
Intrinsic staggered spin-orbit torque for the electrical control of antiferromagnets -
application to CrI3

Fei Xue1, 2, 3 and Paul M. Haney1

1Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
2Institute for Research in Electronics and Applied Physics & Maryland Nanocenter,

University of Maryland, College Park, MD 20742, USA
3Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA

(Dated: April 1, 2022)

Spin-orbit torque enables the electrical control of the orientation of ferromagnets’ or antiferromag-
nets’ order parameter. In this work we consider antiferromagnets in which the magnetic sublattices
are connected by inversion+time reversal symmetry, and in which the exchange and anisotropy
energies are similar in magnitude. We identify the staggered dampinglike spin-orbit torque as the
key mechanism for electrical excitation of the Néel vector for this case. To illustrate this scenario,
we examine the 2-d Van der Waals antiferromagnetic bilayer CrI3, in the n-doped regime. Using a
combination of first-principles calculations of the spin-orbit torque and an analysis of the ensuing
spin dynamics, we show that the deterministic electrical switching of the Néel vector is the result of
dampinglike spin-orbit torque which is staggered on the magnetic sublattices.

I. INTRODUCTION

Spin-orbit torque is a mechanism for electrically
switching thin-film magnets, and has the potential to en-
able scalable magnetic random access memory and de-
vices for next-generation computing [1]. The effect oc-
curs in magnetically ordered systems that lack inver-
sion symmetry - such as heavy metal-ferromagnet bi-
layers [2, 3] - when a DC current or an electric field
is applied. Spin-orbit torque can be decomposed into
a component that is even under time-reversal, which is
also known as the “dampinglike” torque, and a compo-
nent that is odd under time-reversal, known as the “field-
like” torque [4]. Knowledge of the dominant component
of spin-orbit torque can help to identify the microscopic
source of the torque and assist in optimizing the effect [5].

In addition to switching ferromagnets, spin-orbit
torque has been shown to switch antiferromagnets [6–14].
Antiferromagnets are of particular interest due to their
insensitivity to stray magnetic fields and the fast time
scales of their excitations [1, 10, 13]. It was shown [8]
that spin-orbit torque is present in bulk antiferromag-
nets in which inversion symmetry is locally broken on
individual magnetic sublattices, while the crystal lattice
retains global inversion symmetry. More precisely, in
antiferromagnets that are invariant under the combined
operations of inversion and time-reversal, the spin-orbit
torques acting on the magnetic sublattices can re-orient
the antiferromagnetic Néel vector L [8, 9]. For previously
studied materials with this symmetry, such as CuMnAs
and Mn2Au, the magnetic exchange energy is much larger
than other energy scales, and the mechanism for switch-
ing is a uniform fieldlike torque present on both magnetic
sublattices [8, 9].

In this work we focus on a different mechanism for
the electrical excitation of the Néel order: a staggered
dampinglike torque. This torque competes directly with
the exchange torque and has therefore been neglected

in previous studies, where the exchange torque domi-
nates. However, there are several materials in which the
exchange and anisotropy energies are comparable. Ex-
amples of such materials include MnPSe3 [15, 16], and
chromium trihalides [17]. We focus on bilayer CrI3 [18]
and show that the staggered dampinglike torque can play
the dominant role in the spin-orbit torque switching.

This paper is organized as follows: In Sec. II, we
present a stability analysis of antiferromagnetic spin dy-
namics for different configurations of spin-orbit torque.
We show that staggered dampinglike torque efficiently
excites antiferromagnet dynamics when the exchange and
anisotropy energies are comparable. To illustrate this be-
havior we consider a specific example of bilayer CrI3. In
Sec. III, we examine the symmetry properties of CrI3 and
show that the magnetic dynamics occur within a sub-
space of magnetic configurations. In Sec. IV, we present
first-principles calculations of spin-orbit torques in CrI3.
In Sec. V, we plug these microscopically-computed spin-
orbit torques the into Landau-Lifshitz-Gilbert equation
to numerically demonstrate electrical switching n-doped
CrI3 via staggered dampinglike torque. In Sec. VI, we
discuss the experimental implications of our main find-
ings.

II. SPIN-ORBIT TORQUE IN COLLINEAR
ANTIFERROMAGNETS

We first consider the spin dynamics of antiferromag-
netically coupled spins with various forms of spin-orbit
torques. The time evolution of the spin orientations
m̂A,B are described by the coupled set of Landau-
Lifshitz-Gilbert (LLG) equations [6, 19, 20]:

dm̂A,B

dt
= m̂A,B ×

(
γ

m

δE

δm̂A,B
+ α

dm̂A,B

dt

)
+ T A,B,

(1)
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where m is the magnitude of the magnetic moment (as-
sumed equal on both sublattices), γ is the absolute value
of the gyromagnetic ratio, and α is the Gilbert damp-
ing parameter. The energy E is comprised of an easy-
axis anisotropy (along ẑ) and Heisenberg exchange cou-

pling: E(m̂A, m̂B) = − 1
2mHA[

(
m̂A · ẑ

)2
+
(
m̂B · ẑ

)2
] +

mHE

(
m̂A · m̂B

)
, where HA and HE are the effective

magnetic fields from anisotropy and exchange, respec-
tively. T A,B is the spin-orbit torque on the A,B sub-
lattice. As mentioned earlier, the torque is classified as
either even or odd under time-reversal, and we addition-
ally distinguish between torques which are equal or oppo-
site in sign on the two sublattices (denoted “uni”form or
“stagg”ered). These combinations result in four indepen-
dent contributions to the spin-orbit torque summarized
in Table II.

