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Many synthetic quantum systems allow particles to have dispersion relations that are neither linear nor
quadratic functions. Here, we explore single-particle scattering in general spatial dimension D � 1 when the
density of states diverges at a specific energy. To illustrate the underlying principles in an experimentally relevant
setting, we focus on waveguide quantum electrodynamics (QED) problems (i.e., D = 1) with dispersion relation
ε(k) = ±|d|km, where m � 2 is an integer. For a large class of these problems for any positive integer m, we
rigorously prove that when there are no bright zero-energy eigenstates, the S matrix evaluated at an energy
E → 0 converges to a universal limit that is only dependent on m. We also give a generalization of a key index
theorem in quantum scattering theory known as Levinson’s theorem—which relates the scattering phases to the
number of bound states—to waveguide QED scattering for these more general dispersion relations. We then
extend these results to general integer dimensions D � 1, dispersion relations ε(k) = |k|a for a D-dimensional
momentum vector k with any real positive a, and separable potential scattering.
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I. OVERVIEW

The quantum mechanical scattering of few-body systems
remains a challenging theoretical problem. Even at low in-
coming energies, nonperturbative effects render a general
solution out of reach. A common workaround is based on
effective field theory whereby low-energy scattering is de-
scribed in terms of a few parameters such as the scattering
length a0 and the effective range r0 [1–3]. When a0 � r0, the
system is in the unitarity limit where the universal physics
of Efimov states [2–4] and unitary Fermi gases [5–7] can
emerge. Another approach where general results can be ob-
tained is by studying the analytic structure of the S matrix at
low energies. One striking result in this context is the simple
effect of dimensionality on scattering theory. Two particles
with short-range interactions perfectly reflect off each other
at the threshold in one dimension (1D), while they transmit
without seeing each other in higher dimensions. This effect
arises because the density of states diverges at the threshold
as 1/

√
E in 1D, but stays finite in higher dimensions.

Recent experimental progress in synthetic quantum mat-
ter allows for broad control of dispersion relations. One
class of such systems consists of tunable periodic structures,
including photonic crystal waveguides [8–14], twisted bi-
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layer graphene [15,16], superconducting qubit arrays [17–19],
atomic arrays [20–22], and trapped-ion spin chains [23,24].
Another class is polaritonic [25,26] or spin-orbit cou-
pled [27,28] systems, where the dispersion relation can be
tuned in situ by external fields [29–31]. In principle, the
density of states at the scattering threshold can be tuned to
diverge faster than it does for quadratic dispersion relations.
This opens up the door to studying the implications of a more
general density of states without changing the dimension of
the system. Recently, there is a growing interest in the study
of general dispersion relations in condensed matter systems,
where divergent electronic density of states is referred to as a
high-order Van Hove singularity [32–34]. In particular, power-
law-divergent density of states near the Fermi level leads to
nontrivial metallic states termed supermetals [33].

In this paper, we explore the physics of divergent density of
states from the perspective of scattering theory. We illustrate
that, when a particle has a divergent density of states at a
certain energy, its scattering matrix has a nontrivial univer-
sal limit that depends on the rate of the divergence. In the
main text of this paper, we study single-particle scattering
of photon-emitter models in 1D (D = 1) with a dispersion
relation ε(k) = ±|d|km, where m is a positive integer. No-
tably, when m is even, these emitter scattering models describe
scattering for incoming frequencies near the band edge of
photonic crystal waveguides coupled to atoms [10] or quan-
tum dots [8]. We discover that the S matrix can take different
universal limits limE→0 S(E ) for different values of m. The
total reflection at the threshold for a quadratic dispersion
relation is an example of such universal behavior correspond-
ing to m = 2. In general, there may be multiple classes of
universal behaviors in the S matrix corresponding to each m,
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depending on the properties of interactions at k = 0. In this
paper, we consider a physically natural class of interactions
and characterize the universal behavior for each m. We also
extend a key index theorem in scattering theory known as
Levinson’s theorem—which relates the scattering phases to
the number of bound states [35–45]—to the class of models
considered in this paper with these more general dispersion
relations. To demonstrate the generality of our methodology,
in Appendices D and E, we extend our discussions to separa-
ble potential scattering, general integer dimensions D � 1 and
dispersion relations ε(k) = |k|a, where k is a D−dimensional
momentum vector and a is any positive real number. The
extension of our single-emitter results to spin-boson models
is given in an upcoming work [46]. These spin-boson models
generalize the waveguide quantum electrodynamics (QED)
models introduced below by including emitter-photon interac-
tion terms beyond the rotating wave approximation—thereby,
illustrating the relevance of our results in the many-body
regime of waveguide QED.

II. WAVEGUIDE QED

In many synthetic quantum systems, particles propagating
in a 1D channel are scattered by emitters such as atoms,
quantum dots, or superconducting qubits. The emitters are
often coupled to the environment, which adds dissipation to
the system composed of the emitters and the 1D channel. Such
models are broadly referred to as waveguide QED models.
Since we are interested in the scattering processes with a sin-
gle photon coming in and a single photon going out, it suffices
to use a non-Hermitian effective quadratic Hamiltonian

H = H0 + V, (1a)

H0 =
∫ +∞

−∞
dk ε(k)C†(k)C(k) +

N∑
i, j=1

KR
i jb

†
i b j, (1b)

V =
∫ +∞

−∞
dk

[
N∑

i=1

Vi(k)C(k)b†
i + H.c.

]
, (1c)

where the bare Hamiltonian H0 consists of the freely prop-
agating particles, while the interacting emitters are indexed
by i = 1, 2, . . . , N . V describes the quadratic interaction be-
tween the particles and the emitters. Through controlling the
lattice structures of the photonic crystal waveguide, the rate
at which the density of states diverges at a particular energy
can be fine-tuned. Since we are discussing single-particle scat-
tering with bounded-strength interactions, only local spectral
properties of the dispersion relation matter, and our results
are insensitive to the detailed behavior of the dispersion far
away from the threshold energy. In this paper, we focus on
the dispersion relation ε(k) = σ |d|km, where σ = ±1, |d| is
a positive constant, and m is a positive integer. The case of
m = 1 corresponds to a linear dispersion relation and has a
nonuniversal scattering matrix in the limit of zero energy.1

1Note, for dispersions relations in 1D of the form ε(k) = |k|a,
the S matrix obtains a universal value for any positive real a (See
Appendix D). These nonanalytic dispersion relations have a trivial

For this reason, we assume m � 2 in the discussion below.
When σ = ±1 and m is even, ε(k) can be understood as the
lowest-order approximation of a dispersion relation around its
local minima/maxima, after a change of reference points for
both energy and momentum. Depending on whether we are
considering bosons scattered by bosonic emitters or fermions
scattered by fermionic emitters, we have either commuta-
tion or anticommutation relations: [C(k),C†(k′)]± = δ(k −
k′), [bi, b†

j]± = δi j . KR
i j represents the matrix element of the

N × N matrix KR; KR is the only non-Hermitian term in the
Hamiltonian: the Hermitian A and anti-Hermitian iB com-
ponents of KR = A + iB represent, respectively, the coherent
and incoherent interactions among the emitters. KR is dissipa-
tive when B is nonpositive and nonzero.

For convenience, we introduce a vector function |vk〉 =
[V1(k), . . . ,VN (k)]T , with corresponding basis states given by
the emitter excitations {b†

1 |0, g〉 , . . . , b†
N |0, g〉}, where |0, g〉

is the ground state with zero excitation. In the most generic
scenario, Vi(k) for different emitters are independent of each
other. Here, we consider the case where |vk〉 can be written as
|vk〉 = V (k) |u〉.2 One configuration that satisfies this condi-
tion is when the emitters are located at the same z coordinate
along the 1D photonic crystal wave guide.

We further assume V (k) is continuous at 0 and V (0) �= 0.
Under this constraint, the only relevant vector around k = 0 is
|u〉, and effectively, there is only a single relevant “degree of
freedom” in the emitter vector space at k = 0. We then show
that the zero-energy scattering behavior for multiple emitters
can be reduced to the behavior for N = 1. As a result, we are
able to obtain a complete classification of the universal low-
energy scattering behavior in these models.

III. UNIVERSAL SCATTERING

We start with a discussion that applies to the case of general
|vk〉. The S matrix for a single particle is defined through the
incoming and outgoing scattering eigenstates |ψ±

k 〉, where the
superscript ± specifies the boundary conditions of the scat-
tering states. The S matrix element from one single-particle
scattering state k to another k′ is S (k, k′) = 〈ψ−

k′ |ψ+
k 〉. To

explain the universal behavior of the S matrix, it is useful to
write down its relation to the on-shell T matrix:

S (k, k′) = δ(k−k′) − 2π iδ[ε(k)−ε(k′)]T (E +i0+, k, k′),
(2)

where 0+/0− represents an infinitesimal positive/negative
real number and E = ε(k). For dispersion relation ε(k) =
σ |d|km with even m, there are two degenerate momenta
k1(E ), k2(E ) corresponding to any energy E > 0 (E < 0)
for σ = +1 (σ = −1). We can define a 2 × 2 matrix S(E )
by picking out the scattering amplitudes between degenerate

universal limit for the S matrix when a � 1. For a > 1, they have
similar universal behavior of the S matrix as the positive even integer
m cases of ε(k) = σ |d|km studied in the main text.

2It can be easily shown that the same universal scattering results
hold if |vk〉 can be written as |vk〉 = V (k) |u〉 + o[k(m−1)/2].
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momenta:

Sαβ (E ) = δαβ − 2π i
T [E +i0+, kα (E ), kβ (E )]√|ε′[kα (E )]ε′[kβ (E )]| , (3)

where α, β ∈ {1, 2} and the prefactor |ε′[kα (E )]ε′[kβ (E )]|−1/2

comes from δ[ε(k) − ε(k′)] in Eq. (2). When m is odd, we
can define S(E ) = S(E ) as a single complex number, given
by Eq. (3) when kα (E ) = kβ (E ) = k(E ) is the momentum
corresponding to energy E . If the Hamiltonian is Hermitian,
S(E ) is unitary.

