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ABSTRACT

Human-robot collaborative systems are highly sought candidates for smart manufacturing

applications because of their adaptability and consistency in production tasks. However,

manufacturers are still hesitant to adopt these systems because of the lack of metrics re-

garding the influence of the degradation of collaborative industrial robots on human-robot

teaming performance. Hence, this paper defines teaming performance metrics with respect

to robot degradation. In addition, the defined metrics are applied to a human-robot collabo-

rative inverse peg-in-hole case study with respect to the degradation of the joint angular

encoder and current sensor. Specifically, this case study compares pure insertion versus in-

sertion with spatial scanning to solve the peg-in-hole problem, and manual intervention is

implemented in the event of robotic failure. The metrics used in the case study showed that

pure insertion more sensitive to robot degradation with manual intervention was required at

0.04° as opposed to 0.12° from insertion with scanning. Therefore, insertion with scanning

was shown to be more robust to robot degradation at the cost of a slower insertion time of

9.48 s compared to 3.19 s. Thus, this paper provides knowledge and usable metrics regarding

the influence of robot degradation on human-robot collaborative systems in manufacturing

applications.
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Introduction

Smart manufacturing developments in recent years have been characterized by the development of robust yet

responsive and flexible systems.1 Therefore, the adoption of industrial robots as cost-effective and flexible tools

toward a variety of manufacturing tasks has been increasing in production facilities in recent years.2 However,

industrial robots are still limited by their requirements regarding complex end-effector tooling and the inability to

compensate for unknown factors arising in the manufacturing environment.3 In addition, human-robot collabo-

rative systems, in which robot(s) work in conjunction with human(s) to accomplish a manufacturing task, are

highly appealing in implementing a flexible, efficient, and safe manufacturing environment.4 However, manu-

facturers are still hesitant to adopt human-robot collaborative systems.5

One of the reasons that manufacturers are hesitant to adopt such systems is that knowledge of whether a

human-robot collaborative system can accomplish a task is limited because of the lack of metrics in the field

relative to existing industrial robot metrics.6 Thus, prior research regarding human-robot collaboration has been

focused on establishing metrics for end users in the manufacturing environment to leverage during the adoption

of human-robot collaborative systems. However, metrics in human-robot collaboration in manufacturing have

primarily been focused on human safety,7,8 communication,5,9 and trust10,11 with respect to the robot. From a

manufacturing viewpoint, an understanding of human-robot systems with respect to how well a task is performed

is the key factor when deciding on adoption of human-robot systems. Thus, quantifiable metrics and knowledge

of task performance of human-robot systems are critical toward the widespread adoption of human-robot sys-

tems in manufacturing environments.

One of the most important influences on manufacturing task performance is structural degradation of equip-

ment. Industrial robots are known to degrade in performance when conducting repeated tasks.12 Recent research

has been conducted toward developing systems focused on detecting robot degradation. For example, Izagirre

et al.13 demonstrated a vision system using machine learning models to identify degradation in robot positional

trajectory performance. Also, Algburi and Gao14 analyzed robot encoder signals to determine the occurrence of

faults in industrial robots. In addition, Weiss and Kaplan15 demonstrated a detection system where a precision

key is inserted into a position-verification sensor to detect robot degradation beyond an acceptable amount.

However, prior literature regarding robot degradation is focused on single-robot performance without studying

the influence of human-robot interaction.

Thus, this paper has established that the study of the effects of robot degradation on human-robot

collaborative systems is limited. Because this knowledge is vital for manufacturers to understand whether

human-robot collaborative systems can satisfy their application for long-term manufacturing applications,

the lack of such information is a limitation for manufacturers to adopt these systems. Hence, this paper aims

to study the influence of robot degradation on the manufacturing performance of human-robot collaborative

systems using a case study. In addition, this research aims to establish metrics to consider when deciding

among system integrators and robot manufacturers for applications regarding human-robot collaboration.

The structure of the paper is as follows. The section titled “Metrics” establishes metrics with respect to robot

degradation in human-robot collaboration applications. The “Case Study: Peg-in-Hole” section discusses

a peg-in-hole case study with respect to some of the proposed metrics using the behavior of human perfor-

mance. In addition, a framework for evaluation of the metrics is demonstrated by using two different insertion

methods in the “Case Study: Peg-in-Hole” section. The results regarding the influence of robot degradation

on robot-human teaming performance are discussed in the “Results” section, which is followed by a

“Conclusions” section.

Metrics

This section describes recommended metrics for evaluating robot degradation with respect to human-robot col-

laborative applications. The metrics in this section are not exhaustive; however, they are critical factors that
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production end users and integrators should consider when implementing these systems. Thus, while the case

study in this paper examines some of the described metrics, the discussion in this section can still be used to

facilitate thoughtful consideration of degradation by end users and system integrators.

ROBOT PERFORMANCE

Many metrics and standards exist with respect to performance of industrial robots including positional accuracy16

and safety.17 However, metrics regarding robot degradation are limited, especially considering that robots are

subject to thousands of service hours. Thus, this paper recommends consideration of at least the following out-

lined factors regarding robot degradation, even without the context of human-robot collaborative systems, for

completeness.

