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Abstract 

This report provides additional technical details to an article entitled P-Flash – A Machine 

Learning-based Model for Flashover Prediction using Recovered Temperature Data. 

Research was conducted to examine the use of Support Vector Regression (SVR) to build a 

model to forecast the potential occurrence of flashover in a single-floor, multi-room 

compartment fire. Synthetic temperature data for heat detectors in different rooms were 

generated, 1000 simulation cases are considered, and a total of 8 million data points are utilized 

for model development. An operating temperature limitation is placed on heat detectors where 

they fail at a fixed exposure temperature of 150 ̊C and no longer provide data to more closely 

follow actual performance.  

The forecast model, P-Flash (Prediction model for Flashover occurrence), is developed to use 

an array of heat detector temperature data, including in adjacent spaces, to recover temperature 

data from the room of fire origin and predict potential for flashover. Two special treatments, 

sequence segmentation and learning from fitting, are proposed to overcome the temperature 

limitation of heat detectors in real-life fire scenarios and to enhance prediction capabilities to 

determine if the flashover condition is met even with situations where there is no temperature 

data from all detectors. Experimental evaluation shows that P-Flash offers reliable prediction. 

The model performance is approximately 83 % and 81 %, respectively, for current and future 

flashover occurrence, considering heat detector failure at 150 ̊C. Results demonstrate that P-

Flash, a new data-driven model, has potential to provide fire fighters real-time, trustworthy, 

and actionable information to enhance situational awareness, operational effectiveness, and 

safety for firefighting. 

Key words 

Machine learning; flashover prediction; fire modeling; heat detector; smart firefighting. 
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 Introduction 

Over the five-year period from 2013 – 2017, the fire departments in the United States 

responded to an average of 500,000 structure fires annually [1]. These fires resulted in 

approximately 2,500 civilian fire deaths, 14,000 civilian fire injuries, and more than $10 billion 

dollars in direct property losses. In addition, more than 31,000 firefighters were injured, and 

approximately 360 of them were killed on the fire ground [2]. Statistics show that rapid fire 

development caused by extreme fire behaviors such as flashover is identified as one for the 

major causes of fatal injury for fire fighters during structural firefighting. Although flashover 

conditions (i.e., hot layer gas temperature approximately 600 ̊C and/or average heat flux at the 

floor level reaching 20 kW/m2) are well known in the fire research community, this kind of 

detailed information about the interior thermal conditions is usually unavailable. It is rather 

difficult for fire fighters to understand the potential fire hazards inside the compartment. In a 

structural fire, rollover [3] is one possible indicator. Visually, it can be seen as flames rolling 

across the ceiling. When rollover phenomenon is observed, a potential flashover is likely to 

occur. However, this extreme fire indicator is not easy to recognize, and it could take many 

years of experience to build up the necessary proficiency. Therefore, if fire fighters do not have 

such a high level of situational awareness, the flashover threat presents itself as an 

unpredictable life-threatening hazard. 

Several research efforts have been conducted to develop data-driven models that can estimate 

the heat release rate (HRR) based on information obtained from sensors in real-time. Davis 

and Forney [4] developed an inverse fire model based on empirical correlations. Provided the 

estimated HRR, the location of the fire and the fire size could be obtained using an inverse 

modeling technique. Yet, the model is only suitable for one-room compartments. Based on a 

generic algorithm, Neviackas and Trouvé [5] obtained a generalized HRR which can be used 

to determine flashover conditions in multi-room geometries. Overholt and Ezekoye [6] also 

developed an inverse model using a predictor-corrected method. Based on smoke layer 

temperature measurements, the prediction accuracy of the model was shown to be within 60 s. 

However, a challenging problem exists in which all models [4-6] rely on complete 

measurement data sets acquired using laboratory equipment. In practical situations, sensors 

such as heat and/or smoke detectors will stop functioning at a certain elevated temperature [7]. 

If the required temperature/smoke data is missing, the estimated HRR obtained from these 

models will become highly uncertain and presumably, the prediction of flashover occurrence 

based on the estimated HRR will be unreliable. 

