uniform couplings in Eq. (4) with ηn ¼ η and
χnm ¼ χ ¼ η2jαj2Δ̃c=ðΔ̃2

c þ κ2=4Þ. This technique is rel-
evant not only for the generation of homogeneous spin
squeezing but also for quantum simulation of long-range
spin models with tunable inhomogeneity [32]. In practice,
the thermal distribution of atoms in the radial direction and
the undesirable couplings between axial and radial confine-
ment of the Gaussian beam profile can lead to an imperfect
cancellation [see the insets in Fig. 2(b)], which can be
highly suppressed by operating at low radial temperature
or large radial confinement [36]. For 87Rb atoms with
λc ¼ 780 nm (D2 transition) and λl ¼ 532 nm, the magic
lattice depths are around 6.0ER and 2.9ER [see Fig. 2(b)].
For 171Yb atoms with λc ¼ 556 nm (1S0 → 3P1 transition)
and λl ¼ 413 nm [46], the magic lattice depth is around
3.2ER. The negligible scattering length of 171Yb atoms [47]
and their insensitivity to magnetic and electric fields make
them ideal for inertial sensing. For the cases above, at the
smallest magic lattice depth the WS state spreads within
three lattice sites.
Quantum enhanced interferometric protocol.—Since the

energy splitting of WS states is proportional to the
gravitational acceleration g, our system can be directly
used for quantum enhanced gravimetry. The protocol
consists of the following steps, as illustrated in Fig. 3.
After the application of a short π=2 pulse with the micro-
wave drive in an empty cavity [see Eq. (4) with α ¼ 0] that
prepares a spin coherent state along x̂ direction, the system
is let to evolve for a time t0 under the OAT interaction
mediated by the optical cavity [see Eq. (4) with Ω ¼ 0
using an additional spin echo π pulse at t0=2 to cancel
additional Ŝz rotations], which results in the generation of a
uniform spin squeezed state [see Fig. 3(a)]. The reduced
noise quadrature of the state makes it highly sensitive to
small rotations about the ŷ axis, R̃ϕ

y ¼ e−iϕŜ
y
.

To perform precise measurement of a phase ϕ arising
from gravitational energy shifts, Raman sideband transi-
tions to WS states separated by a few lattice sites are used.
Explicitly, the rotation about the ŷ axis is implemented as
R̃ϕ
y ¼ R̃−π=2

x R̄ϕ
z R̃

π=2
x , with R̄ϕ

z ¼ ðR†ÞmRRϕ
zRmR , where mR

is the number of imposed compound pulses, and R ¼
R̃π
yRπ

y is a compound pulse to separate the atoms in j↑i
and j↓i states by 2r lattice sites: j↑ni → j↑nþri and
j↓ni → j↓n−ri. It consists of a π Raman pulse Rπ

y with

(a) (b)

FIG. 2. (a) Inhomogeneous atom-light couplings arise due to
the incommensurate wavelengths of the lattice beams (red curve)
and the cavity mode (yellow curve), when atoms are frozen in
Wannier states (black dashed curve) for deep lattice limit. The
inhomogeneities can be cancelled out in a relatively shallow
lattice since Wannier-Stark states (blue curve) can extend over a
few lattice sites. (b) Standard deviation of the OAT coupling
strengths Δχ ¼ ½Pnmðχnm − χÞ2=N�1=2 as a function of lattice
depth V0=ER assuming 87Rb atoms trapped in a λl ¼ 532 nm
lattice. The black curve shows the magic lattice depths (Δχ ¼ 0)
can be achieved around 6.0ER or 2.9ER under ideal conditions,
indicated by the orange circles. The blue dashed curve shows the
imperfect cancellation of inhomogeneities in χnm with radial
temperature T ¼ 1 μK and radial trapping frequency
ωr=2π ¼ 1 kHz. The two insets show the zoomed Δχ=χ near
the magic lattice depths.
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appropriate momentum kick and frequency ωR to perform
the desired r-site transfer in the lattice (apply from side to
ensure homogeneity for all atoms), followed by a π pulse
on the carrier transition to flip back the spin using a
microwave drive (R̃π