T A T B

staggered
dampinglike

T even
staggm

A × (p̂×mA) −T even
staggm

B × (p̂×mB)

uniform
fieldlike

T odd
uni mA × p̂ −T odd

uni mB × p̂

uniform
dampinglike

T even
uni mA × (p̂×mA) T even

uni mB × (p̂×mB)

staggered
fieldlike

T odd
staggm

A × p̂ T odd
staggm

B × p̂

TABLE I. Table of four possible configurations of spin-orbit
torques on two magnetic sublattices. Note that we assume
staggered magnetization mB = −mA.

Note that we assume the conventional lowest order
form of spin-orbit torques and p̂ is the direction deter-
mined by the geometry, as we discuss in more detail in
Sec. III. For now we note that the spin-orbit torque van-
ishes when m̂A,B is aligned to p̂. Symmetry dictates
which spin-orbit torque terms are present. For materials
with inversion+time reversal symmetry, such as CuM-
nAs, the odd and even torques are uniform and stag-
gered, respectively. For materials with global inversion
symmetry breaking, the odd and even torques are stag-
gered and uniform, respectively [11]. These relations be-
tween the system symmetry and spin-orbit torque con-
figuration apply when the magnetic sublattices are stag-
gered. As the spin-orbit torque drives the spins out of
the staggered configuration, symmetries are broken and
the form of spin-orbit torque is no longer constrained to
the forms given in Table I. However we can still perform
the standard stability analysis of Eq. 1 at the fixed point
where two magnetic sublattices are staggered and along
the easy-axis.

We consider each spin-orbit torque term individually
and find the critical torque for inducing an instability.
The mathematical details are given in Appendix A and
the final results are summarized in Table II. The critical
thresholds of time-reversal even torques include a small
factor of α, so that, provided HE is not too large, this
torque may more easily excite Néel order dynamics.

staggered uniform

even (dampinglike) α (HE +HA) α
√
HA (HA + 2HE)

odd (fieldlike)
√
HA (HA + 2HE) HA

TABLE II. Expressions for the critical spin-orbit torque for
different types of spin-orbit torque (dampinglike and fieldlike)
and torque configurations (staggered and uniform).

Identifying the potentially key role of the staggered
dampinglike torque is a primary message of this work.
To illustrate an example in which this torque dominates
the electrical excitation of an antiferromagnet, we next
analyze the spin-orbit torque response of n-doped CrI3
in detail.

III. SPIN DYNAMICS IN CRI3: SYMMETRY
CONSIDERATIONS

In this section we analyze the constraints on the mag-
netic dynamics imposed by the symmetries of CrI3. The
motivation for this is to reduce the degrees of freedom re-
quired to describe the system. In general, a description
of antiferromagnets with moderate to weak exchange en-
ergy requires 4 degrees of freedom - an orientation (θ, φ)
for each spin. This is in contrast to antiferromagnets in
the large exchange limit, where the 2-dimensional Néel
vector orientation is approximately sufficient to describe
the system. The 4-dimensional space of a general antifer-
romagnet is considerably more difficult to treat analyti-
cally. However we will show that the symmetry of CrI3
enables a reduction of phase space to 2 dimensions.

CrI3 is a recently discovered two-dimensional Van der
Waals magnetic material [18, 21, 22]. There is intense
recent interest in this material due to its unique and po-
tentially useful properties, including the tunability and
control of its magnetic state through gating and doping
[23–27] and its spin-filtering effects [28–30]. In the bi-
layer form of this semiconducting material, the two mag-
netic CrI3 layers are antiferromagnetically coupled and
the ground state Néel vector is oriented perpendicular to
the plane [18] (see Fig. 1). From the structure shown in
Fig. 1(b), it’s clear that bilayer CrI3 shares some char-
acteristics with previously mentioned antiferromagnets,
such as CuMnAs: Inversion symmetry is locally broken
on the magnetic sublattices (denoted A and B), while in
the purely antiferromagnetic state, the bilayer is invari-
ant under the combined operations of inversion plus time-
reversal. The exchange and anisotropy effective fields are
similar in magnitude: HA ≈ 1.77 T, HE ≈ 0.76 T, and
α ≈ 0.04 [31], so that, based on Table II, the staggered
dampinglike torque can be expected to play the dominant
role in switching.

We next discuss the symmetry of CrI3 which enables
the degrees of freedom to be reduced from (m̂A, m̂B) to
a single orientation. We consider an applied electric field
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FIG. 1. (Color online) (a) shows a top-down view of one layer
of CrI3. The second layer (not shown) is displaced along the
x-direction by a nearest-neighbor distance. (b) Side view of
CrI3. Note a lack of symmetry with respect to x → −x.
Other symmetries depend on the spin configuration: for a
purely antiferromagnetic state, the system is invariant under
inversion+time-reversal. For a state with canting in the y
direction, the system has a 2-fold rotational symmetry about
the y-axis. (c) Spin configurations on magnetic sublattices
A and B considered in this work, with finite canting in the
y-direction. (d) Mixed representation of system spin in N̂ =
(Lx,My, Lz) space, showing the spin-orbit torque switching

trajectory of N̂ for applied electric field in the y-direction.