Unlike the previous attempts [4-6], the temperature limitation for sensors, such as heat 

detectors, are considered in this present work with the objective to develop a machine learning 

model, P-Flash (Prediction model for Flashover occurrence) that can predict the flashover 

occurrence even with missing temperature data due to malfunctioning heat detectors. In the 

next section, the synthetic data being used to develop the model will first be described. Then, 

the model development of P-Flash will be presented. In order to demonstrate the prediction 

capability of P-Flash, two study cases are included, and Section 4 provides results and 

discussion. Section 5 provides additional model testing to highlight the current model 

limitation. Finally, some concluding remarks on P-Flash and future work are presented in 

Section 6. 
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 Data Generation 

Scarcity of real-world data from building sensors during fire events is one of the challenges 

for the use of the machine learning (ML) paradigm. The data problem has been raised in 

different literature, such as [7]. For the fire safety community, it can be noted that acquiring 

the desired sensor data is not trivial because 1) fire events do not happen frequently, 2) time 

series data associated with fire events in building environments are not available to the public 

data warehouse [8], and 3) physically conducting full-scale fire experiments in buildings such 

as [9] is extremely costly and time-consuming. Moreover, no prior research work has been 

carried out to provide guidance on the data requirements for ML applications. With that, there 

may be a high probability that the obtained experimental data is not usable. When the 

conventional ML paradigm demands a large amount of training data, the CFAST Fire Data 

Generator (CData) [10] is utilized to generate synthetic data to facilitate the use of ML 

paradigms for prediction of fire hazards in buildings.  

In general, CData is a computational tool with its front-end written in Python1. The code was 

developed to generate time series data for typical devices/sensors (i.e., heat detector, smoke 

detector, and other targets) in any user-specified fire environments within a building structure. 

CFAST [11] is used as the simulation engine in CData for two reasons. First, the fire simulation 

program is mathematically verified and is validated with experimental data [12]. The 

verification and validation (V&V) process is an active and continuous effort at the National 

Institute of Standards and Technology (NIST) to ensure the fidelity of the code. Second, 

CFAST is numerically efficient. Using the Fire Research Division computer cluster at NIST, 

more than ten thousand simulation cases with various geometric and fire configurations 

specified in this study can be completed in a single day. This advantage provides the flexibility 

and capability to conduct parametric studies for obtaining the most relevant and high quality 

synthetic data set for researching the use of ML paradigms. It should be noted that the authors2 

understood the inherent model assumptions being made in CFAST. When the feasibility of 

using synthetic data for the development of ML models is warranted, a more sophisticated fire 

simulation program, such as the Fire Dynamic Simulator [13], and/or even full-scale 

experimental data can be utilized in future studies. These higher fidelity data would allow the 

ML model to account for other realistic conditions, such as the effect of hot gas movement to 

the detectors, to improve the model performance. 

2.1. Numerical Setup 

Consider a single-story building with three compartments as shown in Fig. 1. The dimensions 

of Room 1 are 3.5 m x 3.5 m, and the dimensions of Room 2 and Corridor are 4.5 m x 4.5 m 

and 3.5 m x 1 m, respectively. The ceiling height is 2.5 m, and it is identical for all 

compartments. For simplicity, the material of all walls, ceilings, and floors is gypsum 

wallboard. As seen in Fig. 1, there are 4 openings: 1) a window in Room 1, 2) a door between 

Room 1 and Corridor, 3) a door between Corridor and Room 2, and 4) an exit-door in Room 

2. The openings are fully opened. There is one heat detector in every compartment, and they 

are all located at the center of each compartment about 4.5 cm away from the ceiling. The 

 
1 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the procedures adequately. Such 

identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it 

intended to imply that the materials or equipment identified are necessarily the best available for the purpose. 

2 Richard Peacock and Paul Reneke at NIST are both the principal investigators for continuous development and maintenance of CFAST. 
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response time index for the heat detector is 35 (m·s)0.5. The outdoor conditions are typical with 

the temperature at 20 ˚C and atmospheric pressure of 101 kPa. Table 1 provides the summary 

of the thermal properties of the gypsum wallboard and the geometric configurations of the 

openings. 

 

 
 

Fig 1. Schematic of the single-story three compartments with a fire in action.  

 

Table 1. Summary of thermal properties and geometric configurations. 