• Hardware degradation: The fundamental sources of robot degradation are because of specific hardware
components such as the encoders, motors, and current sensors. Note that while individual components
can be evaluated in the context of degradation, how these components interact with each other to con-
tribute to overall degradation in a complex robotic system is not well understood. In addition, most re-
search regarding fault detection of robot degradation monitors the resulting end-application performance
as opposed to the fundamental source of degradation. For instance, the position verification sensor dem-
onstrated by Weiss and Kaplan15 detected faults by evaluating end-effector accuracy resulting from joint
degradation as opposed to studying degradation in the joint itself. Hence, understanding the end-appli-
cation performance deterioration with respect to the fundamental sources of robot errors is vital to diag-
nostics and degradation mitigation.

• Robot task performance: Industrial robots are adopted for a specific task depending on the end-effector
tooling and manufacturing environment. Thus, task performance of the robotic system must be quantified
as the robot degrades. This includes considering locations along the kinematic chain where sources are the
most sensitive to degradation.18 Thus, while the robot manufacturers can quantify degradation of specific
robot components, system integrators must consider degradation of both the tooling and the influence of
degrading robot components on positional accuracy.

• Safety: While safety standards exist in the current literature, the influence of robot degradation on safety has
not been well documented. For instance, force-limiting collaborative robots utilize current sensors to indi-
rectly calculate force, which is compared to a predetermined threshold.19 Thus, as the quality of current
sensors degrades, the force-limiting readings are subject to poor performance, which impacts safety. In
addition, while expected to be minor, degradation in the joint encoders can influence the workspace
of the robot, which thus impacts the establishment of safe work areas.

• Servicing: Note that a robotic system will naturally degrade as part of its operating lifetime. Thus, metrics
regarding maintenance, such as frequency of servicing and service downtime, must be quantified for end
users to have a full understanding of expenses regarding adopting robotic systems.

PERSONNEL PERFORMANCE

Note that quantifying human performance is subject to variability and subjectivity and is therefore difficult for

both robot manufacturers and system integrators to report. However, metrics regarding human performance as

the robot degrades are still important for end users to monitor for diagnostics and staffing scheduling. In addition,

while metrics regarding social interaction, including trust and communication, are vital to overall human per-

formance, the influence of these metrics on manufacturing performance is still not well understood and is there-

fore not included with respect to degradation in this work.

• Effort: As the robot degrades in a human-robot collaborative system, the human operator must compensate
for the robot’s performance. Thus, the human would exert more effort to accomplish the collaborative task.
Human effort is task-dependent and can be quantified in certain cases such as exerted force in assistive
lifting or the number of human interventions after the robot fails a task.

• Completion time: In specific cases where robots and humans will conduct tasks sequentially, the human’s
completion time will be influenced by the robot’s performance. Therefore, a robot with degrading
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performance will result in a longer completion time by the human, which can therefore contribute to
fatigue and overall teaming performance degradation.

• Overall teaming performance: Note that in some applications, the overall teaming performance provides
the most relevant metrics for end users. Overall teaming performance metrics include final insertion time
and surface finish for collaborative applications as possible examples. However, the aforementioned met-
rics should still be considered for diagnostics and for providing a holistic interpretation of the process
quality.

Case Study: Peg-in-Hole

To examine and quantify the influence of robot degradation on human-robot collaboration, a peg-in-hole ap-

plication setup was implemented at the National Institute of Standards and Technology (NIST). Figure 1 shows

the experimental setup used in this paper. In this work, an end effector with a hole axis perpendicular to the robot

flange was mounted onto a UR10 robot with a repeatability of ±0.1 mm. The goal of the application is to insert the

end effector (34.69 mm diameter) onto a peg (34.42 mm diameter), as shown in figure 1, with both the robot and

the peg mounted onto a 900-mm × 1,800-mm breadboard. Thus, the case study is represented as a reverse peg-in-

hole problem where the hole is mounted onto the robot. This problem is seen in applications including robotic

riveting20 and vacuum-based gripping.21 Specifically, this is a human-robot collaborative system because the op-

erator initially monitors the robot and then corrects for robot’s errors as it is handled by the operator in force-

compliance mode. Hence, this specific case study is of interest to the manufacturing community in addition to

studying how robot degradation influences human-robot collaboration teaming performance. Initial hole locali-

zation is conducted in the X-Y plane, while the insertion motion is performed along the Z axis. If the robot fails to

insert the end effector onto the peg because of degradation in its performance, then manual insertion is required

to account for the robot performance failure. Thus, this problem represents a sequential manufacturing task

where human intervention is required to compensate for robot failures owing to degradation. In this work,

two sources of robot degradation are modeled: joint encoder slip in joint 1 and current sensor drift in joint 2.

POSE SELECTION USING SENSITIVITY ANALYSIS

Note that the robot task performance for this case study, identified as the ability to accurately locate the hole based

on the initial Cartesian position, is pose-dependent. Therefore, determining the appropriate workspace location is

critical for establishing benchmarks to examine the overall task performance. To determine the sensitivity of the

robot with respect to degradation in joint 1, consider the following robot kinematic Jacobian for a six-degrees-of-

freedom robot.22 Note that this work studies the degradation of joint 1 to avoid misinterpretation of the results

stemming from the confounding of the degradation of multiple joints.