along the y-axis and spin configurations that are stag-
gered in (x, z) and uniform in y: mA

x/z = −mB
x/z and

mA
y = mB

y . In this case, the system retains 2-fold rota-
tion symmetry about the y-axis (see Fig. 1). Any torque
on the spins (including exchange and anisotropy) is there-
fore symmetry-constrained to satisfy T A

x/z = −T B
x/z and

T A
y = T B

y . The x and z components of the spins then
remain staggered and the y components remain uniform.
The trajectory of the spins is thus symmetry-confined
to the subspace (Lx,My, Lz) ≡ 1

2 (mA
x − mB

x , mA
y +

mB
y , mA

z − mB
z ). This motivates the definition of a

“mixed” order parameter [32]:

N ≡
(
Lx,My, Lz

)
(2)

Eq. 1 leads to the following equation of motion for N̂:

dN̂

dt
= N̂×

(
γ

m

δE

δN̂
+ α

dN̂

dt

)
+ T odd

(
N̂× p̂

)
+ T even(N̂× (p̂× N̂)), (3)

where the energy is comprised of the easy-axis anisotropy
along ẑ and an effective hard-axis anisotropy along ŷ,
which encodes the magnetic exchange:

E(N̂) = −1

2
mHA

(
N̂ · ẑ

)2
+mHE

(
N̂ · ŷ

)2
. (4)

We emphasize that the spin-orbit torque terms in Eq. 3
are staggered for the x, z components and uniform for the
y component. We compute these torques microscopically
in the next section, where we find the angular dependence
is more complex than the form given in Eq. 3. Neverthe-
less the conclusions based on this simple form of spin-
orbit torque are applicable to the results obtained with
first principles calculations.

We have verified that fluctuations away from the N
subspace do not alter the steady state dynamics [33]. One
important feature of this system which enables this sim-
plification is that the easy-axis anisotropy is perpendic-
ular to the axis of 2-fold rotation symmetry. If this were
not the case, then the ground state Néel vector would
be aligned to the 2-fold rotation axis, and canting of the
moments would destroy the 2-fold rotational symmetry.

The simple form of the time evolution of N̂ allows for
an intuitive description of the dynamics. In the next
section we show that p̂ has a standard x component, and
a z component due to additional mirror plane symmetry
breaking in CrI3. For p̂ = (px, 0, pz), we again perform a
stability analysis detailed in Appendix B. Note that this
case differs slightly from the analysis presented earlier
because p̂ is not aligned with the easy-axis, however the
conclusion is the same. The fixed points to lowest order in

spin-orbit torque are N̂ = (−T
oddpx
γHA

,± T evenpx
γ(2HE+HA) ,±1).

The instability threshold to switch between fixed points
is:

|T evenpz| > γα(HE +HA). (5)

A typical switching trajectory is shown in Fig. 1(d): the

spin-orbit torque drives N̂ from north pole to the fixed
point close to south pole.

IV. MICROSOPIC CALCULATIONS OF
SPIN-ORBIT TORQUES IN CRI3

Having established the relevant degrees of freedom for
the spin configuration in CrI3 as N, we next present mi-
croscopic calculations of the spin-orbit torque per ap-
plied electric field - a quantity known as the “torkance”
- as a function of N̂. The procedure for this calculation
is well-established [34, 35], and we briefly provide a de-
scription here and refer the reader to the Appendix C for
more technical details. We first obtain the Hamiltonian
in a localized atomic orbital basis using a combination
of Quantum Espresso [36] and Wannier90 [37]. We then
utilize linear response theory to compute the torkance on
each magnetic sublattice. We denote the jth component
of the torkance on atom A,B in response to an electric

field along the i-direction with τA,Bij . The even and odd
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FIG. 2. (Color online) Angular dependence of the damping-

like (a) and fieldlike (b) torkance on the N̂ direction (θ, φ)
for one layer of bilayer CrI3 under an external electric field
along the ŷ direction at Fermi level µ = 50 meV above the
conduction band minimum. The arrow (color) on the sphere
indicates the direction (magnitude) of the torkance at the
given N direction. We use kBT = 3 meV, η = 25 meV.

components of the torkance are given by:

(
τA,Bij

)even
= 2e Im

∑
n,m 6=n

fn

(
∂H
∂ki

)
n,m

(
T A,B
j

)
m,n

(Em − En)2 + η2
,

(6)(
τAij

)odd
= −e

∑
n

1

2η

∂fn
∂En

(
∂H

∂ki

)
n,n

(
T A,B
j

)
n,n

. (7)

The sum in Eqs. 6-7 is over eigenstates |ψn〉 of the k-
dependent Hamiltonian Hk, where k is the Bloch wave
vector and the eigenstate label n includes k and band
index. (O)n,m = 〈ψn|O|ψm〉 is the matrix element of

the operator O, and fn = (e(En−µ)/kBT + 1)−1 is the
equilibrium Fermi-Dirac distribution function. µ is the
Fermi level, η is the broadening parameter, and e is the
electron charge. The atom-resolved torque operator is
T A,B = i

2~
{

[S,∆], PA,B
}

, where S is the spin operator,
∆ is the spin-dependent exchange-correlation potential,
and PA(B) is the projection operator onto the orbitals
centered on atomic site A (B). To compute the torque as

a function of N̂, we manually rotate the spins on A and
B sublattices.