  Conductivity Specific heat Density Thickness Emissivity 

(W/[m·K]) (J/[kg·K]) (kg/m3) (m) (-) 

Gypsum 0.276 1.017 752 0.0159 0.94 

            

  
From To Width Length 

Distance away 
from ceiling 

(-) (-) (m) (m) (m) 

Window Room 1 Exterior 0.3 0.5 0.5 

Door 1 Room 1 Corridor 0.75 2 0.5 

Door 2 Corridor Room 2 0.75 2 0.5 

Exit door Room 2 Exterior 0.75 2 0.5 
 

Given the experimental setup, a t-squared fire is placed at the center in Room 1. In this study, 

simple three-stage t-squared fires are considered. It has a growing stage, a plateau, and a decay 

stage. Basically, a fire will grow at a rate proportional to the time raised to the second power. 

When the fire reaches its peak, it will sustain for some time (denoted as plateau). It then dies 

down (denoted as fire decay) and is extinguished. Based on references provided in [14,15], a 

range of fires are selected to describe the fire growing stage. Figure 2 shows the scatter plot of 

peak heat release rate (HRR) and time to peak for the 1000 cases. It can be seen that the peak 

HRR and the time to peak ranges from approximately 50 kW to 2200 kW and from 50 s to 
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1400 s, respectively. The selected range of peak HRR and time to peak cover various burning 

items from an office trash can with a slow fire growth rate to an upholstered furniture fire with 

an ultra-fast fire growth rate. In terms of duration for plateau and fire decay, they are assumed 

to be constant. The duration for plateau and fire decay are set to be 2000 s and 1500 s, 

respectively.   
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Fig. 2. Scatter plot for peak HRR vs time to peak. 

 

2.2. CData Settings 

This subsection demonstrates how CData is utilized to configure fire cases as mentioned in 

Sec 2.1. Appendix A shows the complete CData input file being used in this study. In general, 

the CData input file has similar namelists to that of CFAST input files except that CData has 

additional namelists to facilitate data sampling. Based on the descriptions provided in the 

previous section, there are two varying conditions for fires: i) the peak HRR and ii) the time to 

peak HRR. In order to sample the desired fire conditions, a namelist, MRND, is used. As shown 

in the appendix, two lines of code are involved to sample fire conditions uniformly across the 

domain of interest. The corresponding information is summarized in the following table: 

 

Table 2. MRND that specifies random number generator for peak HRR and time to peak HRR. 

MRND 
ID Distribution Type Value Type Minimum Maximum 

Peak HRR Generator Uniform Real 50 000 2 200 000 

End of Growth Time 
Generator 

Uniform Real  75 1400 
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There are five parameters in MRND: 1) ID, 2) distribution type, 3) value type, 4) minimum, 

and 5) maximum. The first parameter defines the unique name of the desired generator. The 

second parameter specifies the required distribution function which would be used for 

sampling. In the current version of CData [10], it supports 8 different well-defined distribution 

functions, such as uniform, triangle, normal, truncate normal, log normal, truncated log normal, 

beta, and linear. Since a set of uniformly distributed fire cases are needed to facilitate the model 

training, the uniform distribution is utilized. For value type, real number is chosen because the 

bounding conditions are expected to be defined by numerical values. Lastly, minimum and 

maximum specify the lower bound and the upper bound of the fire conditions, respectively. 

The random number generators, Peak HRR Generator and End of Growth Time Generator, 

specify the fire growing stage. In order to construct the three-stage t-squared fires, another 

namelist, MFIR, is utilized to combine a number of MRND namelists to generate the namelist 

that CFAST would recognize. Specifically, the plateau and the fire decay are specified using 

Peak HHR (2nd value) and Plateau End Time, and End of Fire HRR and Fire End Time, 

respectively. Since the total number of 1000 cases3 are required, the parameter 

NUBMBER_OF_CASES from MHDR namelist is set to be 1000. 

2.3. Data Profiles 

For all simulation runs, a fire is started in Room 1. Subsequently, the upper layer gas 

temperature rises, and the layer thickness increases. Some hot gases leave the building 

structure, and some flow through the door. Air mixing between Room 1 and Corridor occurs. 

Due to the mixing, the upper gas layer temperature in Corridor also increases. Similar mass 

transfer and heat transfer processes take place between Corridor and Room 2, and the Room 2 

upper gas layer temperature gradually rises. Figs. 3 show Room 1, Corridor, and Room 2 

temperature profiles for two selecting cases: a) a fast growth fire with low peak HRR case and 

b) a medium growth fire with high peak HRR case. The total simulation time for each 

simulation run is 8400 s, and the temperature output interval is 20 s. 
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Fig. 3. Room 1, Corridor, and Room 2 temperature profiles for a) a fast growth fire with low 

peak HRR case and b) a medium growth fire with high peak HRR case.  