In 1D scattering, the matrix S(E ) directly describes the
transmission and reflection between degenerate momenta
and is often used instead of the function S (k, k′). When
E → 0, |ε′[kα (E )]ε′[kβ (E )]|−1/2 diverges. Since |Sαβ (E )| �
1, T (E + i0, kα, kβ ) in Eq. (3) must approach zero to cancel
the divergence, which is the key behind the universal behavior
of S(E ).

To proceed further, we note that the Lippmann-Schwinger
equations for this emitter scattering model have a sim-
ple analytic structure. As a result, we can write down the
single-particle T matrix T (ω, k, k′) in terms of the Green’s
function of the emitters G(ω), which is a finite-dimensional
matrix [47]:

T (ω, k, k′) = 〈vk′ |G(ω)|vk〉, (4a)

G(ω) = 1

ω1N − KR − K(ω)
, (4b)

K(ω) =
∫ +∞

−∞
dk

|vk〉〈vk|
ω − ε(k)

, (4c)

where 1N is an N × N identity matrix. Equations (4a)–(4c)
hold for general photon-emitter couplings where Vi(k) are
independent functions for different emitters. There are two
mathematical conditions on Vi(k) that are necessary for the
integral in Eq. (4c) to be well-defined at any complex ω �= 0
outside the continuum spectrum.3 First, we require that Vi(k)
is a locally square-integrable complex function on the real
line. Second, to ensure that no ultraviolet divergences are
present in the model, we impose a restriction on the large-k
behavior of Vi(k): when k → ±∞, there exists γ > 1 such
that |Vi(k)|2 = o(|k|m−γ ). Each element of the N × N matrix
K(ω) is an analytic function on the complex plane with a
branch cut along the continuum spectrum. K(ω = E + i0+)
can be understood as describing effective interactions between
emitters induced by the 1D channel.

In the following, we restrict ourselves to the class of in-
teractions |vk〉 = V (k) |u〉 specified earlier. To understand the
properties of T (E + i0) close to E = 0, we need to understand
the behavior of K(ω) around ω = 0. We can show that the
value of K(ω) around ω = 0 is decided by the dispersion
relation and |vk=0〉 = V (0) |u〉. Define L(ω) as the integral
over the free-particle propagator:

L(ω) =
∫ +∞

−∞
dk

1

ω − ε(k)
. (5)

3In emitter scattering, it is natural to define the continuum spectrum
to not include 0.

We see that, when ω → 0, L(ω)−1 1
ω−ε(k) as a function of k

diverges at k = 0 and vanishes everywhere else. In addition,∫ +∞
−∞ dk L(ω)−1 1

ω−ε(k) = 1 by definition of L(ω). Hence, it
follows from a standard result in functional analysis attributed
to Toeplitz [48] that limω→0 L(ω)−1 1

ω−ε(k) = δ(k). Using the
condition that |vk〉 = V (k) |u〉 is continuous at k = 0 and the
definition of K(ω) in Eq. (4c), we have

lim
ω→0

L−1(ω)K(ω) = |V (0)|2 |u〉 〈u| . (6)

When the emitter region consists of a single site, KR = KR is a
complex number and Eq. (6) becomes limω→0 L−1(ω)K(ω) =
|V (0)|2. Using Eqs. (4a) and (4b), we then have

lim
ω→0

L(ω)T (ω, k, k′) = −V ∗(k′)V (k)

|V (0)|2 , (7)

which is no longer dependent on KR because
limω→0 L−1(ω)KR = 0. Although Eq. (7) is derived for
the case of N = 1, we show through a rigorous mathematical
analysis in Appendix B that Eq. (7) holds as long as the
Hamiltonian does not support a “bright” zero-energy
eigenstate, defined as a zero-energy eigenstate that has a
nonzero emitter and photonic amplitude. A bright zero-energy
eigenstate corresponds to an effective “transition state” when
a new bound state emerges or disappears upon the continuous
tuning of parameters. Its presence indicates that the system
is at a critical condition where there is no energy scale
to compare with when the limit E → 0 is taken, and the
universal scattering results no longer hold. These bright states
are distinguished from “dark” states that have only a nonzero
photonic amplitude and rather generically arise at zero-energy
in these models. The proof of Eq. (7) for N > 1 is the main
technical result of this paper as it underlies both the universal
scattering results and our proof of Levinson’s theorem.

When we evaluate the S matrix in the limit E → 0 using
Eq. (3), kα (E ), kβ (E ) in the T matrix are both sent to 0. Using
Eq. (7) and the condition that V (k) is continuous at k = 0, we
have

lim
E→0

L(E + i0+)T [E + i0+, kα (E ), kβ (E )] = −1, (8)

which shows that the on-shell T matrix in the zero-energy
limit is independent of the details of the interaction and fully
determined by the dispersion relation; this is the reason be-
hind the universal limit of the S matrix when E → 0. In
Appendix A, we evaluate Eq. (5) and obtain the m-dependent
value of L(ω):

L(ω) = −π iκmρ(|ω|) exp

(
−iθ

m − 1

m

)
, (9)

where the complex frequency ω is parameterized in polar co-
ordinates as ω = σ exp(iθ )|ω|, and ρ(|ω|) = 2

m|d|1/m |ω|−1+1/m

corresponds to the density of states at energy E = |ω|. For
even m, κm = 2

1−μ2 with μ = exp(iπ/m), while L(ω) has a
branch cut along the continuum spectrum (0,+∞) for σ =
+1 or (−∞, 0) for σ = −1. For odd m, κm = − 1

μ−1 for

θ ∈ (0, π ) and κm = − 1
μ(μ−1) for θ ∈ (π, 2π ), while L(ω) has

a branch cut along the real line. For both even and odd m,
L(ω) diverges at the rate of density of states ρ(|ω|) when ω

approaches 0.
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FIG. 1. Illustration of 1D scattering (z is a spatial coordinate)
near zero energy for dispersion relation ε(E ) = σ |d|km with σ =
±1. (a) is for odd m, where the scattering matrix is a single transmis-
sion coefficient dependent on m and the sign of energy is E = 0±.
(b) is for even m, where the scattering matrix is a 2 × 2 matrix.
The eigenstates of the scattering matrix are the symmetric and an-
tisymmetric incoming states, with eigenphases exp(2π iσ/m) and 1,
respectively.

Now, we are ready to evaluate the limit of the S matrix at
zero energy. When m is odd, energy E can approach 0 from
both above and below: E → 0±. When m is even, E can only
approach 0 from one side: E → 0+ when σ = +1 or E → 0−
when σ = −1. Taking the limit E → 0± in Eq. (3) for the
respective cases properly, we have

lim
E→0±

Sαβ (E ) = δαβ + lim
E→0±

2π iρ(|E |)L−1(E + i0+), (10)

where we have used Eq. (8) and the observation that
limE→0 |ε′(kα (E ))ε′(kβ (E ))|1/2ρ(E ) = 1. Using Eqs. (9)
and (10), we find for odd m

lim
E→0±

S(E ) = exp(±π i/m), (11)

as illustrated in Fig. 1(a). For even m, we find that the S matrix

lim
E→σ0+

S(E ) = exp(σ iπ/m)

[
cos(π/m) σ i sin(π/m)

σ i sin(π/m) cos(π/m)

]
,

(12)

is symmetric in the basis of degenerate momenta {|k1 =
0+〉, |k2 = 0−〉}. The symmetric eigenstate |ψs〉 = 1√

2
(1, 1)T

has an eigenphase exp(iπσ/m), while the antisymmetric
eigenstate |ψa〉 = 1√

2
(1,−1)T has a trivial eigenphase 1.

The scattering of the symmetric and antisymmetric incoming
states near zero energy is illustrated in Fig. 1(b). For quadratic
dispersion ε(k) = |d|k2, we recover the well-known total
reflection:

lim
E→0+

S(E ) =
[

0 −1
−1 0

]
. (13)

The relation between the universal behavior of the S ma-
trix and divergent density of states also applies to general
dimensions and other types of interactions. In Appendix D, we

generalize Eqs. (11) and (12) to arbitrary integer dimension
D � 1 and dispersion relations ε(k) = |k|a, where a > 0 is
not required to be an integer. In these cases, we demonstrate
that the S matrix reaches a universal limit dependent only on
a/D. In Appendix E, we generalize our results to separable
potential scattering.

IV. LEVINSON’S THEOREM

Levinson’s theorem relates the quantized scattering phase
to the number of bound states in the system. In the literature,
the theorem has been discussed in various Hermitian systems
and various dimensions [35–45], where the dispersion relation
close to the scattering threshold is always quadratic. In our
recent work, we generalized Levinson’s theorem to 1D emitter
scattering, where dissipation is present and the dispersion rela-
tion is linear at all k [49]. In that case, there is no well-defined
scattering threshold. When we consider dispersion relations
ε(k) = σ |d|km with the class of photon-emitter couplings
|vk〉 = V (k) |u〉, the S matrix can take different universal lim-
its at zero energy, dependent on the value of the integer
m � 2 [see Eqs. (11) and (12)]. This leads to a modification
to Levinson’s theorem, as we illustrate in the remainder of
this paper. For simplicity, we assume that there are no bright
zero-energy eigenstates and no bound states in the continuum
in the system. Before discussing general m, we summarize the
theorem for quadratic (m = 2) and linear (m = 1) dispersion
relations. When energy E is increased from the lower end of
the continuum spectrum Emin (which can be −∞) to the upper
end Emax (which can be +∞), det[S(E )] traces a trajectory in
the complex plane. In the case of ε(k) = k, the S matrix is
an identity matrix at both ends of the continuum spectrum.
The trajectory of det[S(E )] in these cases forms a closed
loop starting and ending at 1, as illustrated in Fig. 2(a). For
illustration purposes, we assume that the system is dissipative,
so the trajectory is not confined to the unit circle.