Figure 2 shows the N̂-dependence of the torkance
with (a) and (b) showing the dampinglike (time-reversal
even) and fieldlike (time-reversal odd) torkance, respec-
tively. The fixed points of both dampinglike and field-
like torkance lie in the Lx − Lz plane, away from the
Lz = 0 equator. This is an important feature and is
a consequence of the lack of mirror symmetry with re-
spect to the yz plane. This position of the fixed point
ensures that the spin-orbit torque drives N̂ to a point
in the northern or southern hemisphere; after the spin-
orbit torque is removed, N̂ then relaxes to the nearest
easy-axis along +ẑ or −ẑ. Previous studies on systems
with similar in-plane mirror symmetry breaking, such as
WTe2-Py heterostructures [35, 38–40], have verified that
this symmetry breaking results in a spin-orbit torque that
drives the magnetic order parameter to a point away from
the equator. Exploiting this property has emerged as

𝜇 (eV) 𝜇 (eV)

(b) 𝑵 = ො𝑥(a) 𝑵 = Ƹ𝑧

ℏ 𝑒
𝑎
0
𝜏

𝜏𝑦𝑥
even

𝜏𝑦𝑦
odd

𝜏𝑦𝑧
even

𝜏𝑦𝑦
odd

FIG. 3. (Color online) Torkance as a function of chemical
potential relative to the conduction band edge. The applied
electric field is in ŷ direction. The N̂ vector is in ẑ (a) and
x̂ (b). Red and blue lines represent staggered time-reversal
even torkance and uniform time-reversal odd torque, respec-
tively. The torkance for Fermi energies in the valence band
are substantially smaller and not shown here.

an approach for deterministically switching perpendicu-
larly magnetized thin films with spin-orbit torque, and
we show here that this also enables switching of the per-
pendicular Néel vector.

We note that the N̂-dependence of the torkance is quite
complex, deviating substantially from the simple, lowest
order form used in the analysis of the previous section.
In Appendix D, we provide the full symmetry-allowed
expansion of the torkance and quantify the substantial
contribution from higher order terms. We additionally
find that the fixed points for even and odd torkance are
different. These features of the microscopically computed
torkance have important consequences for the details of
the dynamics of N̂ under spin-orbit torque, which we
show in the next section.

We next consider the torkance versus Fermi level for
N̂ along ẑ and x̂ directions, shown in Figs. 3 (a) and (b),
respectively. Both even and odd components are peaked
for Fermi energies near the conduction band minimum.
For N̂ = ẑ, the even torkance is approximately 1 ea0/~
(a0 ≈ 0.0529 nm is the Bohr radius) at 0.1 eV above
the conduction band minimum, which is larger than
the even torkance in the ferromagnetic Pt/Co bilayer
(≈ 0.6 ea0/~) [34]. This large magnitude is due to band
crossings in the conduction band from p-orbitals of the
heavy Iodine atoms (Appendix C). For N̂ = x̂, the
even torkance magnitude is around 0.4 ea0/~. The even

torkance for this N̂ configuration is solely a consequence
of the in-plane mirror symmetry breaking. This value
is notably larger than the corresponding torkance
derived from in-plane mirror symmetry breaking in the
ferromagnetic 1T’-WTe2/Co bilayer (≈ 0.1 ea0/~) [35].
Note that the maximum torkance occurs at Fermi levels
for which electrostatic doping might lead to a transition
to a ferromagnetic ground state [24, 25]. Nevertheless,
appreciable spin-orbit torques are accessible at lower
Fermi energies where antiferromagnetic order is retained.
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FIG. 4. (Color online) Magnetization dynamics under spin-
orbit torque, for applied electric field in the ŷ direction.
(a) and (b) show the Néel and magnetization vector compo-
nents as a function of time with applied electric field strength
−1.2 V/µm and −3.5 V/µm, respectively. The initial config-
uration is Lz = 1. Red, black, and blue lines represent the
dynamics of Lx,My, and Lz respectively. (c) and (d) show

the final steady state of N̂ as a function of applied field with
staring point at the Lz = ±1 respectively. The spread in the
y coordinate indicates the oscillation amplitude, and the color
of the spread represents the oscillation frequency.

V. SPIN DYNAMICS IN CRI3: NUMERICAL
RESULTS

Given the significant deviation of the N̂-dependence of
the microscopically computed spin-orbit torque from the
simple form of Eq. 3, it’s worthwhile to compute the spin
dynamics with the ab initio spin-orbit torque (Fig. 2)

as input into the coupled LLG equations (Eq. 1). N̂ is
parameterized by spherical coordinates (θ, φ), and we use
a bilinear interpolation of a dense 80× 80 mesh of spin-
orbit torque obtained from first-principles to obtain the
full N̂-dependence.

Figure 4 shows the spin-orbit torque driven dynam-
ics. We find that the spin-orbit torque can either in-
duce switching or induce steady state oscillations of
N̂. Figure 4(a) shows that for an applied electric field
E = −2.3 V/µm, the spin-orbit torque switches the Néel
order Lz from the north pole to the southern hemisphere
within 100 ps and generates a finite in-plane magneti-
zation My. Note that the input spin-orbit torque terms
include both dampinglike and fieldlike torques (Fig. 2).
However, dampinglike torque only has to compete with
the product of anisotropy plus exchange and the small
damping factor (Table II). We expect dampinglike would
play a more important role when the magnitudes of
dampinglike and fieldlike torque are comparable. Indeed,
by separately turning off the fieldlike (odd) or damping-
like (even) contributions to the spin-orbit torque, we find
that the switching of Lz originates from the damping-

like torque, while the fieldlike torque helps to accelerate
the switching dynamics and reduce the switching E-field
threshold. Figure 4(b) shows an oscillating steady state
for E = 3 V/µm, with a frequency of approximately
80 GHz. We find that both dampinglike and fieldlike
torque are required to induce steady state oscillation.