FIG. 1 (A) Isometric and (B) detailed views of experimental setup for peg-in-hole case study.
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where ωx, ωy , and ωz are the rotations about the X, Y, and Z axes, respectively, and qi is the angular position of the

ith joint. Thus, the individual elements of the Jacobian matrix are the sensitivity of an element of the Cartesian

position to a specific joint. The individual equations for the Cartesian position (x, y, z, ωx, ωy, and ωz) are ob-

tained from standard forward kinematics using the Denavit-Hartenberg parameters.23 In this research, the sen-

sitivity of the robot position in the X-Y plane with respect to degradation in joint 1 was studied, so ∂x
∂q1

and ∂y
∂q1

were computed by taking the corresponding partial derivatives of the forward kinematics solution for x and y,

respectively. This analysis was computed for discrete poses in the X-Y plane 175 mm above the top face of the

breadboard shown in figure 1. The tool axis was constrained to be perpendicular to the breadboard surface. In

addition, because ∂ωz
∂q1

is 0, a fixed ωz orientation was considered at each discrete point. Figure 2 shows the vector

norm of ∂x
∂q1

and ∂y
∂q1

in multiple positions in the robot workspace.

Figure 2 shows that as the arm extends out from its base in both the X and Y directions, the Cartesian

position sensitivity with respect to joint 1 increases. This is because as the UR10 end effector extends from

its base, the arc distance traveled by the end effector corresponding to a change in joint 1 increases.

Therefore, the robot is the most sensitive to degradation in joint 1 at the farthest distance from the robot base.

In the workspace poses shown in figure 2, the largest sensitivity of 18.8 mm/deg corresponds to X and Y co-

ordinates of ±400 mm and −1,000 mm, respectively. Thus, a minor degradation of 0.01 degrees would result in

0.188 mm of positional error, which can be unacceptable for applications including peg/shaft assembly24 and

FIG. 2

Mapping of X-Y position

norm sensitivity to joint 1

(mm/deg). The X-Y

coordinates denote the

tool axis location. A top

view of the UR10 (not to

scale) is overlaid for

reference.
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machining.25 Note that the workspace poses with the lowest sensitivity (X and Y coordinates of ±80 mm and

−350 mm, respectively) exhibit sensitivities of 6.27 mm/deg. Thus, figure2 shows that the sensitivity of positional

accuracy to joint 1 degradation can change by at least three times based on arm position, and careful selection of

where to conduct the analysis is critical.

Force-limiting robots, including the UR10, have been known to utilize current sensors to indirectly calculate

force and torques at the robot end effector and joints, respectively. Thus, as the current sensors in the robot

degrade, the performance and safety of the robot will suffer as a result. In this case study, degradation in

the current sensors in the joint would influence the insertion force threshold. To determine the sensitivity of

the force and torque computed by the UR10 at the end effector on the current sensors, the robot was driven

to each of the poses shown in figure 2. At each position, 10 current and force/torque readings were recorded from

the robot controller using the user datagram protocol communication interface. A best fit line of the following

form was fitted to the Z-direction force as a function of the current in each joint.

Fz = β +
X6
i=1

αiIi (2)

where β, αi, and Ii are the intercept, sensitivity coefficient, and current of the ith joint at a given position,

respectively. Note that the average R2 coefficient was 1.0, which indicates that the UR10 also uses linear

polynomials to compute force/torque from current readings. In addition, note that αi is in units of

Newton/Ampere and therefore represents the sensitivity of the force component to each individual current

sensor. In this work, the influence of the current sensor in joint 2 was considered because it exhibited the

highest sensitivity on the Z direction force. Thus, figure 3 shows the value of α2 at each position in the

workspace.

Note that figure 3 seems to show opposite trends to those of figure 2. Specifically, the end-effector force

sensitivity decreases as the robot extends from its base. The lowest sensitivity appears to be at the X and

Y coordinates of ±400 mm and −1,000 mm, respectively, while the largest sensitivity corresponds to the X

and Y coordinates of ±80 mm and −350 mm, respectively. This is because as the arm is closer to its base,

FIG. 3

Mapping of absolute Z

direction force sensitivity

to current sensor in joint

2 (Newton/Ampere).

The X-Y coordinates

denote the tool-axis

location. A top view of

the UR10 (not to scale) is

overlaid for reference.
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the link attached to joint 2 becomes more collinear with the gravity vector. Thus, perturbations would introduce

torque, and therefore, current readings about joint 2 increase as a result. In addition, figure 3 shows that the

smallest and largest sensitivities are 13.8 N/A and 57.7 N/A, respectively.

Even though the force sensitivity is inversely related to the position sensitivity, in this paper the position most

sensitive to position degradation was chosen because position sensitivity contributes more directly to the task

performance. Specifically, the X and Y coordinates of the peg for the case study were chosen to be 400 mm and

−1,000 mm, respectively. Note that this section clearly shows that selection of the robot pose for evaluating

metrics is critical for robot degradation and accuracy in general. In addition, this paper demonstrates both mod-

eling and empirical methodologies for selecting the appropriate robot position for metrics evaluation.