Levinson’s theorem states that the winding number of this
loop around the origin is equal to the decrease in the number
of bound states �NB after the interaction is turned on [37,39].
For emitter scattering, the number of bound states for the bare
Hamiltonian H0 is equal to the number of emitters N ; hence,
�NB = N − NB, where NB is the number of bound states for
the full Hamiltonian [49]. If we define the scattering phase
δ(E ) of det[S(E )] ≡ | det[S(E )]| exp(2iδ(E )) as a continuous
function of E ,4 the theorem can be stated as �δ ≡ δ(Emax) −
δ(Emin) = π�NB. For a quadratic dispersion relation ε(k) =
k2, the trajectory of det[S(E )] starts at limE→0 det[S(E )] =
−1 and ends at limE→+∞ det[S(E )] = 1, as illustrated in
Fig. 2(b). As compared to the closed-loop case of Fig. 2(a),
Levinson’s theorem is modified to �δ = π�NB + π/2 5.

Next, we give our results on Levinson’s theorem for emit-
ter scattering with dispersion relation ε(k) = σ |d|km with

4For dissipative systems, we assume that det[S(E )] �= 0 for any E
within the continuum spectrum

5For potential scattering, see Levinson’s theorem for quadratic dis-
persion relation in 1D in Ref. [44]. For emitter scattering, Levinson’s
theorem for quadratic dispersion relation is, to our knowledge, first
presented in this paper.
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FIG. 2. Illustrations of the trajectories of det[S(E )] of a dissi-
pative system in the complex plane when E is increased from Emin

to Emax for (a) ε(k) = ±|d|k, where the trajectory starts and ends
at 1. (b) ε = |d|k2, where the trajectory starts at −1 and ends at 1.
(c) ε = |d|k6, where the trajectory starts at exp(iπ/3) and ends at 1.
(d) ε = ±|d|k5, where the trajectory for E ∈ (−∞, 0) (solid yellow)
starts at 1 and ends at S(0−) = exp(iπ/5), while the trajectory for
E ∈ (0,+∞) (solid black) starts at S(0+) = exp(iπ/5) and ends at
1.

σ = ±1 and photon-emitter couplings |vk〉 = V (k) |u〉. First,
consider the case of even m. When σ = +1, the trajec-
tory of det[S(E )] starts at limE→0+ det[S(E )] = exp(2π i/m)
[see Eq. (12)] and ends at limE→+∞ det[S(E )] = 1, as
illustrated in Fig. 2(c) for m = 6. When σ = −1, the trajec-
tory of det[S(E )] starts at limE→−∞ det[S(E )] = 1 and ends
at limE→0− det[S(E )] = exp(−2π i/m). In Appendix C, we
prove that, for both cases,

�δ = π (N − NB) + π
m − 1

m
. (14)

When m is odd, the continuum spectrum is (−∞, 0) ∪
(0,+∞), and the trajectory of S(E ) is discontinuous across
0, as illustrated in Fig. 2(d). When E increases from −∞ to
0, the trajectory starts from 1 and ends at exp(−iπ/m) [see
Eq. (11)]. When E increases from 0 to +∞, the trajectory
starts at exp(+iπ/m) and ends at 1. If we define �δ as the sum
of the winding phases of the two continuous trajectories, �δ

satisfies Eq. (14), as we show in Appendix C. In Appendix E,
we extend Eq. (14) to general integer dimensions D � 1 and
dispersion relations ε(k) = |k|a, a > 0. The generalization to
separable potential scattering is given in Appendix D.

V. OUTLOOK

In this paper, we have illustrated how a divergent density
of states results in a wide variety of universal scattering be-
haviors. An immediate next step is to generalize our results to
arbitrary photon-emitter interactions and nonseparable short-
range potentials. Although our results rigorously apply only
in the zero-energy limit, our work establishes the foundation
for the development of a universal low-energy theory for gen-
eral dispersion relations. The universal limit at zero energy
serves as a fixed point for the low-energy expansion of the
scattering matrix to be conducted, from which effective field
theories can be developed systematically. Similar to the case
of quadratic dispersion relations, we expect the scattering to
be primarily determined by the scattering length when the de
Broglie wavelengths of the particles are large compared to the
range of the interaction. It will be interesting to explore how
other well-studied problems for massive particles—such as
Efimov physics [2–4], renormalization for the effective field
theory [50,51], and the N-body scale [52]—are modified in
the presence of these more general dispersion relations.

Our work also motivates new directions in many-body
physics. The fact that bosons with quadratic dispersion rela-
tions form a Tonks-Girardeau gas at low-temperature in 1D
and a Bose-Einstein condensate in 3D is closely related to the
different behaviors of two-body scattering at the scattering
threshold (total reflection vs. no interaction). Our discovery
of new nontrivial universal behaviors of the S matrix may
lead to predictions of new phases of dilute gases for systems
with a divergent density of states. Furthermore, it remains
an outstanding challenge to describe emitter scattering when
both dissipation and coherent driving are present.
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APPENDIX A: CALCULATION OF L(ω)

In this section, we derive the expression for L(ω) in Eq. (9).
We start with the definition of L(ω) in Eq. (5):

L(ω) =
∫ +∞

−∞
dk

1

ω − ε(k)
. (A1)

The dispersion relation is given by ε(k) = σ |d|km, where σ =
±1 and m � 2 is a positive integer. To compute the integral,
we close the integration contour in the upper half 6 of the

6Closing the contour in the lower half of the complex plane would
give the same answer.
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TABLE I. The set A and the value of κm = ∑
j∈A(−μ)2 j for both

odd and even m.

A κm ≡ ∑
j∈A(−μ)2 j

θ ∈ (0, π ) (0, 1, 2, . . . , m−1
2 ) − 1

μ−1

Odd m θ ∈ (π, 2π ) (0, 1, 2, . . . , m−3
2 ) − 1

(μ−1)μ

Even m θ ∈ (0, 2π ) (0, 1, 2, . . . , , m−2
2 ) 2

1−μ2

complex plane and apply the residue theorem:

L(ω) = −2π i
∑

Im[y j ]>0

ε′(y j )
−1, (A2)

where the complex numbers yi satisfy ε(y j ) = σ |d|ym
i = ω

and Im[y j] > 0. Given the parametrization of ω in
polar coordinates as ω = σ exp(iθ )|d|pm, we have
y j = exp(iθ/m)pμ2 j , where μ = exp(iπ/m) and j ∈
{0, 1, . . . , m − 1}. Define A as the set of j for which y j

is above the real line. Equation (A2) can then be expressed as

L(ω) = −2π i
∑
j∈A

1

m|d|ym−1
j

= −π i
2

m|d|pm−1
exp

(
−iθ

m − 1

m

) ∑
j∈A

(−μ)2 j, (A3)

where the set A and the value of κm ≡ ∑
j∈A(−μ)2 j are given

in Table I for both odd and even m. Note that the prefactor
2

m|d|pm−1 in Eq. (A3) is equal to the density of states ρ(|ω|) =
2

m|d|1/m |ω|−1+1/m. Hence, we have proved that L(ω) is given by
Eq. (9).

APPENDIX B: EMITTER SCATTERING

In this section, we prove that if there exists no bright zero-
energy eigenstate, Eq. (7) holds for the class of models where
|vk〉 = V (k) |u〉, even when N � 2. Before diving into the
proof, we give the definition of bright zero-energy eigenstates
and give a physical explanation as to why our universality
results require their absence.

Due to the multicomponent nature of our emitter scattering
problems, we find it necessary to categorize all eigenstates
of the Hamiltonian into bright, dark, and emitter eigenstates.
Bright eigenstates have a nonzero photon and emitter wave
function, while dark eigenstates have only a nonzero photonic
amplitude, and emitter eigenstates have only a nonzero emitter
amplitude. With this terminology established, we now give an
overview of the properties of the different types of eigenstates
at zero energy.

The zero-energy emitter states correspond to the null vec-
tors of KR that are orthogonal to |vk〉 = V (k) |u〉. They are
decoupled from the photon channel, hence their existence has
no impact on the universal behavior of the S matrix. When
|vk=0〉 �= 0, there exists no zero-energy dark state that does
not blow up at the infinities.

Bright states at zero-energy are fine-tuned and have a
constant photon wave function in space. As we show below,
these states come into existence precisely when the univer-
sal scattering behavior fails. To give a heuristic explanation

for why universal scattering at zero energy fails at these
fine-tuned parameters, we consider the classic model of 1D
potential scattering with quadratic dispersion relation (m =
2), i.e., a 1D quantum mechanical problem described by the
Schrödinger equation

−d2ψ (z)

dz2
+ V (z)ψ (z) = Eψ (z), (B1)

where we set the mass equal to 1/2. A particle being scattered
off a generic, short-range potential V (z) would experience a
total reflection in the limit E → 0, similarly to what happens
in our 1D emitter scattering models. Another feature of these
1D potential scattering problems is that there exists a fine-
tuned, critical regime when the scattering in the limit E → 0
becomes total transmission instead of total reflection. This
occurs when there is a zero-energy eigenstate and there is
no energy scale to compare with when the limit E → 0 is
taken. The zero-energy eigenstate can be understood as the
effective “transition state” when a new bound state emerges
or disappears upon the continuous tuning of parameters.

Similarly, in our emitter scattering models, the universal
scattering behavior that takes place for generic parameters
would fail at certain fine-tuned parameters. An important
difference to note is that, unlike in potential scattering, not
all zero-energy eigenstates in emitter scattering are associ-
ated with the critical regime where the universal scattering
behavior fails. For the particular type of interactions |vk〉 being
considered in this paper, we discover that the critical regime
can be associated with the existence of a particular type of
eigenstates at zero energy, which we call bright zero-energy
states (defined above).