We summarize the final steady states as a function of
the applied field E for two initial magnetization config-
urations Lz = +1 and Lz = −1 in Fig. 4 (c) and (d),
respectively. The switching of the Néel vector occurs at
approximately |E| = 2 V/µm. This threshold compares
well with the estimate provided by Eq. 5. Reaching the
larger scale oscillations at large applied E will rely on
the material to sustain large power dissipation, which
depends in turn on factors such as the carrier mobility.
The flatness of the conduction bands implies a low mo-
bility, as seen experimentally [41], which should enable
larger applied electric fields. Fig. 4 (c) and (d) demon-
strate hysteretic switching of the Néel vector, and are
related by mirror symmetry about the xz plane.

Before we conclude, we include additional plots of
final steady states at different Fermi levels summarized
in Fig. 5. Both switching and oscillating behaviors
can be observed at various chemical potentials and
electric-field strengths.The chemical potential can be
tuned by perpendicular gate voltage in principle and
Fig. 5 indicates bilayer CrI3 can have tunable functions
by controlling both in-plane and out-of-plane fields.
Recent experiments [25] also demonstrate a magnetic
phase transition from an antiferromagnet ground state
to a ferromagnetic state under electron doping. We
ignore this transition to compute the torque at higher
electron densities in the antiferromagnetic state, for the
sake of gaining an understanding of how this electronic
structure influences the torque. A comprehensive study
of the ground state transitions along with their spin-orbit
torque responses is beyond the scope of the current
work.

𝐿
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(c) 𝜇 = 0.06 eV (d) 𝜇 = 0.07 eV
𝑓(GHz)

𝑓(GHz)𝑓(GHz)

𝑓(GHz)

FIG. 5. (Color online) Final steady state of N̂ as a function
of applied field with staring point at the Lz = +1 for various
chemical potentials respectively. The spread in the y coordi-
nate indicates the oscillation amplitude, and the color of the
spread represents the oscillation frequency.
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VI. DISCUSSION

The experimental detection of the Néel vector reversal
is challenging. For bilayer CrI3, out-of-plane magnetic-
optical Kerr effect (MOKE) imaging has previously been
used to discriminate between Lz = +1 and Lz = −1 [24],
and transport effects such as nonlinear anisotropic mag-
netoresistance can also detect N [14]. We also note that
the moderate exchange energy leads to the development
of a substantial steady state in-plane magnetization of
the driven system, which may be detected experimen-
tally with in-plane MOKE.

Aside from the particulars of CrI3, in this work we show
generally that antiferromagnets in the weak to moder-

ate exchange coupling regime exhibit different behaviors
from their more commonly studied large HE counter-
parts. The switching criteria for these antiferromagnets
is reduced by a factor of magnetic damping, offering po-
tentially easier routes to electrical manipulation. Con-
tinued progress in the field of Van der Waals antiferro-
magnets should provide further opportunities for unique
modes of electrical control of these materials.
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dm̂A
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− αm̂A × dm̂A

dt
= −γHA

(
m̂A × ẑ

)(
m̂A · ẑ

)
+ γHE

(
m̂A × m̂B

)
+ T A,

dm̂B

dt
− αm̂B × dm̂B

dt
= −γHA

(
m̂B × ẑ

)(
m̂B · ẑ

)
+ γHE

(
m̂B × m̂A

)
+ T B (A1)

where γ is the absolute value of the electron gyro-
magnetic ratio, HA is the magnetic anisotropy field

strength, ẑ is the magnetic easy-axis, HE is the an-
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rameter, and T (A,B) is the spin-orbit torque on the
(A,B) sublattice. It’s convenient to work in spheri-
cal coordinates, where the magnetization vector is given
by m̂ = (sin θ cosφ, sin θ sinφ, cos θ). The torque is
always perpendicular to the magnetization, so that it
can be expressed in terms of the eθ, eφ components,
where eθ ≡ (cos θ cosφ, cos θ sinφ,− sin θ) and eφ ≡
(− sinφ, cosφ, 0). The matrix form of Eq. 1 is
φ̇A

θ̇A

φ̇B

θ̇B

 =
1

1 + α2


1

sin θA
α

sin θA 0 0

−α 1 0 0

0 0 1
sin θB

α
sin θB

0 0 −α 1



TA
φ

TA
θ

TB
φ

TB
θ

 ,

(A2)

where Tφ,θA,B is obtained by projecting the right hand side
of Eq. 1 to the eφ,θ directions on the A and B sublattices.

The fixed points and their stability are determined by

the set of torque expressions Γ =
(
TA
φ , T

A
θ , T

B
φ , T

B
φ

)
. A

fixed points satisfies Γ = 0, and its stability is determined
by the eigenvalues of the dynamic matrix D [43]. D is
given by the product of the matrix given on the right-
hand-side of Eq. A2 and the Jacobian matrix derived
from Γ evaluated at the fixed point. A fixed point goes
from stable to unstable as the real part of its eigenvalue

goes from negative to positive.
We consider how collinear antiferromagnets become

unstable against different types of spin-orbit torques. We
can decompose the current-induced spin-orbit torques
to four distinct contributions depending on the time-
reversal symmetry and whether the torques on two sub-
lattices are uniform or opposite shown in the Table I.
We assume the conventional lowest order form of spin-
orbit torque, as shown in Table I. As discussed in the
main text, the direction p̂ is determined by the system
symmetry. Depending on the relative sign of constant
prefactor T even,odd on two sublattices, spin-orbit torques
on two sublattices are either uniform or staggered.