METHOD 1: PURE INSERTION

The first method for solving the peg-in-hole problem represents a case where the robot manufacturer only uses

positional and force sensors native to the robot. In this procedure, the robot initially drives to the X and Y

coordinates directly above the peg. The Z height of the bottom face of the tool is then driven to 2.92 mm above

the top face of the peg. The robot then traverses in the Z direction at a speed of 3 mm/s. The insertion stops

when either the robot passes 10 mm of insertion or the force in the Z direction passes above 50 N based on the

robot end-effector readings. The force limit is set to prevent breakage or significant interference between the

mating parts. The force measurements are calculated from current sensors read by the native robot controller. If

the robot halts its Z direction traversal after 10 mm of insertion, then the procedure is deemed successful.

Otherwise, if the robot stops before 10 mm of insertion, then the procedure is deemed unsuccessful. In

the case of an unsuccessful insertion, the human operator manually finishes the insertion by operating the

robot in feed-drive mode and manually inserting the tool over the peg. Figure 4A shows a flow chart rep-

resenting the insertion procedure.

FIG. 4 Flow chart of insertion via (A) pure insertion and (B) insertion with scanning methods.
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METHOD 2: INSERTION WITH SCANNING

This method initially starts similarly to the previously described pure insertion method. However, if the insertion

fails, the robotic system then attempts to scan for the peg location. During this time, the tool is kept in constant

contact in the Z direction by using a force controller while the robot moves the end effector in the X-Y plane to

search for the peg. The robot uses force measurements in the Z direction to determine when the end effector is

placed directly over the peg, and then insertion in the Z direction occurs similarly to the pure insertion method.

Note that the UR10 current sensors cannot isolate internal forces (such as forces required to move the end ef-

fector) from external forces acting on the end effector. Therefore, an external force sensor is used in this method.

Hence, this method is expected to be more expensive and slower than not using an external sensor while being

more robust to robot-degradation effects.

Scanning in the X-Y Plane

Note that the UR10 used in this work does not natively support commanding both a point and an end velocity in

the decomposed Cartesian directions. However, the UR10 does allow for commanding of velocities in each of the

Cartesian directions. Therefore, to enable continuous motion in the X-Y plane, a velocity controller was utilized.

Specifically, a unit vector is calculated between the current robot pose and desired position. A commanded veloc-

ity scalar value is then projected onto the unit vector, and the resulting vector is commanded to the X and Y

Cartesian velocities of the robot. A velocity command is sent to the UR10 every 100 ms. When the robot has

reached the waypoint, the next waypoint is set as a reference to the velocity controller. However, note that the

robot pose measurements are subject to noise and the robot can pass over the waypoint between sampling times.

Therefore, the robot is considered to reach the waypoint when the pose is within a specified radius about the

waypoint. The radius of the sphere is calculated as the product of the speed, sampling period, and safety factor,

which have values that were set to 1 mm/s, 100 ms, and 0.75, respectively. Note that as the commanded speed

increases, the threshold increases. Thus, using this velocity controller method results in a larger positional error as

the commanded velocity increases. This behavior coincides with previously established trajectory- and velocity-

based controllers.26

Multiple scanning trajectories have been previously demonstrated to solve the peg-in-hole problem such as

random, spiral, and raster searches.27 However, spiral searches are difficult to implement with the described

velocity controller because the initial small radii of curvature at the beginning of the spiral trajectory result

in premature triggering of the waypoint thresholds. In addition, the zero-radius curvature turns in raster searches

resulted in sudden accelerations that were found to interfere with the force control in the Z direction. Thus, in this

work, scans in the X-Y plane were conducted along a sequence of circles with gradually increasing radii. The radii

of the circles were incremented by 0.5-mm up to 2-mm radius. In addition, the arc length spacing of the way-

points along the circle was calculated to be 0.1 mm. Using this approach, a comprehensive search area can be

defined while ensuring smooth trajectories along the scanning path.

Force Control in Z Direction

During the scanning period, a constant force was maintained between the end effector and the peg surface using a

force controller. In this work, an ATI gamma force/torque sensor with a resolution of 0.125 N was used to obtain

force measurements at a sampling rate of 8 ms. To compute the commanded velocity in the Z direction, a propor-

tional-derivative force control algorithm was used as follows.

vz = Kpe + Kd
de
dt (3)

where e is the error between the nominal and measured Z direction force. In this work, Kp and Kd were set to

0.005 and 0.20, respectively. Note that implementation of an integral gain in this work was found to introduce an

unacceptable delay because integral wind-up. The peg was determined to be found when the Z force reading was

measured to be above −1 N for 20 consecutive measurements. After the peg was found, regular insertion in the Z
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direction was conducted until a Z force threshold of −150 N or 10 mm of insertion was passed. Figure4B shows a

flow chart representing the insertion and scanning procedure.

QUANTIFYING HUMAN PERFORMANCE

In the case study used in this work, after a failed insertion, the operator manually finished the insertion operation.

Thus, the length of insertion by a human operation is used as a metric to define the amount of effort required by

personnel in this case study. The manual length of insertion was calculated by computing the difference between

the insertion distance by the robot in a failed insertion and the desired insertion distance (10 mm). In addition,

the time of manual insertion was used to calculate overall teaming performance. In this work, a single researcher

was used to manually test the insertion parameters. Note that the use of a single researcher is sufficient in this case

because the study is focused on robot degradation as opposed to cognitive workload and generalizing the results to

a human population. In addition, note that human insertion time can be determined from prior literature.28 Thus,

manufacturers can also use prior literature as a cost-effective and efficient approach for system integrators to

create quantifiable metrics for human-robot collaborative systems.