In order to state our goal more explicitly, we rewrite
the Hamiltonian given by Eq. (1) in the single-excitation
manifold:

H (1) =
∫ +∞

−∞
dk ε(k)C†(k)C(k) + KR

+
∫ +∞

−∞
dk[C†(k)V ∗(k) 〈u| + C(k)V (k) |u〉], (B2)

where we have used the matrix representation KR to replace∑N
i, j=1 KR

i jb
†
i b j and the vector |vk〉 = V (k) |u〉 to replace the

emitter creation operators
∑N

i=1 Vi(k)b†
i . Our goal in this sec-

tion is to prove the following theorem:
Theorem 1. Suppose V (k) is a locally square-integrable

function continuous at k = 0 and V (k = 0) �= 0. When k →
±∞, |V (k)|2 = o(km−γ ) for some γ > 1. Consider the class
of emitter interactions |vk〉 = V (k) |u〉, where |u〉 is a unit
vector. The single-particle T matrix given by Eqs. (4) reads

T (ω, k, k′) = V ∗(k′)V (k)〈u| 1

ω1N − KR − K(ω)
|u〉, (B3)

K(ω) = |u〉〈u|K (ω), K (ω) ≡
∫ +∞

−∞
dk

|V (k)|2
ω − ε(k)

. (B4)

When H (1) in Eq. (B2) has no bright zero-energy eigenstates,
Eq. (7) holds, namely,

lim
ω→0

L(ω)T (ω, k, k′) = −V ∗(k′)V (k)

|V (0)|2 . (B5)
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Note that T (ω, k, k′) and K(ω) are defined for ω outside the
continuum spectrum, hence the limit ω → 0 is taken in any
direction except from within the continuum spectrum.

Proof. Our proof consists of two lemmas linked by a con-
dition on KR. The idea of the proof is that the absence of bright
zero-energy eigenstates can be translated into a condition on
KR, which turns out to be necessary for the proof of Eq. (B5).

Choose an orthonormal basis {|u1〉, |u2〉, . . . , |uN 〉} for the
single-emitter Hilbert space, where |u1〉 ≡ |u〉 is the first vec-
tor in this new basis. The link between the two lemmas is the
submatrix KR

�11 constructed from deleting the first row and first
column of KR; KR

�11
can be considered as an operator on the

emitter-excitation subspace {|u2〉, . . . , |uN 〉} orthogonal to |u〉.
In lemma 1, we prove that Eq. (B5) holds if any null vector of
KR
�11

also corresponds to the null vector of KR. In lemma 2, we
prove that the condition lemma 1 relies on is guaranteed by
the absence of bright zero-energy eigenstates. Combining the
two lemmas completes the proof of theorem 1.

Lemma 1. If any null vector of KR
�11

also corresponds to the
null vector of KR, Eq. (B5) follows.

Proof. Using Eq. (B3), the left-hand side (l.h.s.) of
Eq. (B5) can be written as

lim
ω→0

L(ω)T (ω, k, k′) = V ∗(k′)V (k) lim
ω→0

L(ω) 〈u| H (ω)−1 |u〉 ,

(B6)

where H (ω) ≡ ω1N − KR − K(ω). Hence, our goal,
Eq. (B5), is equivalent to

lim
ω→0

L(ω) 〈u| H (ω)−1 |u〉 = − 1

|V (0)|2 . (B7)

In the new basis where |u1〉 = |u〉 is the first basis vector,
〈u| H (ω)−1 |u〉 is the (1,1) matrix element of the inverse of
H (ω), and can be computed from the (N − 1) × (N − 1) sub-
matrix H�11(ω) constructed from deleting the first row and first
column of H (ω):

〈u| H (ω)−1 |u〉 = det[H�11(ω)]

det[H (ω)]
. (B8)

Using K(ω) = |u〉〈u|K (ω), we have

det(H�11(ω)) = det
(
ω1N−1 − KR

�11

)
, (B9a)

det(H (ω)) = −K (ω) det
(
ω1N−1 − KR

�11

) + det(ω1N − KR).

(B9b)

Combining Eqs. (B8), (B9a), and (B9b), the l.h.s. of
Eq. (B7) becomes

lim
ω→0

L(ω) 〈u| H (ω)−1 |u〉

= lim
ω→0

L(ω)

[
−K (ω) + det(ω1N − KR)

det
(
ω1N−1 − KR

�11

)
]−1

. (B10)

Let us label the N roots of the characteristic polynomial of
KR by Ei for i = 1, . . . , N , and the N − 1 roots of the charac-
teristic polynomial of KR

�11
by Ēi for i = 1, . . . , N − 1. Ei and

Ēi correspond to the eigenvalues of KR and KR
�11, respectively,

where any eigenvalue with multiplicity n � 2 is assigned to n

different indices. We have

lim
ω→0

det(ω1N − KR)

det
(
ω1N−1 − KR

�11

) = lim
ω→0

∏N
i=1(ω − Ei )∏N−1
i=1 (ω − Ēi )

. (B11)

Since any null vector of KR
�11 corresponds to a null vector of

KR by the assumption of the lemma, if KR has null vectors, its
zero-eigenvalue multiplicity must be greater or equal to that
of K�11. Hence, the limit in Eq. (B11) is finite.

In the main text, we have introduced the identity
limω→0 L−1(ω) 1

ω−ε(k) = δ(k); hence limω→0 L−1(ω)K (ω) =
|V (0)|2 �= 0 and Eq. (B10) leads to Eq. (B7). The proof of
lemma 1 is complete.

If we can prove that the absence of bright zero-energy
eigenstates of Eq. (B2) guarantees that any null vector of KR

�11
also corresponds to the null vector of KR, Eq. (B5) would
immediately follow from lemma 1. To do this, we prove the
contrapositive statement in the following lemma:

Lemma 2. When there exists a vector |e0〉 = ∑N
i=2 ei |ui〉

orthogonal to |u〉, such that KR |e0〉 �= 0 and KR
�11 |e0〉 = 0, then

there exists a bright zero-energy eigenstate of the Hamiltonian
in Eq. (B2).

Proof. We plan to write down an ansatz with a nonzero
photon and emitter wave function and verify that it is a zero-
energy eigenstate of the Hamiltonian in Eq. (B2). The ansatz
we propose is the following:

|ψ0〉 =
∫ +∞

−∞
dz ψ0(z)C†(z) |0, g〉 + |e0〉 , (B12a)

ψ0(z) = −V (0)−1 〈u|KR|e0〉 , (B12b)

where the photon wave function ψ0(z) in the coordinate space
is a constant function. By definition, |e0〉 is orthogonal to |u〉.
Because KR |e0〉 �= 0 and KR

�11 |e0〉 = 0, KR |e0〉 is a nonzero
vector proportional to |u〉. Hence, ψ0(z) �= 0.

Our goal is to prove that the ansatz given by Eq. (B12)
is the zero-energy eigenstate of the Hamiltonian in Eq. (B2).
Applying H (1) in Eq. (B2) to the Fourier transform of the
ansatz in Eq. (B12), we get

H (1) |ψ0〉

=
∫ +∞

−∞
dk ε(k)ψ0(k)C†(k) |0, g〉

+
∫ +∞

−∞
dk [V ∗(k) 〈u|e0〉C†(k) |0, g〉 + ψ0(k)V (k) |u〉]

+ KR |e0〉 , (B13)

where the momentum-space photon wave function
ψ0(k) = −V (0)−1 〈u|KR|e0〉 δ(k) is the Fourier transform of
Eq. (B12b). Since the dispersion relation satisfies ε(0) = 0,
the first term on the right-hand side (r.h.s.) of Eq. (B13) is
zero:

∫ +∞
−∞ dk ε(k)ψ0(k)C†(k) |0, g〉 = 0. Because 〈u|e0〉 = 0,

the second term on the r.h.s. of Eq. (B13) is also equal to 0.
The third term∫ +∞

−∞
dk ψ0(k)V (k) |u〉 = − |u〉 〈u| KR |e0〉 (B14)
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cancels with the fourth term KR |e0〉 on the r.h.s. of Eq. (B13)
because KR |e0〉 is proportional to |u〉. Therefore H (1) |ψ0〉 =
0, and this is the end of the proof for lemma 2.

Combining lemmas 1 and 2, we can obtain theorem 1.

APPENDIX C: LEVINSON’S THEOREM

In this section, we prove Levinson’s theorem for the
class of emitter scattering models with |vk〉 = V (k) |u〉, i.e.,
Eq. (14) in the main text. Let us restate the objective of our
proof in the following theorem:

Theorem 2. Denote the continuum spectrum by Rc. We as-
sume that there are no bound states in the continuum or bright
zero-energy eigenstates in the system. For dissipative systems,
we assume that det[S(E )] �= 0 for E ∈ Rc. The winding phase
�δ of det[S(E )] around the origin is defined as

2�δ = −i
∫
Rc

dE
∂E det[S(E )]

det[S(E )]
. (C1)

Suppose |vk〉 = V (k) |u〉 satisfies the properties listed in
theorem 1 and the dispersion relation is given by ε(k) =
σ |d|km, where σ = ±1 and m � 2 is an integer. We have

�δ = π (N − NB) + π
m − 1

m
, (C2)

where N is the number of emitters and NB is the number of
bound states.

The main idea of the proof is to define an analytic contin-
uation of det[S(E )] to the complex plane and observe the fact
that the bound state energies are the poles of this function.
The proof is similar to our previous work [49], where we
proved Levinson’s theorem for photon-emitter models with
linear dispersion relations.

In preparation for the proof of theorem 2, we introduce
theorem 3, where we propose an analytic function s(ω) that is
equal to the analytic continuation of det[S(E )] to the complex
plane. Though introduced here as a tool for proving theorem 2,
theorem 3 provides a quick method to compute det[S(E )]
using KR and K(E + i0±) and is an important theorem itself.
We comment that the range of application of theorem 3 is well
beyond the class of photon-emitter models discussed in this
paper: it can be applied to general photon-emitter interactions
|vk〉 and other dispersion relations beyond ε(k) = ±|d|km.