In the following analysis, we take the easy-axis to be
y and p = y. This is for the convenience of avoiding
the singular spherical coordinates near the north and
south poles. The fixed points we evaluate are Ly = ±1,
or θA = θB = π/2, φA = −φB = ±π/2. Note that
it is necessary to evaluate the full 4 × 4 Jacobian
matrix derived from Eq. A2. We consider the four
different configurations of spin-orbit torque (even/odd,
staggered/uniform) individually below.

1. Staggered dampinglike torque: The dynamic matrix
D up to the linear order of Gilbert damping α at Ly = +1
is

D =


−α(HE +HA)− T even HE +HA − αT even αHE HE

−(HE +HA) + αT even −α(HE +HA)− T even HE −αHE

αHE HE −α(HE +HA)− T even HE +HA − αT even

HE −αHE −(HE +HA) + αT even −α(HE +HA)− T even

 . (A3)

We obtain the eigenvalues of the dynamic matrix D as:

λ = −T even − α(HE +HA)±
√
−2HEHA −H2

A + 2(HE +HA)T evenα+H2
Eα

2 − T even2α2, (A4)

The square root is an imaginary number since HA, HE

are positive numbers. The real part of λ becomes
positive when T even < −α(HE + HA). This instability
threshold has the advantage that a small damping factor
can help reduce the required electrical field or current.

However it is difficult to achieve in the limit of very
large exchange coupling strength.

2. Uniform fieldlike torque: The dynamic matrix eval-
uated at Ly = 1 is:

D =


−α(HE +HA − T odd) HE +HA − T odd αHE HE

−(HE +HA) + T odd −α(HE +HA − T odd) HE −αHE

αHE HE −α(HE +HA − T odd) HE +HA − T odd

HE −αHE −(HE +HA) + T odd −α(HE +HA − T odd)

 . (A5)

The eigenvalues of the resulting dynamic matrix are:

λ = −α(HE +HA − T odd)±
√
H2
E +H2

Eα
2 − (HE +HA − T odd)2. (A6)

Note that both eigenvalues are doubly degenerate. The condition of having positive real part of one
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eigenvalue (with positive square root) is T odd > HA.
In other words, T odd is competing with the easy-axis
anisotropy by reducing the effective anisotropy field.
This mechanism has the advantage that a large exchange

field does not affect its effectiveness.

3. Uniform dampinglike torque: The dynamic matrix
evaluated at Ly = 1 is:

D =


−α(HE +HA)− T even HE +HA − αT even αHE HE

−(HE +HA) + αT even −α(HE +HA)− T even HE −αHE

αHE HE −α(HE +HA) + T even HE +HA + αT even

HE −αHE −(HE +HA)− αT even −α(HE +HA) + T even

 . (A7)

This matrix does not have analytic solutions. However, we can obtain approximate eigenvalues by assuming T even is
proportional to α and then dropping terms αT even (because we expand every term up to 1st order of small damping
factor α). Then analytic eigenvalues up to the first order of α are:

λ = −α(HE +HA)±
√
±2i|T even|(HE +HA)− 2HEHA −H2

A + T even2. (A8)

The condition of having positive real part of
eigenvalues up to the 1st order of α is then
|T even| > α

√
HA(HA + 2HE). This threshold has

the advantage of reducing threshold by the damping
factor. The realization of this torque requires global

inversion symmetry breaking, such as found in het-
erostructures composed of antiferromagnets and heavy
metals.

4. Staggered fieldlike torque: The dynamic matrix eval-
uated at Ly = 1 is:

D =


−α(HE +HA − T odd) HE +HA − T odd αHE HE

−(HE +HA) + T odd −α(HE +HA − T odd) HE −αHE

αHE HE −α(HE +HA + T odd) HE +HA + T odd

HE −αHE −(HE +HA + T odd) −α(HE +HA + T odd)

 . (A9)

The analytic eigenvalue solutions are not available for
this case. However, we numerically find the instability
threshold to be |T odd| >

√
HA(HA + 2HE).

These four cases are the simplest four ways to ma-
nipulate and control the antiferromagnetic order with
spin-orbit torques. Depending on the relative parame-
ters, different mechanisms can be favored to switch the
order Néel vector. For example, uniform fieldlike torque
or uniform dampinglike torque can be favored when
HE � HA while staggered dampinglike torque can be
favored when α(HA + HE) is much smaller than other
thresholds.

Appendix B: Analysis of the N subspace

As discussed in the main text, the 2-fold rotational
symmetry about the y-direction constrains the spins to
the subspace spanned by N = (Lx,My, Lz). Due to the

lack of mirror symmetry about the yz plane, the lowest
order fieldlike and dampinglike torque have the form of
T oddm̂ × p and T evenm̂ × (p × m̂), respectively, where
p = (px, 0, pz). 2-fold rotational symmetry about the y-
axis leads to the following relation between any torque
on A and B sublattices:

TA
y = TB

y , (B1)

TA
x,z = −TB

x,z, (B2)

where torque T includes every term on the right hand
side of Eq. 1, i.e., anisotropy, exchange, and spin-orbit
torque. The anisotropy field gives rise to the stable ini-
tial state (Lx,My, Lz) = (0, 0,±1) and we are interested
in the condition where the spin-orbit torque drives the
system away from the equilibrium state. To avoid the
singular spherical coordinates near these points, we per-
form an index permutation (x, y, z) → (z, x, y), so that
the magnetic subspace is now labelled by

(
Mx, Ly, Lz

)
.