Results

In this case study, the evaluation of robot degradation on human-robot collaborative systems is presented in the

context of the aforementioned metrics. The degradation of the joint 1 angular encoder and joint 2 current sensor

were modeled as errors in the forward kinematics and force readings, respectively. Specifically, an error in joint 1

was introduced in the robot position reading in the control system. In addition, errors in the joint 2 current sensor

were introduced as an error in the robot force readings using equation (3). For pure insertion, robot degradation

errors for the joint 1 encoder and joint 2 current readings were 0.00°, 0.01°, 0.02°, 0.03°, and 0.04° and 0.00 A,

0.25 A, and 0.5 A, respectively. Note that robot manufacturers do not report angular encoder nor current sensor

specifications regarding degradation. Thus, the simulated angular degradation is determined by using heuristi-

cally determined knowledge. However, Hall Effect sensors are known to report lifetime drift. For instance, the

total output error of an Allegro Microsystems ASC71240 Hall Effect sensor is specified to be as high as 5.7 %.29 In

the case of joint 2 with an average current reading of 5.4 A in the testing configuration, this would correspond to

an output error of 0.31 A, which is on the order of the simulated current degradation. For insertion with scanning,

robot degradation errors for joint 1 encoder readings were 0.00°, 0.04°, 0.08°, 0.12°, and 0.16°. Note that the robot-

force readings were not used for insertion with scanning because of the implementation of the external force/

torque sensor, and therefore, current-sensor degradation in joint 2 was not considered. Three repetitions were

conducted for each method.

METHOD 1: PURE INSERTION

Figure 5 shows the results of the pure insertion method. Specifically, figure 5A shows that the robot with no

current degradation (0 A) fails to insert when the joint 1 degradation is 0.04° for this case study. Therefore, the

operator must complete the insertion, as shown by the light grey bars. Thus, figure 5 shows that a fairly minor

degradation of 0.04° in a single joint can significantly impact performance. In addition, when the joint 2 current

degrades by 0.25 A, the robot fails to insert when the joint 1 angular degradation is 0.03°. However, note that the

robot’s insertion at 0.03° degradation is larger than at 0.04°. This is because the degradation in the joint 2 current

corresponds to a false reading that prematurely stops the insertion process. Thus, the manual insertion effort at

0.03° is less than 0.04° for 0.25-A degradation. When the joint 2 current degrades by 0.50 A, the robot fails to

insert even when joint 1 has no degradation. Thus, the manual insertion effort is required for all joint 1 deg-

radation values. Thus, figure 5A shows the influence of performance impacts as current sensors degrade. Note

that this current degradation can also result in potential safety hazards, especially in poses where the robot forces/

torques are particularly sensitive to current, such as the X and Y coordinates of ±80 mm and −350 mm (fig. 3),

respectively, where the sensitivity was 129 N/A.
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Figure 5B shows the insertion times for the pure insertion method. Interesting to note is that the manual

insertion speed appears to be significantly faster than the robot insertion speed. The average manual insertion

speed was computed to be 23±9 mm/s, which is much faster than the robot’s insertion speed of 3 mm/s.

However, increasing the robot’s insertion speed to match the manual insertion speed of 23 mm/s could result

in potential safety hazards. Note that the insertion speed can increase beyond such a speed after the appropriate

safety certification has been conducted before deploying in an industrial environment. Therefore, even though

the robot fails to insert, the overall performance time decreases compared to a successful insertion. This is quite

normal, as a variety of robot tasks can be done much faster by manufacturing personnel.30 However, inter-

vention by manufacturing personnel results in more human fatigue,31 which can impact human performance.

Thus, this case study shows that as the robot degrades, the overall insertion time will decrease at the cost of

human fatigue.

FIG. 5 Results of the pure insertion method corresponding to (A) insertion depth and (B) insertion time.
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METHOD 2: INSERTION WITH SCANNING

Figure 6 shows the results of the insertion with the scanning method. Figure 6A shows that the robot fails to

insert when the angular degradation reaches 0.12°. This failure value is much larger than with the one with pure

insertion (0.04°), thus demonstrating that insertion with scanning is more robust to robot degradation than pure

insertion. This result is logical because the scanning phase compensates for inaccuracies in the X-Y position

because of degradation in the joint 1 angular position. In addition, it is shown that a joint 1 angular degradation

of 0.12° is near the outside of the X-Y scanning area, as some trials exhibited successful insertion while others

failed. In addition, figure 6A shows that the X-Y position deviation corresponding to an angular degradation of

0.16° is completely outside the scanning area defined in this work. Theoretically, an implementation of scanning

would be able to indefinitely increase the scanning area until the peg is found; however, such an approach will

result in a significant loss of time. In addition, 0.16° is expected to be a significant enough degradation that

requires external maintenance.

Figure 6B shows the timing results of the insertion with the scanning method. Note that the scanning phase

is implemented when the joint 1 angular degradation is greater than 0.04°. Thus, the scanning phase increases the

overall successful insertion time from 4.55 s at no degradation to 6.01 s and 12.29 s at 0.08° and 0.12° of angular

degradation, respectively. Thus, implementation of the insertion with the scanning method is shown to reduce the

effort of the human operator at the cost of a slower insertion time as the robot degrades. Thus, this trade-off that

has been shown by the performance metrics as critical for end users to analyze when making their purchasing

decisions.