Theorem 3. Define J (ω) = det[ω1N − KR − K(ω)] as a
function on the complement of the continuum spectrum Rc

in the complex plane. For the values of ω s.t. J (ω) �= 0, we
can define s(ω) = J (ω∗ )

J (ω) . When E is not equal to the energy of
a bound state in the continuum,

s(E + i0+) = det[S(E )]. (C3)

We comment that the bound state energies EB correspond
to the poles of the emitter propagator G(ω) = [ω1N − KR −
K(ω)]−1, hence they satisfy J (EB) = 0.

Proof. Let n(E ) denote the momentum degeneracy at en-
ergy E and k1, . . . , kn(E ) the degenerate momenta at energy E .
When ε(k) = ±|d|km and E ∈ Rc, n(E ) = 1 for odd m and
n(E ) = 2 for even m. According to Eqs. (3) and (4), the S
matrix S(E ) is a n(E ) × n(E ) matrix, whose matrix elements

are given by

Sαβ (E ) = δαβ − 2π i√|ε′(kα (E ))ε′(kβ (E ))|
× 〈vkβ (E )|G(E + i0+)|vkα (E )〉 , (C4)

where α, β ∈ {1, 2, . . . , n(E )}.
Note that in writing down Eq. (C4), we have implic-

itly assumed that the limit G(E + i0+) ≡ limη→0+ G(E + iη)
exists. However, if Ec1N − KR − K(Ec + i0+) has a zero
eigenvalue for some energy Ec ∈ Rc, G(Ec + iη) does not
have a limit when η → 0+ and Ec corresponds to the energy
of a bound state in the continuum. This is why the theorem
only applies to E �= Ec.

Construct A as a N × n(E ) matrix and A† its Hermitian
conjugate:

A =
[

1√|ε′(k1 )| |vk1〉, . . . 1√
|ε′(kn(E ) )|

|vkn(E )〉
]
, (C5)

then the n(E ) × n(E ) matrix S(E ) for E �= Ec can be written
as

S(E ) = 1n(E ) − 2π iA†G(E + i0+)A, (C6)

where 1n(E ) is an identity matrix of dimension n(E ).
Using the definitions of s(ω), J (ω) and the properties of

determinant, we have

s(E + i0+)

= det {1N + [K(E + i0+) − K(E + i0−)]G(E + i0+)},
(C7)

where K(E + i0+) − K(E + i0−) can be rewritten as

K(E + i0+) − K(E + i0−)

=
∫ +∞

−∞
dk |vk〉〈vk|

[
1

E + i0+ − ε(k)
− 1

E − i0− − ε(k)

]

= −
∫ +∞

−∞
dk |vk〉〈vk|2π iδ(E − ε(k)),

= −2π i
n(E )∑
α=1

1

|ε′(kα )| |vkα
〉〈vkα

| = −2π iAA†. (C8)

Inserting Eq. (C8) into Eq. (C7), we get

s(E + i0+) = det[1N − 2π iAA†G(E + i0+)]. (C9)

According to a standard result in linear algebra known as the
extension of the matrix determinant lemma, given an invert-
ible N × N matrix −2π iG(E + i0) and a N × n(E ) matrix A,

det[1N − 2π iAA†G(E + i0+)]

= det[1n(E ) − 2π iA†G(E + i0+)A]. (C10)

Using Eqs. (C6) and (C9), we see that the l.h.s. and r.h.s. of
Eq. (C10) are equal to s(E + i0+) and det[S(E )], respectively.
This is the end of the proof for theorem 3.

We proceed to prove theorem 2 with the help of theorem 3.
Proof. (Theorem 2)
First consider ε(k) = |d|km with odd m, in which case the

continuum spectrum is Rc = (−∞, 0) ∪ (0,+∞). Since we
have assumed that there is no bound state in the continuum,
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FIG. 3. Illustration of the integration contours for the calculation
of the winding phase of det[S(E )]. (a) Contours for a dispersion
relation ε(k) = |d|km with odd m. (b) Contours for a dispersion
relation ε(k) = |d|km with even m. The density of states diverges
at the origin E = 0, marked by the red dot. The black lines represent
the continuum spectrum, while the yellow stars represent bound-state
energies. The dashed lines with arrows are the integration paths for
the evaluation of the winding number of det[S(E )]. The semicir-
cles (circles) are added to form closed integration contours so that
the residue theorem can be invoked. The red semicircles (circle)
go around the origin with an infinitesimal radius, while the black
semicircles (circle) have an infinite radius.

using theorem 3, we can replace det[S(E )] by J (E+i0− )
J (E+i0+ ) for E ∈

Rc and rewrite Eq. (C1) in terms of a contour integral in the
complex plane:

2�δ = −i
∫
Rc

dE

[
∂E J (E + i0−)

J (E + i0−)
− ∂E J (E + i0+)

J (E + i0+)

]

= −i
∫
R+

1 +R−
1 +R+

2 +R−
2

dω
∂ωJ (ω)

J (ω)
, (C11)

where E is a real coordinate, ω is a complex coordinate,
and the integration contours R±

1 and R±
2 are illustrated by

the dashed lines in Fig. 3(a). R±
2 and R±

1 represent the con-
tours just above/below the real line for E < 0 and E > 0,
respectively. We can obtain two closed integration contours
by adding a pair of semicircles C± with an infinitesimal radius
around 0 and a pair of semicircles S± with radius |ω| → ∞.
Equation (C11) can then be rewritten as

2�δ = − i
∮

dω
∂ωJ (ω)

J (ω)
+ i

∫
S++S−

dω
∂ωJ (ω)

J (ω)

+ i
∫
C++C−

dω
∂ωJ (ω)

J (ω)
, (C12)

where
∮

represents the sum of integrals over the two closed
contours. For odd m, J (ω) is analytic in the complement of the
real line in the complex plane. The poles of J−1(ω) correspond
to the bound state energies; they can only be located below the
real line given our assumption that there is no bound state in
the continuum. This also implies that when KR is Hermitian,
NB = 0. Applying the residue theorem, the closed contours
in the upper and lower half planes yield 0 and −2π iNB,
respectively. Hence,

−i
∮

dω
∂ωJ (ω)

J (ω)
= −2πNB. (C13)

Next, we evaluate the integrals along the small semicircles.
J (ω) is equal to det[H (ω)] in Eq. (B9b), which shows that
J (ω) ∼ K (ω) ∼ L(ω) when ω → 0. Intuitively, the winding
phases of J (ω) along C± are equal to the winding phases
of L(ω) along C±, which contribute to the term π m−1

m in
Eq. (C2). To demonstrate it rigorously, we write J (ω) as the
product of L(ω) and another function g(ω):

J (ω) = L(ω)g(ω),

g(ω) ≡ −L−1(ω)K (ω) det
(
ω1N−1 − KR

�11

)
+ L−1(ω) det(ω1N − KR). (C14)

This way the winding phases of J (ω) along C± can be evalu-
ated as the sum of the winding phases of g(ω) and L(ω):

i
∫
C±

dω
∂ωJ (ω)

J (ω)
= i

∫
C±

dω
∂ωL(ω)

L(ω)
+ i

∫
C±

dω
∂ωg(ω)

g(ω)
.

(C15)

Using Eqs. (A3), the winding number of L(ω) can be evalu-
ated explicitly in polar coordinates:

i
∫
C+

dω
∂ωL(ω)

L(ω)
= i lim

r→0

∫ π−

0+
dθ

∂θL(r, θ )

L(r, θ )

= i lim
r→0

∫ π−

0+
dθ − i(m − 1)/m

= π (m − 1)/m, (C16)

where
∫ π−

0+ dθ ≡ limθ1→0+,θ2→π−
∫ θ2

θ1
dθ . The integral along

C− can be evaluated similarly; and it has the same value as
the integral along C+.

Next, we argue that the winding phases of g(ω) along C±
are equal to 0. Note that the contour C+/C− is defined through
two limiting processes taken consecutively on an arc centered
at the origin of the complex plane. In the first limit, we fix
the radius of the arc and send both endpoints of the arc to
infinitesimal distances above/below the real line, so the arc
almost becomes a semicircle. In the second limit, the radius of
the arc is sent to 0. Because of this, we need to first examine
g(E + iη) when η → 0±, and then send E → 0.

Using Eq. (C14), we see that g(ω) is an analytic func-
tion in the complement of the real line on the complex
plane for odd m. Since limη→0± L−1(E + iη)K (E + iη) and
limη→0± L−1(E + iη) exist for E anywhere on the real line
R, limη→0± g(E + iη) ≡ g(E + i0±) exist for E ∈ R. Fur-
thermore, since limω→0 L−1(ω)K (ω) = |V (0)|2, g(E + i0±)
as functions of E ∈ R are continuous at E = 0.

The winding phase of g(ω) along C+ is equal to the phase
difference between g(−|E | + i0+) and g(|E | + i0+) in the
limit E → 0. Similarly, the winding phase of g(ω) along C−
is equal to the phase difference between g(|E | + i0−) and
g(−|E | + i0−) in the limit E → 0. Because of the continuity
of g(E + i0±) at E = 0, i

∫
C++C− dω

∂ωg(ω)
g(ω) = 0. Therefore

i
∫
C++C−

dω
∂ωJ (ω)

J (ω)
= i

∫
C++C−

dω
∂ωL(ω)

L(ω)

= 2π (m − 1)/m. (C17)
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At last, we evaluate the integral along the large semicircles,
which can be written in polar coordinates as

i
∫
S++S−

dω
∂ωJ (ω)

J (ω)

= i lim
r→∞

[∫ 0+

π−
dθ

∂θJ (r, θ )

J (r, θ )
+

∫ π+

2π−
dθ

∂θJ (r, θ )

J (r, θ )

]
. (C18)

Using Eq. (B9b), J (ω) can be written as

J (ω) = −K (ω)PN−1(ω) + PN (ω), (C19)

where PN−1(ω) ≡ det(ω1N−1 − KR
�11) and PN (ω) ≡

det(ω1N − KR) are polynomial functions of ω with degrees
N − 1 and N , respectively. From the definition of K (ω)
in Eq. (B4), we can see that lim|ω|→∞ K (ω) = 0, hence
J (ω) ∼ PN (ω) ∼ ωN when |ω| → ∞; and we expect that
the sum of the winding phases of J (ω) around the large
semicircles is equal to 2πN . In the following, we provide a
careful mathematical analysis to verify this intuitive result.