In the subspace of (Mx, Ly, Lz), θ
B = π − θA, φB =

−φA. We can verify that the torque in Eq. A2 are stag-
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gered, so the 4×4 matrix form of LLG equation becomes
two identical 2× 2 matrices:(

φ̇A

θ̇A

)
=

1

1 + α2

(
1

sin θA
α

sin θA

−α 1

)(
TA
φ

TA
θ

)
, (B3)(

−φ̇A

−θ̇A

)
=

1

1 + α2

(
1

sin θA
α

sin θA

−α 1

)(
−TA

φ

−TA
θ

)
. (B4)

Now we can drop the sublattice subscript and the equilib-
rium state is obtained by solving the equations (Tφ, Tθ) =
0. We can find solutions to this set of nonlinear equations
with the ansatz θ = π/2 + a, φ = π/2 + b where a, b� 1
by assuming small spin-orbit torque terms. By expand-
ing all terms up to the first order of spin-orbit torques,
we find:

a =
T oddpz
γHA

, b = − T evenpz
γ(2HE +HA)

. (B5)

This equilibrium corresponds to the magnetization con-

figuration (Mx, Ly, Lz) =
(
T evenpz

γ(2HE+HA) , 1,−
T oddpz
HA

)
.

The dynamic matrix D up to the linear order of α, a, b,
and the spin-orbit torque terms is

D =

(
−T evenpy − α(2HE +HA) HA − T oddpy
−2HE −HA + T oddpy −T evenpy −HAα

)
.

(B6)
The two eigenvalues are

λ = −T evenpy − (HE +HA)α

± i

[√
HA(2HE +HA)− T oddpyHE√

HA(2HE +HA)

]
.(B7)

The switching condition is then pyT even < −α(HE+HA).
This analysis reveals the key ingredients of staggered
dampinglike torque: the torque component along the
direction perpendicular to the easy-axis drives the net
magnetization along the direction perpendicular to both
torque direction and easy-axis direction while the torque
component along the direction parallel to the easy-axis
switches the Néel order from one hemisphere to the other.
Comparing to the fieldlike torque, the dampinglike torque
only needs to compete with the total strength of exchange
and anisotropy field multiplying a small Gilbert damp-
ing factor. The staggered dampinglike torque is there-
fore more favored to drive the AFM system when the
exchange and anisotropy field have the same order of
magnitude.

Appendix C: First-principles details

We use Quantum ESPRESSO [44] to compute the elec-
tronic structure of bilayer CrI3. We adopt the experimen-
tal unit cell parameters [31] of bilayer CrI3 (space group
C2/m): a = 0.6904 nm, b = 1.1899 nm, c = 0.7008 nm,
and β = 108.74°. In the Quantum ESPRESSO imple-
mentation, we use the pseudopotentials from PSlibrary
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FIG. 6. (Color online) Bandstructure of bilayer CrI3 along the
-M(− 1

2
, 0, 0), G(0, 0, 0), M( 1

2
, 0, 0), K( 1

2
, 1
2
, 0) line in k-space

and the projected density of states. In the bandstructure,
red dots represent bands obtained from final tight-binding
Hamiltonian while black lines represent the bands obtained
from plane-wave basis. The red line, blue line and the black
line represent the Iodine atoms, Cr atoms, and total atoms
contribution to the local density of states, respectively. Note
that up spins and down spins are degenerate because of the
PT symmetry and we do not include spin-orbit coupling in
these plots.

[45] generated with a scalar relativistic calculation
using Projector Augmented-Wave method [46] and
Perdew-Burke-Ernzerhof exchange correlations [47]. We
utilize a 7 × 12 × 1 Monkhorst-Pack mesh [48], 1360 eV
cutoff energy, 1.36 × 10−3 eV total energy convergence
threshold , and 0.08 eV/nm force convergence threshold.
We add a Hubbard on-site energy U = 3 eV on Cr
atoms [49]. We next utilize Wannier90 [37] to obtain the
Hamiltonian in an atomic basis. We project plane-wave
solutions onto atomic s, d orbitals of Cr atoms, p orbitals
of I atoms. We then symmetrize the Wannier-like
tight-binding Hamiltonian using TBmodels [50] since
the presence of slight asymmetry in the tight-binding
Hamiltonian results in symmetry-disallowed torque,
and we remove small spin-dependent hopping terms.
The final symmetrized tight-binding band structures
match those obtained with plane-wave methods. We add
on-site spin-orbit coupling terms αL · S, where L and S
are the orbital angular momentum and spin operators,
respectively. We use α = [90, 580] meV for Cr, and
I [51]. Adding spin-orbit coupling “by hand” in this
manner requires that Wannier orbitals are not localized
in order to ensure their forms are spherical harmonics
consistent with the standard representation of L. We
adopt this approach because it is technically easier
to achieve a good Wannier projection of a collinear
magnetized Hamiltonian, and the on-site spin-orbit
coupling approximation yields accurate results (see
Fig. 6 to see a comparison of band structure obtained
with Quantum ESPRESSO and Wannier orbitals).
We use a dense k mesh of 400 × 232 to evaluate the
torkance, given by Eqs. 5 and 6 of the main text. In
the implementation of Eqs. 5 and 6, we adopt the
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approximation [52] that Wannier orbitals are perfectly
localized on atomic sites and spin matrix is half of Pauli
matrix in the space spanned by Wannier orbitals. We
use a constant broadening parameter η = 25 meV for the
results presented. The corresponding constant electron
momentum relaxation time τ = ~/2η = 13 fs. Since the
critical Néel temperature of bilayer CrI3 is around 40
Kelvin, we adopt a low temperature kBT = 3 meV.