 
3 The selected number of simulation runs was determined based on a parametric study. Five sets (100, 500, 1000, 2000, and 5000 cases) of 

data were considered. Using the experimental setup mentioned in Section 2.1, the model performance for the prediction of flashover achieves 
convergency when the number of cases reaches 1000 cases. The full dataset including all input files associated with the 1000 cases can be 

found at https://doi.org/10.18434/M32258.  
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Figure 4 shows the mean temperature profiles for the three detectors as a function of time. As 

shown in the figure, the temperature profiles in Corridor and Room 2 are lower than that of 

Room 1, and the dashed lines represent two times the standard deviation of detector 

temperature profiles. Although this study uses only temperature data, in principle other time 

series data such as smoke concentration obtained from smoke detectors, can also be used for 

the model development. Moreover, building structures with different compartments (in terms 

of quantity, orientation, and door connection) and fires involving various fire growth behavior 

can also be considered in the data generation so that a more generalized ML model can be 

developed for actual use. This research effort is under way, and the findings will be reported 

in future publications. 

 

 
 

Fig. 4. Mean detector temperature profiles and its deviation in different compartments. 

 

 Model Development of P-Flash 

Given a set of data, two additional steps including data preprocessing and model training are 

required for the development of P-Flash. Fig. 4 depicts the processes associated with the data 

preprocessing and the corresponding main codes are provided in Appendix B1.  

3.1. Sequence Segmentation 

Loss of detector temperature signal is one of the primary difficulties for the development of an 

accurate machine learning-based flashover prediction model. For actual fire scenarios, heat 

detectors cannot survive at elevated temperature [7] and would fail at temperatures well below 

the estimated flashover temperature (~ 600 ̊C). It is well known that developing a ML model 

based on unphysical data significantly jeopardizes the model performance. With the 

malfunctioning detectors, the temperature can be unphysical, and a special treatment is needed 

to preprocess the data such that unphysical data can be eliminated. 

Knowing that detectors4 stop functioning at elevated temperature (here assumed as 150 ̊C), the 

detailed view shown in Fig. 5 presents the temperature profiles from ideal detectors (dashed  

 
4 In reference [16], there are 7 classes for heat detector. Each class has different maximum operating temperature range at the ceiling. The 

selected cut-off temperature (150 ̊C) is based on the extra high class heat detector. 
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Fig. 5. Machine learning pipeline for P-Flash (from raw data to feature extraction). 
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lines) and those with a cut-off temperature at 150 ̊C (solid lines) for a simulation run with a 

fast-growth fire originating in Room 1. As shown in the plot, the available data for the detector 

in Room 1 is limited. At t1, the temperature signal from Room 1 is lost. For simplicity, when 

the temperature signal is lost, the temperature is artificially turned into a constant in this study 

(i.e., a value of zero). In general, it is rather difficult for any models, even ML models, to 

provide any reliable flashover prediction with these limited temperature data (i.e., up to only 

150 ̊C). However, it is seen that temperature signals from other compartments do exist. Given 

this observation, it is believed that the use of the available temperature data from other 

compartments helps to “recover” the detector temperature in Room 1 which can be used to 

determine the flashover condition. In order to facilitate this process, a sequence segmentation 

is applied to the temperature data set. 

Using the sequence segmentation, a new data structure is laid out. As shown in same plot, there 

are 3 vertical lines, dividing the temperature profiles into 4 phases. Each of the phases contains 

different available temperature signals. For example, signals from all detectors are present in 

Phase I (t0 - t1). In Phase II (t1 - t2), signals from only Corridor and Room 2 are available. In 

Phase III (t2 - t3), the last available signals are from Room 2. No temperature signals exist in 

Phase IV, and additional treatment is needed to facilitate the prediction of flashover conditions. 

Three benefits are found from using the segmented data: 1) the unphysical information due to 

any malfunctioning detectors is eliminated, 2) the ML model can take full advantage of the 

available data associated with a specified phase, and 3) the new data structure provides the 

basis for the model development of P-Flash. It is worth noting that only temperature data less 

than or equal to 150 ̊C are used for model development. 