Taking the derivative of Eq. (C19) with respect to θ , we
have

∂θJ (r, θ ) = iω∂ωJ (ω)

= −iω∂ωK (ω)PN−1(ω) − iωK (ω)∂ωPN−1(ω)

+ iω∂ωPN (ω). (C20)

We can observe from Eq. (B4) that lim|ω|→∞ ∂ωK (ω) =
lim|ω|→∞ K (ω) = 0. In addition, lim|ω|→∞

PN−1(ω)
PN (ω) =

lim|ω|→∞
∂ωPN−1(ω)

PN (ω) = 0, hence

lim
r→∞

∂θJ (r, θ )

J (r, θ )
= lim

|ω|→∞
iω∂ωPN (ω)

PN (ω)
= iN (C21)

uniformly in θ ∈ (0, π ) ∪ (π, 2π ). Applying the dominated
convergence theorem, we can evaluate the r → ∞ limit of the
following definite integral as a function of the integration end
points θ1, θ2 ∈ (0, π ) [or θ1, θ2 ∈ (π, 2π )]:

i lim
r→∞

∫ θ2

θ1

dθ
∂θJ (r, θ )

J (r, θ )
= (θ1 − θ2)N. (C22)

The limit in Eq. (C22) is uniform in θ1, θ2 because the limit in
Eq. (C21) is uniform in θ . This implies that, when we evaluate
Eq. (C18), we can exchange the limit in r and the limits in the
integration end points:

i
∫
S+

dω
∂ωJ (ω)

J (ω)
≡ i lim

r→0
lim

θ1→π−
lim

θ2→0+

∫ θ2

θ1

dθ
∂θJ (r, θ )

J (r, θ )

= i lim
θ1→π−

lim
θ2→0+

lim
r→0

∫ θ2

θ1

dθ
∂θJ (r, θ )

J (r, θ )

= πN, (C23)

where we have used Eq. (C22) in evaluating Eq. (C23). The
integration along S− can be evaluated similarly, and it has the
same value as Eq. (C23); hence we get

i
∫
S++S−

dω
∂ωJ (ω)

J (ω)
= 2πN. (C24)

Combining Eqs. (C12), (C13), (C17), and (C24), we obtain
Eq. (C2) for the dispersion relation ε(k) = |d|km with odd

m. The case of ε(k) = −|d|km with odd m can be proved
identically once we replace E with −E .

Next, we discuss the case of ε(k) = |d|km with even m.
Similarly as in the case of odd m, the winding phase of
det[S(E )] can be evaluated as

2�δ =
∫ ∞

0+
dE

[
∂ωJ (E − i0)

J (E − i0)
− ∂ωJ (E + i0)

J (E + i0)

]

=
∫
R++R−

dω
∂ωJ (ω)

J (ω)

=
∮

dω
∂ωJ (ω)

J (ω)
−

∫
S

dω
∂ωJ (ω)

J (ω)
−

∫
C

dω
∂ωJ (ω)

J (ω)
,

(C25)

where the integration contours are illustrated in Fig. 3(b). R±
represent the contours just above and below the real line along
the continuum spectrum.

∮
represents the integration over the

closed contour. Following a procedure similar to the case of
odd m, it is easy to show that the result of this integral is also
given by Eq. (C2). The case of ε(k) = −|d|km with even m
can be proved similarly.

This is the end of the proof for theorem 4.

APPENDIX D: GENERALIZATION TO SPATIAL
DIMENSION D AND NONINTEGER m

1. Angular momentum eigenstates in D dimension

Until this point, we have focused on 1D systems with dis-
persion relations ε(k) = ±|d|km, where m is a positive integer.
To demonstrate the generality of the principle that divergent
density of states leads to a nontrivial universal limit of the S
matrix, we extend the discussion to all dimensions D � 1 and
noninteger values of m. Let k denote the momentum vector
in integer spatial dimension D � 1. For simplicity, we assume
a dispersion relation with rotational symmetry: ε(k) = |k|a,
where a > 0 does not have to be an integer. These dispersion
relations are natural extensions of the even integer m case of
ε(k) = σ |d|km in the one-dimensional models. The odd inte-
ger extensions of this analytic dispersion relation do not have
natural analogs for D > 1. The density of states is defined as

ρ(E ) =
∫

dDk δ(E − |k|a)

= b(D)
∫ +∞

0
dk kD−1δ(E − ka)

= b(D)kD−1ε′(k)−1, (D1)

where the constant b(D) = 2πD/2

�(D/2) comes from the integration
over the solid angle of a (D − 1)-sphere. �(z) is the gamma
function. Evaluating Eq. (D1), we have

ρ(E ) = b(D)

a
E−1+ζ−1 = b(D)

a
kD−a, ζ ≡ a

D
. (D2)

where k ≡ E1/a. When D = 1, we have b(D) = 2 and ζ = a,
so that Eq. (D2) agrees with the value of ρ(E ) in the main text
for a = m for positive even integer m. For general values of D,
ρ(E ) diverges when m > D; we will show that the S matrix
goes to a nontrivial limit dependent on a/D at zero energy.
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ρ(E ) has a finite limit at E = 0 when a � D; we will show
that the S matrix goes to the identity matrix at zero energy.

Let us first study the S matrix in D dimensions. The
momentum-space representation of the scattering operator is
given by

S (k, k′) = δ(k−k′) − 2π iδ[ε(k)−ε(k′)]T (E +i0+, k, k′),
(D3)

where T (E +i0+, k, k′) is the momentum-space representa-
tion of the T -operator T (ω) which we specify later. Energy
is preserved in the scattering process, hence we can define an
operator S(E ) that describes the scattering process at energy
E . In 1D, the momentum degeneracy is 2 at any energy;
S(E ) is a 2 × 2 matrix the same as in the case of positive
even integer m discussed in the main text. In 3D and higher
dimensions, there are uncountably many momentum eigen-
states at the same energy E > 0; S(E ) is an integral operator
in the momentum basis instead of a discrete, finite matrix.

In the familiar cases of quadratic dispersion relation a = 2
and D = 2, 3, it is a common practice to choose the common
eigenstates of the angular momentum operator and the kinetic
energy operator as the basis states for the representation of the
S matrix. For example, when D = 3, the angular momentum
eigenbasis can be labeled by two integers, l and ml , where
l = 0, 1, 2, . . . , is called the angular momentum quantum
number and ml = −l,−l + 1, . . . , l the magnetic quantum
number. In the angular momentum eigenbasis, the scattering
operator at energy E can be represented as a matrix, describ-
ing the transmission coefficients between different angular
momentum eigenstates at energy E . Note that the disper-
sion relation |k|a shares the same eigenbasis as the quadratic
dispersion relation |k|2, hence we can use the same angular
momentum eigenbasis for the representation of the S matrix.
In the following, we give an overview of the angular momen-
tum eigenstates in arbitrary dimensions.

In D � 2 dimensional space with Cartesian coordinates
{z1, . . . , zD}, we can introduce generalized polar coordinates
{r, θ1, . . . , θD−1} such that r = ∑D

i=1 z2
i is the radial dis-

tance to the origin of the coordinate frame. The set θ =
{θ1, . . . , θD−1} specifies coordinates on the surface of a (D −
1)-sphere [53,54]. The D-dimensional total orbital angular-
momentum operator is given by L2 ≡ −∇2

θ , where ∇2
θ is

the Laplacian operator on the unit (D − 1)-sphere—a partial
differential operator defined purely in terms of θ. The eigen-
values and eigenvectors of L2 are given by

L2Yl,ql (θ) = l (l + D − 2)Yl,ql (θ), (D4)

where l = 0, 1, 2, . . . is the generalization of the angular
momentum quantum number to D dimensions and ql =
1, 2, . . . , Nl labels the degenerate eigenstates. Yl,ql (θ) is the
generalization of spherical harmonics to D dimensions [55].
When l = 0, Nl = 1, i.e., the eigenstate is nondegener-
ate. When l � 1, Nl = D+2l−2

l CD+l−3
l−1 . For example, when

D = 2, Nl = 2 for l � 1; Yl,ql =1(θ ) = (2π )−1/2 exp(ilθ ) and
Yl,ql =2(θ ) = (2π )−1/2 exp(−ilθ ), where θ = arctan(z2/z1).
When D = 3, Nl = 2l + 1 for l � 1; ql has a one-to-one
correspondence with the magnetic quantum number ml =
−l,−l + 1, . . . , l .

The orthogonality relations of the spherical harmonics are
given by ∫

d� Y ∗
l,ql

(θ)Yn,qn (θ) = δnlδql ,qn , (D5)

where
∫

d� is the integration over the solid angle of the (D −
1)-sphere.

In scattering theory with D � 2, states with l = 0, 1, 2 . . . ,

are often referred to as s-waves, p-waves, d-waves, etc.,
respectively. When D = 1, the dispersion relation is sym-
metric about k = 0; the s-wave and p-wave refer to the
symmetric and antisymmetric combinations of the degenerate
momentum eigenstates at a given energy, respectively. In the
main-text discussion of 1D systems, we have shown that the
scattering of the s-wave is decoupled from the p-wave when
E → 0; the s-wave transmission coefficient has a nontrivial
limit exp(iπ/a), while the p-wave transmission coefficient is
1. The goal of this section is to generalize the zero-energy
scattering behavior in 1D to higher dimensions. Specifically,
in systems with nonvanishing interactions at zero energy, s-
wave scattering is decoupled from all other channels in the
zero-energy limit in any dimension; the s-wave transmission
coefficient goes to a universal limit exp(2π iD/a) when a >

D, while the scattering in other channels l � 1 goes to a trivial
limit—the identity matrix.