COMPARISON OF OPERATOR WITH PRIOR LITERATURE

Note that this work focuses on the robot degradation on manufacturing performance in this case study and not

the extrapolation of the results to an entire human population, so only one participant was required. However,

additional analysis was conducted to evaluate the human insertion time in this study with respect to empirically

collected data in prior literature regarding human peg-in-hole assembly times28 where the empirical relation

describing the manual insertion time can be calculated as follows:

t = −70 ln D−d
d + 3.7L + 0.75d − 100ms (4)

where d, D, and L are the peg diameter, hole diameter, and length of insertion, respectively. Hence, the human

insertion time from prior literature can be calculated for all failed insertions and can be statistically compared to

the operator values in this work. Therefore, a Wilcoxon signed rank test with a statistical significance of 0.05 was

conducted to determine if the median of the population of differences between the data in this work and prior

FIG. 6

Results of the insertion

with the scanning

method corresponding

to (A) insertion depth

and (B) insertion time.
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literature is zero.32 The test results yield a p-value of 0.12, and therefore, the null hypothesis that the median of the

population of differences is zero cannot be rejected.

Conclusions

This paper examines the influence of robot degradation on human-robot collaborative systems in manufacturing

applications. Teaming performance metrics are described in the context of robot degradation. These metrics are

applied to a peg-in-hole case study where manual intervention is required if the robot fails in its initial attempt to

insert an end effector over a peg. Two robot methods involving pure insertion and insertion with scanning were

analyzed under the influences of angular encoder and current sensor degradation. The results show that the pure

insertion method required more manual intervention as the robot degraded and failed to conduct full insertion. In

addition, the insertion with the scanning method was more robust to robot degradation, and therefore required

less manual intervention, at the cost of insertion time. Note that this work could have used prior literature to

evaluate the influence of manual intervention from a manufacturing-performance perspective. Hence, robot man-

ufacturers and system integrators that wish to evaluate the performance of human-robot collaborative systems in

general do not require human subjects for quantifying their metrics. Thus, metrics for quantifying the perfor-

mance of such systems can be easily adopted for end users to make informed process-planning decisions.

However, note that more complex manufacturing tasks require methods that combine simplistic tasks for

quantifying performance. Hence, such methods are subject to future work. In addition, the case study used in this

work involves sequential operations where the robot conducts a task and the operator may conduct a subsequent

task. Thus, another subject of future work involves studying the influence of robot degradation on active col-

laborative systems including load-sharing applications. Finally, though expected to be a minor impact on manu-

facturing performance, social aspects, including cognitive load and trust, can be studied as future work.

DISCLAIMER

Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the

experimental procedure adequately. Such identification is not intended to imply recommendation or endorse-

ment by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best

available for the purpose.

ACKNOWLEDGMENTS

This work was funded by the National Institute of Standards and Technology and the National Research Council

Research Associateship Program.

References

1. H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, B. H. Kim, and S. Do Noh, “Smart Manufacturing: Past
Research, Present Findings, and Future Directions,” International Journal of Precision Engineering and Manufacturing-
Green Technology 3, no. 1 (January 2016): 111–128, https://doi.org/10.1007/s40684-016-0015-5

2. L. D. Evjemo, T. Gjerstad, E. I. Grøtli, and G. Sziebig, “Trends in Smart Manufacturing: Role of Humans and Industrial Robots
in Smart Factories,” Current Robotics Reports 1, no. 2 (April 2020): 35–41, https://doi.org/10.1007/s43154-020-00006-5

3. P. Tsarouchi, S. Makris, and G. Chryssolouris, “Human–Robot Interaction Review and Challenges on Task Planning and
Programming,” International Journal of Computer Integrated Manufacturing 29, no. 8 (February 2016): 916–931, https://
doi.org/10.1080/0951192X.2015.1130251

4. E. Matheson, R. Minto, E. G. G. Zampieri, M. Faccio, and G. Rosati, “Human–Robot Collaboration in Manufacturing
Applications: A Review,” Robotics 8, no. 4 (December 2019): 100, https://doi.org/10.3390/robotics8040100

5. J. A. Marvel, S. Bagchi, M. Zimmerman, and B. Antonishek, “Towards Effective Interface Designs for Collaborative HRI
in Manufacturing: Metrics andMeasures,” ACMTransactions on Human-Robot Interaction 9, no. 4 (October 2020): 1–55,
https://doi.org/10.1145/3385009

6. S. Singer and D. Akin, “A Survey of Quantitative Team Performance Metrics for Human-Robot Collaboration,” in 41st
International Conference on Environmental Systems (Reston, VA: American Institute of Aeronautics and Astronautics,
2011), 1–19, https://doi.org/10.2514/6.2011-5248