3.2. Feature Extraction 

Feature extraction [17] is an essential ML task to facilitate the development of a model. In this 

process, the raw data (i.e., discrete temperature data which is uncorrelated in time) is 

transformed into a data set with a reduced number of variables which contains more 

discriminative information. An example of discriminative information can be the rate of 

change of temperature which relates the temperature increase over a period of time. It can be 

understood that a large rate of change in temperature indicates a higher chance of having more 

rapid fire growth which would possibly lead to a flashover if sufficient oxygen is available and 

the fire continues to grow. This higher level information facilitates the learning process for a 

ML model which helps develop a more accurate model. 

The feature extraction section depicted in Fig. 5 shows the feature vectors5, F, being extracted 

from the detector temperature profiles in different phases, and there are five different feature 

vectors: 𝐹𝑝1
𝐶𝑜𝑟𝑟, 𝐹𝑝1

𝑅2, 𝐹𝑝2
𝐶𝑜𝑟𝑟, 𝐹𝑝2

𝑅2, and 𝐹𝑝3
𝑅2. In terms of notation, the superscript denotes the 

extracted features corresponding to the compartment, and the subscript denotes the extracted 

features associated with a specific phase. For general practice, the construction of features and 

the required number of feature vectors are based on three factors: 1) the structure of the data 

(refer to Section 3.1), 2) how often the prediction is needed, and 3) the architecture of the ML 

model.  

In Phase I, since no prediction is required, the features are extracted based on a complete time-

window with the intention of encoding the relationships among the temperatures associated 

 
5 A feature vector contains a number of different features.  
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with Room 1 (TR1), Corridor (TCorr), and Room 2 (TR2). In this study, two types of features are 

obtained, and they are temperature-based features and trend-based features. Table 3 provides 

a list of extracted features. In ML, the temperature based-features provide the overall statistics 

of the temperature data and the trend based-features provide the overall temperature behavior 

with respect of time. For example, the temperature-based feature, mean of TX(t0:t1), can be 

understood as the average temperature in between t0 and t1. For the trend-based feature, the 

dTX/dt represents the first derivative of temperature which describes the rate of change of 

temperature over a period of time. The superscript X describes three different compartments: 

Room 1 (R1), Corridor (Corr), and Room 2 (R2). It should be noted that the differential time 

(dt) being used to obtain the first derivative of the temperature is different than the length of 

the complete time-window. Since the overall behavior of the temperature profile is relatively 

smooth, the differential time is taken to be one time-step (20 s). As shown in the table, six 

different features are being extracted in Phase I, and they are added to form the feature vector. 

 

Table 3. Summary of extracted features. 

  Phase I Phase II Phase III 

Temperature-

based 

features 

Mean and Max.  

of 

TX(t0:t1) 

Mean and Max.  

of 

TY(ti:ti+rolling_window) 

Mean and Max.  

of 

TZ(ti:ti+rolling_window) 

Trend-based 

features 

Min., Mean, and Max.  

of 

dTX/dt 

Min., Mean, and Max.  

of 

dTY/dt 

Min., Mean, and Max.  

of 

dTZ/dt 

Index of Max.  

of 

dTX/dt  

divided by length of 

fixed window 

Index of Max.  

of 

dTY/dt  

divided by length of 

rolling window 

Index of Max.  

of 

dTZ/dt  

divided by length of 

rolling window 

X represents R1, Corr, and R2. Y represents Corr and R2 and Z represents R2. The abbreviation Min. and Max. denotes minimum and 

maximum, respectively. 

In Phase II and III, although similar process is being carried out, the extracted features are 

obtained based on a rolling window [17]. Basically, the rolling window contains a sub-data 

set. After a feature extraction is executed, the window shifts onwards for one time-step. A 

numerical experiment is conducted to determine the optimal size of the rolling window. For 

real-time detection, the window size is taken to be six time-steps. In general, the use of rolling 

windows helps to provide extracted features containing more localized information. For Phase 

IV, since no temperature data is available, no features are being extracted. It is worth noting 

that the symbol, ⨁, as shown in Fig. 4 represents concatenation of two vectors. When the 

feature extraction process is complete, three feature vectors: ① = 𝐹𝑝1
𝐶𝑜𝑟𝑟 ⨁  𝐹𝑝2

𝐶𝑜𝑟𝑟 , ② = 

𝐹𝑝1
𝑅2 ⨁  𝐹𝑝2

𝑅2, and ③ = 𝐹𝑝1
𝑅2 ⨁  𝐹𝑝3

𝑅2, are obtained, and they are used to train/develop the models 

for P-Flash. In the next section, the descriptions of model training are presented. It should also 
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be noted that feature selection, such as use of collinearity check and variable importance, can 

be made to select the features that contribute the most to the predictions. The corresponding 

source codes for data pre-processing and feature extraction are provided in Appendix B3. 