The different zero-energy behaviors for l = 0 and l � 1
are due to the different behaviors of the radial wave functions
Rl (r) ∼ (kr)l at small r. The main idea is that, when E → 0,
Rl (r) goes to a constant at any finite r for l = 0 and vanishes
for l � 1. Therefore the s-wave experiences interactions at
zero energy while the higher channels do not see the inter-
actions. To substantiate the argument, let us compute Rl (r)
below.

The eigenvalue equation for the kinetic energy operator at
positive energy E is given by

∇2φ(r) = k2φ(r), (D6)

where k ≡ E1/a and ∇2 is the Laplacian operator in D dimen-
sion. In the spherical coordinate system (r, θ), we have

∇2 = r1−D ∂

∂r

(
rD−1 ∂

∂r

)
− L2

r2
. (D7)

Inserting the separable ansatz φl,ql ,E (r) = Rl,k (r)Yl,ql (θ) into
Eq. (D6) and using Eq. (D7), we obtain the radial equation[

d2

dr2
+ D − 1

r

d

dr
− l (l + D − 2)

r2
+ k2

]
Rl,k (r) = 0. (D8)

Defining Rl,k (r) = r− D−1
2 y(r), Eq. (D8) can be written as[

d2

dr2
− l ′(l ′ + 1)

r2
+ k2

]
y(r) = 0, l ′ ≡ l + D − 3

2
, (D9)

where l ′ � 0 for D � 2. When D = 1, the centrifugal term
l ′(l ′+1)

2 vanishes and Rl (r) = y(r); when D = 3, we have l ′ =
l , Rl (r) = y(r)/r. When D � 2, as r → 0, the centrifugal
term l ′(l ′+1)

2 dominates the energy term k2, and the solutions
behave like solutions of the corresponding equation with
E = 0; namely, like combinations of rl ′+1 and r−l ′ . Thus the
physically acceptable wave function behaves like rl ′+1— the
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Riccati-Bessel function ĵl ′ (kr) [56]:

ĵl ′ (z) ≡ z jl ′ (z) ≡
√

πz

2
Jl ′+ 1

2
(z)

= zl ′+1

√
π

2

∞∑
n=0

(−z2/2)n

n!2n+l ′+1/2�(l ′ + n + 3/2)
, (D10)

where jl ′ (z) is the spherical Bessel function, and Jλ(z) the
ordinary Bessel function. The Riccati-Bessel functions satisfy
the following orthogonality relations∫ ∞

0
dr ĵl ′ (k

′r) ĵl ′ (kr) = π

2
δ(k − k′). (D11)

Hence we obtain Rl,k (r) and φl,ql ,E (r, θ):

Rl,k (r) =
√

2

π
r− D−1

2 ĵl ′ (kr), (D12a)

φl,ql ,E=ka (r, θ) = [ρ(E )ε′(k)]−1/2Rl,k (r)Yl,ql (θ),

=
√

2

π
b(D)−1/2(kr)−

D−1
2 ĵl ′ (kr)Yl,ql (θ).

(D12b)

Here, we have chosen normalization constants such that
the following orthogonality and completeness relations are
satisfied:

〈φl,ql ,E |φn,qn,E ′ 〉 = ρ(E )−1δ(E − E ′)δl,nδql ,qn , (D13a)∫ ∞

0
dE

∑
l,ql

ρ(E ) |φl,ql ,E 〉 〈φl,ql ,E | = 1, (D13b)

where 1 is the identity operator in the Hilbert space of a
particle in D dimensions.

Using Eqs. (D10) and (D12), we have, for kr � 1,

φl,ql ,E (r, θ) = b(D)−1/2Yl,ql (θ)
(kr)l

2l+D/2−1�
(
l + D

2

)
× {1 + O[(kr)2]}. (D14)

Hence, using Y0,1(θ) = b(D)−
1
2 , we can derive the pointwise

convergence

lim
E→0+

φl,ql ,E (r) =
{

b(D)−1 1
2D/2−1�( D

2 )
= (

1√
2π

)D
l = 0

0 l � 1
,

(D15)

which confirms our earlier claim that the s-wave has a constant
wave function at zero energy.

Equation (D15) is all we need to know about the angular
momentum wave functions to derive the S matrix universal
limits. Equation (D15) implies that the S matrix universal
limit is only nontrivial for l = 0; the quantum number ql

plays no role in the discussions. For simplicity and uniformity
of notation with the 1D case, we will use a single variable
α = 1, 2, . . . , to denote the pair of quantum numbers (l, ql ).
In particular, α = 1 corresponds to l = 0 and α = 2, 3, . . .

correspond to states with l � 1. The orthogonality relation in
Eq. (D13a) can be rewritten as

〈φα,E |φβ,E ′ 〉 = ρ(E )−1δ(E − E ′)δα,β . (D16)

Finally, we are ready to define the S matrix in the angular
momentum basis in arbitrary dimension. In the basis {|φα,E 〉},
the scattering operator at energy E can be represented by a
matrix S(E ):

ρ(E ) 〈φβ,E |S|φα,E ′ 〉 ≡ δ(E − E ′)Sα,β (E ),

Sα,β (E ) = δα,β − 2π iρ(E )T (E +i0+, α, E , β, E ), (D17)

where Sα,β (E ) is the matrix element of S(E ) and

T (ω, α, E , β, E ) ≡ 〈φβ,E | T (ω) |φα,E 〉 . (D18)

Equation (D17) can be compared to Eq. (3) for 1D systems.

2. Universal scattering

In this section, we consider emitter scattering for arbi-
trary integer spatial dimension D � 1 and dispersion relation
ε(k) = |k|a, where a > 0 is not required to be an integer. The
Hamiltonian is given by

H = H0 + V,

H0 =
∫

dDk ε(k)C†(k)C(k) +
N∑

i, j=1

KR
i jb

†
i b j,

V =
∫

dDk

[
N∑

i=1

Vi(k)C(k)b†
i + H.c.

]
, (D19)

where we have either commutation or anticommutation
relations: [C(k),C†(k′)]± = δ(k − k′), [bi, b†

j]± = δi j . We as-
sume that the emitter-photon interaction has the form |vk〉 ≡
[V1(k), . . . ,VN (k)]T = V (k) |u〉, where |u〉 is a unit vector. Let
0 be the null vector in dimension D. We require that V (k)
is locally square-integrable and continuous at k = 0 and that
V (0) is nonzero.

Similarly to the main text, we can define a N × N matrix
K(ω) describing the effective interactions between emitters:

Ki j (ω) =
∫

dDk
Vi(k)V ∗

j (k)

ω − |k|a . (D20)

The momentum-space representation of the T operator T (ω)
is given by

T (ω, k, k′) = 〈vk′ | 1

ω1N − K(ω) − KR |vk〉 . (D21)

Since V (k) is square-integrable, its Fourier transform Ṽ (z) =
( 1√

2π
)D

∫
dDk exp(ikz)V (k) exists. To find the representation

of the T operator in the basis {|φα,E 〉}, define vector |vα,E 〉 =
Vα,E |u〉, where

Vα,E ≡
∫

dDz Ṽ (z)φ∗
α,E (z). (D22)

The vector elements of |vα,E 〉 represent the interaction coeffi-
cients between the emitters and the angular momentum mode
α at energy E .

The representation of the T operator in the angular mo-
mentum basis is given by

T (ω, α, E , β, E ′) = V ∗
β,E ′Vα,E 〈u| 1

ω1N − K(ω) − KR |u〉 .

(D23)
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The S matrix in the angular momentum basis is related to
T (ω, α, E , β, E ′) by Eq. (D17).

Similar to the 1D case with integer values of a = m (see
Appendix B), we can categorize all eigenstates of the Hamil-
tonian into bright, dark and emitter eigenstates. Again, the
zero-energy emitter states correspond to the null vectors of KR

and their existence has no impact on the universal behavior of
the S matrix. When |vk=0〉 �= 0, there exists no zero-energy
dark state that does not blow up at the infinities.

Bright states at zero-energy are fine-tuned and have a con-
stant photon wave function in space. The condition of their
existence is still given by lemma 2, now extended to general
dispersion relations and any dimension. As we show below,
these states come into existence precisely when the universal
scattering behavior fails.

The generalization of 1D universal scattering to arbitrary
dimension D and to all (including noninteger) m = a > 0 is
given in the following theorem:

Theorem 4. Suppose V (k) is a locally square-integrable
function continuous at k = 0 and suppose V (k = 0) �=
0. |V (k)|2 = o(|k|a−D+1−γ ) for some γ > 1. In the ab-
sence of bright zero-energy eigenstates, when a � D,
limE→0+ Sα,β (E ) = δα,β ; when a > D,

lim
E→0+

Sα,β (E ) =
{

exp(2π iD/a) α = β = 1,

δα,β otherwise.
(D24)

Proof. In the orthonormal basis where |u〉 is the first basis
vector, the only nonzero matrix element of K(ω) is K11(ω) ≡
K (ω):

K (ω) ≡
∫

dDk
V (k)V ∗(k)

ω − |k|a , (D25a)

K(ω) = |u〉 〈u| K (ω). (D25b)

Using Eq. (D23), we have

lim
ω→0

T (ω, α, E , β, E ′)

= lim
ω→0

V ∗
β,E ′Vα,E

[
−K (ω) + det(ω1N − KR)

det
(
ω1N−1 − KR

�11

)
]−1

.