Smart and Sustainable Manufacturing Systems

34 NGUYEN AND MARVEL ON DEGRADING OF HUMAN-ROBOT TEAM

https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1007/s43154-020-00006-5
https://doi.org/10.1007/s43154-020-00006-5
https://doi.org/10.1080/0951192X.2015.1130251
https://doi.org/10.1080/0951192X.2015.1130251
https://doi.org/10.1080/0951192X.2015.1130251
https://doi.org/10.3390/robotics8040100
https://doi.org/10.3390/robotics8040100
https://doi.org/10.1145/3385009
https://doi.org/10.1145/3385009
https://doi.org/10.2514/6.2011-5248


7. J. A. Marvel, J. Falco, and I. Marstio, “Characterizing Task-Based Human–Robot Collaboration Safety in Manufacturing,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems 45, no. 2 (July 2014): 260–275, https://doi.org/10.1109/
TSMC.2014.2337275

8. A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, “Safety in Human-Robot Collaborative
Manufacturing Environments: Metrics and Control,” IEEE Transactions on Automation Science and Engineering 13,
no. 2 (April 2015): 882–893, https://doi.org/10.1109/TASE.2015.2412256

9. P. Gustavsson, M. Holm, A. Syberfeldt, and L. Wang, “Human-Robot Collaboration – towards New Metrics for Selection
of Communication Technologies,” Procedia CIRP 72 (January 2018): 123–128, https://doi.org/10.1016/j.procir.2018.03.
156

10. A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and M. Goodrich, “Common Metrics for Human-Robot
Interaction,” in Proceedings of the First ACM SIGCHI/SIGART Conference on Human-Robot Interaction (New York:
Association for Computing Machinery, 2006), 33–40, https://doi.org/10.1145/1121241.1121249

11. K. E. Schaefer, J. Y. C. Chen, J. L. Szalma, and P. A. Hancock, “AMeta-Analysis of Factors Influencing the Development of
Trust in Automation: Implications for Understanding Autonomy in Future Systems,” Human Factors 58 no. 3 (March
2016): 377–400, https://doi.org/10.1177/0018720816634228

12. G. Qiao and and B. A. Weiss, “Accuracy Degradation Analysis for Industrial Robot Systems,” in ASME 2017 12th
International Manufacturing Science and Engineering Conference (New York: American Society of Mechanical
Engineers, 2017), V003T04A006, https://doi.org/10.1115/MSEC2017-2782

13. U. Izagirre, I. Andonegui, L. Eciolaza, and U. Zurutuza, “Towards Manufacturing Robotics Accuracy Degradation
Assessment: A Vision-Based Data-Driven Implementation,” Robot and Computer-Integrated Manufacturing 67
(February 2021): 102029, https://doi.org/10.1016/j.rcim.2020.102029

14. R. N. A. Algburi and H. Gao, “Health Assessment and Fault Detection System for an Industrial Robot Using the Rotary
Encoder Signal,” Energies 12, no. 14 (July 2019): 2816, https://doi.org/10.3390/en12142816

15. B. A. Weiss and J. Kaplan, “Assessment of a Novel Position Verification Sensor to Identify and Isolate Robot Workcell
Health Degradation,” Journal of Manufacturing Science and Engineering 143, no. 4 (April 2021): 041008, https://doi.org/
10.1115/1.4048446

16. S. Moon and G. S. Virk, “Survey on ISO Standards for Industrial and Service Robots,” in ICCAS-SICE (Tokyo: Society of
Instrument and Control Engineers, 2009), 1878–1881.

17. J. Fryman and B. Matthias, “Safety of Industrial Robots: From Conventional to Collaborative Applications,” in ROBOTIK
2012; Seventh German Conference on Robotics (Frankfurt, Germany: VDE Association for Electrical, Electronic and
Information Technologies, 2012), 1–5.

18. A. Klinger and B. A. Weiss, “Examining Workcell Kinematic Chains to Identify Sources of Positioning Degradation”
(paper presentation, Annual Conference of the Prognostics and Health Management Society 2018, Philadelphia, PA,
September 24–27, 2018), http://web.archive.org/web/20200322170540/https://tsapps.nist.gov/publication/get_pdf.cfm?
pub_id=926386

19. P. Aivaliotis, S. Aivaliotis, C. Gkournelos, K. Kokkalis, G. Michalos, and S. Makris, “Power and Force Limiting on
Industrial Robots for Human-Robot Collaboration,” Robotics and Computer-Integrated Manufacturing 59 (October
2019): 346–360, https://doi.org/10.1016/j.rcim.2019.05.001

20. F.-F. Xi, L. Yu, and X.-W. Tu, “Framework on Robotic Percussive Riveting for Aircraft Assembly Automation,” Advances
in Manufacturing 1, no. 2 (April 2013): 112–122, https://doi.org/10.1007/s40436-013-0014-5

21. J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-Net 3.0: Computing Robust Robot Vacuum Suction
Grasp Targets in Point Clouds Using a New Analytic Model and Deep Learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA) (Piscataway, NJ: Institute of Electrical and Electronics Engineers, 2018), 5620–5627,
https://doi.org/10.1109/ICRA.2018.8460887

22. D. E. Orin and W. W. Schrader, “Efficient Computation of the Jacobian for Robot Manipulators,” The International
Journal of Robotics Research 3, no. 4 (December 1984): 66–75, https://doi.org/10.1177%2F027836498400300404

23. M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control (Hoboken, NJ: Wiley, 2005).
24. G. Wu, X. Liu, Z. Liang, Y. Wang, and X. Wang, “Research on Diameter Tolerance of Transmission Shaft Based on