3.3. Training and Testing 

Figure 6 depicts the overview of the model architecture for P-Flash. P-Flash consists of two 

regression models (Rcor and RR2) and a memory component (M). The primary difference 

between the two models is that Rcor is trained based on feature vector ①, and RR2 is trained 

based on feature vectors ② and ③. In theory, a single regression model might work. However, 

the training process for such a model involving more information is numerically more difficult 

and overfitting6 might occur and this is attributed to the fact that all the temperature behaviors 

from three different sensors will have to be learned by only one regression model. Since using 

either of the approaches (two regression models or single regression model) will provide 

relatively the same prediction, the two regression model approach is utilized for training 

efficiency. The memory component, M, is a hybrid module: it performs as a storage to contain 

outputs from Rcorr and RR2 and provides temperature prediction of Room 1 based on the 

historical information. This model architecture provides robust and flexible prediction 

capabilities to adapt to more complex cases with a larger number and different types of 

detectors. 

 

 
 

Fig. 6. The overview of model architecture for P-Flash. 

 

Due to the fact that the model first sees temperature data of three compartments for Phase I 

and Phase II, both regression models, RCorr and RR2, are executed simultaneously and two 

separate temperature predictions for Room 1 in Phase II are obtained. In order to compensate 

for the numeric difference, averaging is conducted, and the temperature prediction is stored in 

the memory component. Since only the temperature in Room 2 exists in Phase III, only RR2 is 

executed and the temperature of Room 1 in Phase III is obtained. Similarly, the output is stored 

in the memory component. The ML algorithm being used for training and the details of model 

testing are provided in the next subsection. 

 
6 Overfitting is a modeling error that occurs when a function is too closely fit to a limited set of data points. For example, rather than learning 

the overall trend inherent to the data set, the model attempts to memorize the noise from the data. 
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3.3.1. Regression Models 

Support vector regression (SVR) [18] is used to develop the two regression models (Rcorr and 

RR2). Fundamentally, SVR finds a decision boundary, known as a hyperplane, to correlate data 

instances and maximizes the constrained margin such that the distance between the data 

instances is optimal to achieve greatest model generalizability. For example, given a training 

dataset 𝑇 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛)} which can be linearly separated, the hyperplane 

denoted as 𝑝 can be written as: 

 

 𝑤 • 𝑋 + 𝑏 = 0 (1) 

 

where 𝑋𝑛 is the sample of 𝑛𝑡ℎ instance and 𝑦𝑛 is the target/ground truth. In this study, 𝑋𝑛 will 

be the three feature vectors and 𝑦𝑛 will be the Room 1 temperature. 𝑤 and 𝑏 are the weight and 

the bias of the hyperplane, respectively. Based on the definition provided in [19], the distance 

between the instances for different classes is: 

 

 
𝑑 =  min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
) (2) 

 

where ‖𝑤‖ is norm of 𝑤. For SVR, the distance is known as margin. Therefore, SVR 

determines the hyperplane with the largest margin by solving the optimization problem:  

 

 
arg max

𝑤,𝑏
( min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
)) (3) 

 

Figure 7a provides an example case with data in linear behavior. The hyperplane is obtained 

to best correlate the data and the margin is determined to include each data point. As shown in 

the figure, this form of SVR is similar to the best of fit with a simple linear regression.  

 

 
 

Figs. 7. Example of a regression model from a) a linear SVR and b) non-linear SVR. 