y) with frequency ωMW [see Fig. 3(b)].
Such type of compound pulse sequences have been already
successfully demonstrated in 87Rb atoms [48]. The Rϕ

z

operator describes the free evolution for a time τ of the
atoms separated by 2mRr lattice sites when they accumu-
late a phase ϕ ¼ ðωR − ωMW −Mgalr=ℏÞ × 2mRτ. Note
that one can apply an additional microwave pulse R̃π

y at τ=2
to remove the undesirable hyperfine energy splitting ℏω0.
Finally, one can perform a time reversal of OAT

dynamics by changing the frequency of pump laser such
that Δ̃c → −Δ̃c, followed by a measurement of hŜyi [33].
Under this untwisting sequence, the accumulated phase ϕ is
amplified by a factor of G ¼ ð∂ϕhŜyi=SÞϕ→0, and the
quantum noise for phase measurement σp ¼ ðΔSy=SÞϕ→0

returns to the SQL level, ðσpÞSQL ¼ 1=
ffiffiffiffi

N
p

, which leads to
a phase sensitivity Δϕ ¼ σp=G achievable with detection

resolution at the atom shot noise level. So we estimate a
sensitivity of gravimetry by Δg=g ¼ ξ=ðϕg

ffiffiffiffi

N
p Þ × ffiffiffiffiffiffiffiffi

τ=T
p

,
where ϕg ¼ 2MgalrmRτ=ℏ, ξ−2 ¼ 1=½NðΔϕÞ2� is the met-
rological gain over the SQL, and T is the averaging time.
The optimal sensitivity approaches the Heisenberg limit
Δg=g ∝ 1=N under pure Hamiltonian dynamics [see the red
curve in Fig. 4].
Our protocol could be also ideal for sensing weak short-

range forces generated by an object placed close to the atoms
[28–31], which introduces new possibilities in exploring
new physics beyond the standard model. Such forces will
generate an additional potential UðzÞ that will mainly
modify the phase accumulated by an atom in the WS state
centered at site n to ϕ̃n¼ϕþðUnþmRr−Un−mRrÞτ=ℏ, where
Un¼

R

dzUðzÞjϕnðzÞj2. Given the dependence of the phase
on initialWS states, whichwill dephase the atomic sample if
spreading over multiple WS states, the use of atomic clouds
with small spatial extension to reduce the number of
occupied WS states can be crucial. For these situations,
since the inhomogeneities in atom-light couplings do not
average out in a single realization, one needs to account for
important systematic errors in the amplification factorG, in
contrast to the subdominant suppression of G when the
atomic array is fully spread across the lattice [36]. Therefore,
the magic lattice condition can lead to significant improve-
ments if the atoms are restricted to local regions of the lattice.
Experimental considerations.—Experimental imperfec-

tions such as cavity loss and spontaneous emission of the
excited state during the spin squeezing generation and other
dephasing mechanisms during the interrogation will
degrade the ideal sensitivity in practical implementations
as we now discuss. Cavity loss induces phase fluctuations
of the collective spin with collective dephasing rate
Γz ¼ χκ=Δ̃c, which lead an increase in the variance of
Ŝy. Spontaneous emission from the excited state jei, at a
rate γ, generates off-resonant photon scattering processes
with a total rate Γ ∝ γjG0

↑;↓j2jαj2=Δ2
↑;↓, including single-

particle spin flips and dephasing. Here we focus on the case

(a)

(b)