Interval Analysis,” Journal of Failure Analysis and Prevention 19, no. 1 (January 2019): 154–160, https://doi.org/10.
1007/s11668-019-00584-3

25. J. Wang, H. Zhang, and T. Fuhlbrigge, “Improving Machining Accuracy with Robot Deformation Compensation,” in
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (Piscataway, NJ: Institute of Electrical and
Electronics Engineers, 2009), 3826–3831, https://doi.org/10.1109/IROS.2009.5353988

26. L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic Machines and Robots (Berlin: Springer, 2008), https://
doi.org/10.1007/978-3-540-85629-0

27. J. A. Marvel, R. Bostelman, and J. Falco, “Multi-robot Assembly Strategies and Metrics,” ACM Computing Surveys 51,
no. 1 (April 2018): 1–32, https://doi.org/10.1145/3150225

28. G. Boothroyd, P. Dewhurst, and W. A. Knight, Product Design for Manufacture and Assembly, 3rd ed. (Boca Raton, FL:
CRC Press, 2011).

29. Allegro Microsystems, “ACS71240: Automotive-Grade, Galvanically Isolated Current Sensor IC with Common-Mode
Field Rejection and Overcurrent Detection in Small Footprint Low-Profile Packages,” Allegro Microsystems, 2020,

Smart and Sustainable Manufacturing Systems

NGUYEN AND MARVEL ON DEGRADING OF HUMAN-ROBOT TEAM 35

https://doi.org/10.1109/TSMC.2014.2337275
https://doi.org/10.1109/TSMC.2014.2337275
https://doi.org/10.1109/TSMC.2014.2337275
https://doi.org/10.1109/TASE.2015.2412256
https://doi.org/10.1109/TASE.2015.2412256
https://doi.org/10.1016/j.procir.2018.03.156
https://doi.org/10.1016/j.procir.2018.03.156
https://doi.org/10.1016/j.procir.2018.03.156
https://doi.org/10.1145/1121241.1121249
https://doi.org/10.1177/0018720816634228
https://doi.org/10.1177/0018720816634228
https://doi.org/10.1115/MSEC2017-2782
https://doi.org/10.1016/j.rcim.2020.102029
https://doi.org/10.1016/j.rcim.2020.102029
https://doi.org/10.3390/en12142816
https://doi.org/10.3390/en12142816
https://doi.org/10.1115/1.4048446
https://doi.org/10.1115/1.4048446
https://doi.org/10.1115/1.4048446
http://web.archive.org/web/20200322170540/https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926386
http://web.archive.org/web/20200322170540/https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926386
https://doi.org/10.1016/j.rcim.2019.05.001
https://doi.org/10.1016/j.rcim.2019.05.001
https://doi.org/10.1007/s40436-013-0014-5
https://doi.org/10.1007/s40436-013-0014-5
https://doi.org/10.1007/s40436-013-0014-5
https://doi.org/10.1109/ICRA.2018.8460887
https://doi.org/10.1177%2F027836498400300404
https://doi.org/10.1177%2F027836498400300404
https://doi.org/10.1177%2F027836498400300404
https://doi.org/10.1007/s11668-019-00584-3
https://doi.org/10.1007/s11668-019-00584-3
https://doi.org/10.1007/s11668-019-00584-3
https://doi.org/10.1109/IROS.2009.5353988
https://doi.org/10.1007/978-3-540-85629-0
https://doi.org/10.1007/978-3-540-85629-0
https://doi.org/10.1145/3150225
https://doi.org/10.1145/3150225


http://web.archive.org/web/20210729140342/https://www.allegromicro.com/en/products/sense/current-sensor-ics/
zero-to-fifty-amp-integrated-conductor-sensor-ics/acs71240

30. B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A Survey of Robot Learning from Demonstration,” Robotics and
Autonomus Systems 57, no. 5 (May 2009): 469–483, https://doi.org/10.1016/j.robot.2008.10.024

31. L. Peternel, N. Tsagarakis, D. Caldwell, and A. Ajoudani, “Adaptation of Robot Physical Behaviour to Human Fatigue in
Human-Robot Co-manipulation,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
(Piscataway, NJ: Institute of Electrical and Electronics Engineers), 489–494, https://doi.org/10.1109/HUMANOIDS.2016.
7803320

32. R. F. Woolson, “Wilcoxon Signed-Rank Test,” in Wiley Encyclopedia of Clinical Trials (Hoboken, NJ: Wiley, 2008), 1–3,
https://doi.org/10.1002/9780471462422.eoct979

Smart and Sustainable Manufacturing Systems

36 NGUYEN AND MARVEL ON DEGRADING OF HUMAN-ROBOT TEAM

http://web.archive.org/web/20210729140342/https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs71240
http://web.archive.org/web/20210729140342/https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs71240
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1109/HUMANOIDS.2016.7803320
https://doi.org/10.1109/HUMANOIDS.2016.7803320
https://doi.org/10.1002/9780471462422.eoct979

	Evaluation of Robot Degradation on Human-Robot Collaborative Performance in Manufacturing
	Introduction
	Metrics
	Case Study: Peg-in-Hole
	Results
	Conclusions
	References