Appendix D: Symmetry-constrained forms of
spin-orbit torque
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FIG. 7. (Color online) Azimuthal angle (φ) dependence
of even and odd torkances at µ = 0.05 eV when θ =
π/2. Red and blue circles denote torkance at the eθ and
eφ direction respectively. Dashed lines show the fitted
results based on the symmetry-constrained form Eq. D1
up to n = 10. The fitted even and odd torkances are
τ even = (0.32 sinφ + 0.03. sin 3φ − 0.05 sin 5φ)eφ + (−0.17 +
0.1 cos 2φ − 0.25 cos 4φ + 0.02 cos 6φ + 0.02 cos 8φ)eθ, τ

odd =
(0.38−0.53 cos 2φ+0.17 cos 4φ−0.13 cos 6φ)eφ+(−1.0 sinφ+
0.6 sin 3φ− 0.5 sin 5φ+ 0.3 sin 7φ)eθ. a0 is the Bohr radius.

In this section we provide the symmetry-constrained
forms of the spin-orbit torque and fit the ab initio re-
sults to these forms. In each layer of CrI3, we only have
one mirror plane xz. The time-reversal even and odd
torkance under the applied field in y direction are de-
scribed by the symmetry-constrained expansion using a
combination of trigonometric functions [53]:

τ even =
∑
m,n

[Aeven
mn cos(2mθ) sin((2n+ 1)φ) +Beven

mn sin(2mθ) sin(2nφ)]eφ

+ [Ceven
mn cos((2m+ 1)θ) cos((2n+ 1)φ) +Deven

mn sin((2m+ 1)θ) cos(2nφ)]eθ

, (D1)

τ odd =
∑
m,n

[Aodd
mn cos((2m+ 1)θ) cos((2n+ 1)φ) +Bodd

mn sin((2m+ 1)θ) cos(2nφ)]eφ

+ [Codd
mn cos(2mθ) sin((2n+ 1)φ) +Dodd

mn sin(2mθ) sin(2nφ)]eθ

, (D2)

where m(n) = 0, 1, 2, .... Note that coefficients A,B,C,D
are related since we need to ensure that the torque is in-
dependent of angle φ when θ = 0, π. We can immediately

find that the conventional dampinglike and fieldlike forms
of the torkance correspond to the lowest order contribu-
tions:
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τ even = Aeven
00 sinφeφ −Aeven

00 cos θ cosφeθ +Deven
00 sin θeθ = τ evenm× (m× (px, 0, pz)), (D3)

τ odd = Aodd
00 cos θ cosφeφ +Aodd

00 sinφeθ +Bodd
00 sin θeφ = τoddm× (px, 0, pz). (D4)

The coefficients constraint Ceven,odd
00 = ∓Aeven,odd

00 comes from the additional requirement that the torque must be
independent of angle φ at the pole:

τ even(θ → 0) = (−Aeven
00 sin2 φ+ Ceven

00 cos2 φ,Aeven
00 sinφ cosφ+ Ceven

00 sinφ cosφ, 0), (D5)

τ odd(θ → 0) = (−Aodd
00 sinφ cosφ+ Codd

00 sinφ cosφ,Aodd
00 cos2 φ+ Codd

00 sin2 φ, 0). (D6)

The unconventional symmetry direction (px, 0, pz) is a
consequence of the absence of mirror symmetry in both
xy and yz planes. Fig. 7 clearly shows the substan-
tial higher-order contributions to both even and odd
torkances. These higher order terms complicate the
global torque sphere described in the main text. Note
that we can also obtain the angular dependence of spin-
orbit torque using a basis composed of orthogonal vector
spherical harmonics [54] which takes care of the vector
form automatically.

Appendix E: Spin-orbit torque in the pure Néel
space

(a) ℏ

𝑒𝑎0
𝜏even

ℏ

𝑒𝑎0
𝜏odd

(b)𝐿𝑧 𝐿𝑧

𝐿𝑥
𝐿𝑦𝐿𝑥

𝐿𝑦

FIG. 8. (Color online) Angular dependence of the damping-
like (a) and fieldlike (b) torkance on the Néel order direction
(θ, φ) for one layer of bilayer CrI3 under an external electric
field along the ŷ direction at Fermi level µ = 0.06 eV. The
arrow(color) on the sphere indicates the direction(magnitude)
of the torkance under the given magnetization direction. We
use kBT = 3 meV, η = 30 meV in the calculations. a0 is the
Bohr radius.

Here we present our first-principle results of spin-orbit
torque in the pure Néel space, i.e., m̂A = −m̂B. In this
case, the invariance under inversion+time reversal re-
lates the torkance on the magnetic sublattices: The time-
reversal even (dampinglike) torque is staggered while the
time-reversal odd (fieldlike) torque is uniform. Figure 8
summarizes our numerical results for µ = 60 meV above
the conduction band edge. The results show similar fea-
tures compared to the torkance in N -space shown in the
main text, with fixed points in the xz plane. However,
knowledge of the torkances in L-space is not sufficient
for determining the spin dynamics since the anisotropy
term immediately drives the system out of the pure Néel
space. Note that the Néel space state is the same as the
N-space state at the z and x axes.
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