FIG. 3. Schematic of the quantum-enhanced gravimetry using
Wannier-Stark (WS) states. (a) After the preparation of a coherent
spin state along x̂ direction in the carrier transition, we apply the
twisting Hamiltonian for a time t0 as U ¼ expð−iχŜzŜzt0Þ, and
the system becomes a squeezed state sensitive to small rotations
about the ŷ axis (R̃ϕ

y ). By applying the untwisting sequenceU† for
the same amount of time t0, the quantum noise returns to the SQL
level and the small rotation angle ϕ is amplified into a larger angle
Gϕ around ẑ axis, which can be detected by measuring hŜyi.
(b) The phase accumulation due to gravitational energy difference
is achieved through a compound pulse sequence that separates the
atoms in the corresponding WS states by 2mRr lattice sites. A
single compound pulse R, as shown in the box, is a combination
of a microwave pulse in the carrier transition and a Raman pulse
for the rth WS sidebands, which generates spin-dependent spatial
transfer of the atoms (indicated by red and blue circles) from
j↑ni=j↓ni to j↑nþri=j↓n−ri.

100 1000 104 105
10−10

10−9

10−8

10−7

10−6

Heisenberg

SQL

FIG. 4. Interferometer sensitivity Δg=g as a function of atom
number N, assuming 5.32 μm separation for 87Rb atoms via
compound pulse sequence, 1 s phase accumulation time, and
C0 ¼ 2. The red curve indicates the ideal implementation without
decoherence, while the blue curve and purple curve take account
the effect of cavity loss and spontaneous emission with spin flip
probability Pf ¼ 1=2 and Pf ¼ 0, respectively.
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with balanced spin flip rates, γr ¼ PfΓwith Pf the spin flip
probability, which can be achieved by choosing appropriate
energy levels and detunings, so the spontaneous emission
generates no biases on the accumulated phase ϕ. The noise
induced by the γr terms is amplified during the untwisting
protocol, making them the dominant single-particle noise
source for measuring hŜyi. The combination of cavity loss
and spontaneous emission limits the metrological gain ξ−2

to [36],

ξ2 ≈
1þ 2NΓzt0
ðNχt0Þ2

þ 8

3
γrt0; ð6Þ

leading to an optimal value ξ−2opt ∝
ffiffiffiffiffiffiffiffiffi

NC0p
, where

C0 ¼ χ2=ΓzΓ is related to the single-atom cooperativity
[36]. This result translates into the sensitivity for gravi-
metry as Δg=g ∝ N−3=4 [see the blue curve in Fig. 4].
Higher sensitivity can be reached by choosing specific
schemes (e.g., cycling transitions) to suppress spin flip
processes [see the purple curve in Fig. 4].
Technical noise in experiment such as mechanical

vibrations and local oscillator dephasing, as well as single
particle decoherence due to interatomic interactions also
impose a constraint on the interrogation time. In particular,
single-particle decoherence imposes even more severe
restrictions when operating with entangled states given
their fragility to it [36]. For 87Rb assuming a 5.32 μm atom
separation achieved by r ¼ 5, mR ¼ 2 in a λl ¼ 532 nm
lattice, phase accumulation time τ ¼ 1 s, C0 ¼ 2,
and spin flip probability Pf ¼ 1=2, one can achieve
Δg=g ∼ 6 × 10−9=

ffiffiffiffiffiffi

Hz
p

with about 5 × 104 atoms, which
is 20 dB enhancement beyond SQL. If we compare this
sensitivity with SQL for τ ¼ 10 s, still a 10 dB enhance-
ment is possible, meaning that even after accounting for the
fragility of the spin squeezed states, our protocol can not
only reduce the required averaging time by a factor of 10,
but also increase the measurement bandwidth of the time-
varying signal by a factor of 10, compared to unentangled
lattice-based interferometers [12,20].
Conclusion and outlook.—We proposed a quantum

enhanced interferometric protocol using Wannier-Stark
states in standing-wave cavity QED system, which allows
for homogeneous spin squeezing generation and micro-
metric spatial resolution for gravimetry and force sensing.
The many-body entanglement in our scheme leads to an
order of magnitude reduction of the required averaging
time compared to unentangled lattice-based interferome-
ters. Our work opens new possibilities for quantum
enhanced interferometry in versatile compact atomic sen-
sors, as well as novel Hamiltonian engineering in quantum
many-body simulators.
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