(D26)

As we mentioned, lemma 2 applies to general dispersion
relations and any dimension. Hence, the absence of bright
zero-energy eigenstates implies that any null vector of KR

�11
corresponds to the null vector of KR. Using a similar argument
as in Eq. (B11), limω→0

det(ω1N −KR )
det(ω1N−1−KR

�11
)

exists in the absence of

bright zero-energy eigenstates.
We first prove the theorem for cases when the S matrix

has a trivial zero-energy limit. When a < D, limE→0+ ρ(E ) =
0 from Eq. (D2); limω→0 K (ω) is a constant. Hence,
limω→0 T (ω, α, E , β, E ′) exists from Eq. (D26). Using
Eq. (D17), we can conclude that limE→0+ Sα,β (E ) = δα,β

when a < D.
When a = D, limE→0 ρ(E ) is finite from Eq. (D2); K (ω)

diverges logarithmically in the limit of ω → 0. Hence, we
have limω→0 T (ω, α, E , β, E ′) = 0 from Eq. (D26). Using
Eq. (D17), we see that limE→0+ Sα,β (E ) = δα,β when a = D.

We continue with the proof of nontrivial universal limit of
S(E ) when a > D. Similarly, as in the 1D case, define

L(ω) =
∫

dDk
1

ω − |k|a

= b(D)
∫ +∞

0
dk

kD−1

ω − ka

= b(D)

D

∫ +∞

0
d p

1

ω − pζ
, (D27)

where, in the last equality, ζ = a
D and we have changed the

integration variable from k to p = kD. The integral converges
for ζ > 1, and the value of L(ω) is given by

L(ω) = −π iρ(|ω|) 2

1 − exp(2π i/ζ )
exp

(
−iθ

ζ − 1

ζ

)
,

(D28)

which diverges at the same rate as the density of states ρ(|ω|)
when |ω| → 0. Eq. (D28) agrees with Eq. (9) in the main text
for even m = a and D = 1.

When ζ > 1, following a standard relation in functional
analysis, limω→0 L(ω) 1

ω−|k|a = δ(k). We have

lim
ω→0

K (ω)L−1(ω) = |V (0)|2 �= 0. (D29)

Using Eqs. (D26) and (D29), we have, in the absence of bright
zero-energy eigenstates,

lim
ω→0

L(ω)T (ω, α, E , β, E ′) = − V ∗
β,E ′Vα,E

|V (k = 0)|2 , (D30)

which can be compared to Eq. (B5) for the case of D = 1.
Using Eqs. (D15) and (D22), we have

lim
E→0

Vα,E =
{(

1√
2π

)D ∫
dDz Ṽ (z) = V (k = 0) α = 1,

0 α � 2,

(D31)

where α = 1 corresponds to l = 0 and α � 2 corresponds to
l � 1. Using Eq. (D31), Eq. (D30) becomes

lim
ω→0

L(ω)T (ω, α, E , β, E ′) =
{−1 α = β = 1,

0 otherwise.
(D32)

Using Eqs. (D17), (D28), and (D32), we obtain Eq. (D24). We
are done with the proof of theorem 4 for all values of a > 0.

3. Levinson’s theorem

Levinson’s theorem can also be generalized to D � 2. We
define the determinant of the infinite-dimensional matrix S(E )
through the n → ∞ limit of the series det[Sn(E )], where
Sn(E ) is the n × n submatrix of S(E ) in the subspace of
α = 0, 1, . . . , n − 1:

det[S(E )] ≡ lim
n→∞ det[Sn(E )]. (D33)

As l increases, φl,ql ,E (r, θ) ∼ (rk)l vanishes increasingly fast
close to the scattering center because of the centrifugal bar-
rier. This implies that modes with high angular momentum
(α → ∞) have trivial scattering amplitudes and the limit in
Eq. (D33) exists.
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Theorem 5. Define the winding phase �δ of det[S(E )]
similarly to the 1D case in theorem 2. Suppose |vk〉 = V (k) |u〉
satisfies the properties listed in theorem 4, and the dispersion
relation is given by ε(k) = |k|a, where m > 0. We have, in the
absence of bright zero-energy eigenstates and bound states in
the continuum,

�δ =
{
π (N − NB) + π a−D

a a > D,

π (N − NB) a � D,
(D34)

where N is the number of emitters and NB is the number of
bound states.

Theorem 5 can be proven through a procedure similar to
the one used in theorem 2 for 1D systems. Below, we provide
the extension of theorem 3 to arbitrary dimension D. The rest
of the proof is quite straightforward and we omit it here.

Theorem 6. Define J (ω) = det[ω1N − KR − K(ω)],
where K(ω) is defined in Eq. (D20). When E is not equal to
the energy of a bound state in the continuum, we have

det[S(E )] = J (E − i0)

J (E + i0)
. (D35)

Proof. The proof follows the same procedure as the proof
for theorem 3. Construct An as a N × n matrix and A†

n its
Hermitian conjugate:

An = ρ1/2(E )[|vα=0,E 〉, . . . |vα=n−1,E 〉]. (D36)

Then the n × n matrix Sn(E ) for E �= Ec can be written as

Sn(E ) = 1n − 2π iA†
nG(E + i0+)An, (D37)

where 1n is the identity matrix of dimension n and G(ω) ≡
(1N − K(ω) − KR)−1. Using the properties of determinant,
the definition of J (ω), and the identity

K(E + i0+) − K(E + i0−)

=
∑

α

∫ +∞

0
dE ′ ρ(E ′)|vα,E ′ 〉〈vα,E ′ |

×
(

1

E + i0+ − E ′ − 1

E − i0− − E ′

)
,

= −2π i
∑

α

ρ(E )|vα,E 〉〈vα,E |

= −2π i lim
n→∞ AnA†

n, (D38)

the r.h.s. of Eq. (D35) can be written as

J (E − i0)

J (E + i0)
= det

[
1N − 2π i lim

n→0
AnA†

nG(E + i0+)
]
. (D39)

According to the matrix determinant lemma, given an invert-
ible N × N matrix −2π iG(E + i0) and a N × n(E ) matrix
An,

det[1N − 2π iAnA†
nG(E + i0+)]

= det[1n − 2π iA†
nG(E + i0+)An]. (D40)

Using Eqs. (D33), (C6) and (D39), we see that the l.h.s. and
r.h.s. of Eq. (D40) are equal, respectively, to det[S(E )] and
J (E−i0)
J (E+i0) in the limit of n → ∞. This is the end of the proof of
theorem 6.

APPENDIX E: SEPARABLE POTENTIAL SCATTERING

The purpose of this paper is to demonstrate the principle
that divergent density of states leads to nontrivial universal
behavior of the S matrix. To demonstrate that this principle
is not limited to emitter-photon interactions, in this section,
we show that the S matrix has the same universal limit in a
particular class of potential scattering. To be specific, we study
separable potential scattering. Seperable potentials generalize
delta-function potential scattering and serve as an important
effective model to describe the long-distance behavior in
many scattering systems.

Assume any integer spatial dimension D � 1. The time-
independent Schrodinger equation in momentum space is
given by

ε(k)ψ (k) +
∫

dDk′ V (k′, k)ψ (k′) = Eψ (k), (E1)

where the dispersion relation ε(k) is any of those being
considered for emitter scattering in 1D in the main text or
for arbitrary D in Sec. D. For local potentials, V (k′, k) =
V (k′ − k) depend only on the momentum difference k′ − k,
where k (k′) is the incoming (outgoing) momentum of the
incident particle. For scattering with a separable potential,
the potential is nonlocal in real space and takes the form
Ṽ (z′, z) = gṽ(z′)ṽ(z), where z (z′) is the incoming (outgoing)
position of the incident particle and ṽ(z) is normalized such
that ( 1√

2π
)D

∫
dDz ṽ(z) = 1. Let v(k) be the Fourier transform

of ṽ(z); it is clear that v(k) is uniformly continuous and
v(k = 0) = 1. The separable potential in momentum space
takes the form V (k′, k) = gṽ(k′)ṽ(k); the time-independent
Schrodinger equation can then be written as

ε(k)ψ (k) + gv(k)
∫

dDk′v(k′)ψ (k′) = Eψ (k). (E2)

In potential scattering, the T matrix can be solved from the
Lippmann-Schwinger equation:

Tsep(ω, k, k′) = gv(k)v(k′)

+ gv(k′)
∫

dDk′′ v(k′′)
ω − ε(k′′)

Tsep(ω, k, k′′).

(E3)

Solving Eq. (E3), we obtain the solution for the T matrix:

Tsep(ω, k, k′) = v(k)v(k′)
g−1 − K (ω)

, (E4a)

Ksep(ω) ≡
∫

dDk
v(k)2

ω − ε(k)
, (E4b)

where the momentum dependence is simply captured by the
momentum dependence of the potential. The scattering op-
erator is related to the T matrix through Eq. (D3). Let us
compare the T matrix for separable potential scattering to
single-particle emitter scattering with KR = 0 and V1(k) =
v(k):

T (ω, k, k′) = v(k)v∗(k′)
ω − K (ω)

, (E5a)

K (ω) =
∫

dDk
|v(k)|2

ω − ε(k)
. (E5b)
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The similarity between Tsep(ω, k, k′) and T (ω, k, k′) al-
lows the S matrix universal limits to be similarly derived for
separable potential scattering. To be specific, the zero-energy
limit of the S matrix behaves identically to the single-emitter
scattering for any dispersion relation studied in earlier sec-
tions of the paper.

The Levinson’s theorem can also be generalized to sep-
arable potential scattering. Defining the S matrix Ssep(E )
similarly to S(E ) in the case of emitter scattering, it is easy
to derive a generalization of theorems 3 and 6 to separable
potential scattering. In any dimension, we have

det[Ssep(E )] = g−1 − Ksep(E − i0)

g−1 − Ksep(E + i0)
. (E6)

The solutions of g−1 − Ksep(ω) = 0 correspond to bound state
energies. Define �δsep as the difference of the scattering phase

of det[Ssep(E )] between the two ends of the continuum spec-
trum similarly to Eq. (C1). Following a proof similar to that
of theorem 2, we have, for dispersion relation ε(k) = ±|d|km

in 1D,

�δsep = −πNB + π
m − 1

m
, (E7)

where NB is the number of bound states. For dispersion rela-
tion ε(k) = |k|a in integer dimension D � 1,

�δsep =
{−πNB + π a−D

a a > D,

−πNB 0 < a � D.
(E8)
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