 

For real-life applications, fire data are often more complex, and they are not linearly separable 

(See Fig. 7b). In order to overcome the numerical difficulty, there are two options. The first 

option is called the “kernel trick” [19], and there are four commonly used nonlinear kernel 
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functions: 1) polynomial kernel, 2) Gaussian kernel, 3) radial basis function (RBF), and 4) 

sigmoid kernel. The use of a kernel function allows the transformation of data into a higher 

dimensional space such that the instances 𝑋𝑛 for different classes separated by a hyperplane 

(i.e., nonlinear) exists. The second option is to introduce a regularization/slack variable. With 

the implementation for the regularization variable, C, a small proportion of the data are ignored 

(see ξ in Fig. 7b). Although there is trade-off for the use of these options, it generally provides 

a more generalized model and helps to avoid over-fitting. This implies the situation where the 

model only memorizes the data without obtaining any useful patterns and relationships for the 

data behavior. If over-fitting occurs, the model performance will be very poor. 

In this study, a 5-fold cross validation method [8] is utilized to facilitate the training and testing 

process. In principle, the entire dataset from 1000 simulation runs is randomly divided into 

five subsets, and each subset/fold contains 200 sessions. In general, one fold of data is being 

used as testing data, and the remaining four folds are being used as training data. This process 

is carried out iteratively for five times until all five different folds of data are being used as the 

testing set. The trained regression models provide Room 1 temperature predictions in Phase II 

to Phase III. Utilizing grid search [8], the optimal configurations for SVR are C = 1000 and 

Gamma = 0.05 with RBF kernel. The corresponding source codes for the development of the 

two regression models are provided in Appendix B4. 

3.3.2. Learning from Fitting 

In Phase IV, since all detectors are lost, no inputs are available, and therefore no reliable 

predictions can be made from the regression models. In order to overcome this physical limit, 

learning from fitting is implemented to facilitate the extrapolation of the temperature in 

Room 1 using the historical data (i.e., the available temperature in Phase I and predicted 

temperature obtained in Phase II and III). Given the current set of data, there can be two 

possible scenarios in Phase IV: 1) a scenario where the predicted temperature of Room 1 is 

sufficiently long enough to observe a logarithmic temperature increase or 2) the fire is so large 

(in terms of peak HRR with short time to peak) that the temperature rise appears to be an 

exponential function. For that, two mathematical expressions, a sigmoidal binding function 

and a 5th order polynomial, are considered. The sigmoidal binding function is used for the first 

scenario: 

 

 𝑝𝑖 = (𝑏√𝑡𝑖)/(√𝑡𝑖 + 𝑎) + 𝑐 (4) 

 

whereas the high order polynomial is used for the second scenario: 

 

 𝑝𝑖 = 𝑑5𝑡𝑖
5 + 𝑑4𝑡𝑖

4 + 𝑑3𝑡𝑖
3 + 𝑑2𝑡𝑖

2 + 𝑑1𝑡𝑖 + 𝑑0𝑓 (5) 

 

where pi is the prediction and ti is the time associated with index i. Optimization is carried to 

obtain a, b, c, and d to produce a best fit to generalize the Room 1 temperature data in Phase I 

to III. Given the best fit, Room 1 temperature in Phase IV can be extrapolated. The 

corresponding source codes for carrying out the fitting are provided in Appendix B5. 
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 Results and Discussion 

Figures 8 show the temperature predictions obtained from P-Flash for two selected cases: 1) a 

fast growth fire with low peak HRR case and 2) a medium growth fire with high peak HRR 

case. There are three sets of curves in each figure: i) ground truth/Room 1 temperature, ii) 

prediction with learning from fitting (LFF), and iii) prediction without LFF. For each 

prediction curve, it can be composed of up to two lines: a) red line represents the Room 1 

temperature predictions associated with Phase II and III and b) blue line is for predictions in 

Phase IV. Since no prediction is needed for Phase I, comparison is omitted.  

In Fig.8a, it can be seen that P-Flash provides accurate temperature predictions of Room 1 in 

all phases, and the benefit of using LFF is noticeable. After approximately 1150 s, when all 

detectors are lost, P-Flash is still capable to provide predictions with similar trend and 

magnitude. For P-Flash without LFF, the prediction relies on the regression models, and it can 

be shown that the temperature prediction is unrealistic (i.e., showing a temperature increase to 

as high as 910 ̊C). This observation demonstrates that unphysical inputs will lead to unphysical 

outputs. Also, it is worth noting that the discrepancy observed at around 250 s is probably due 

to the change of temperature increase in the available detector temperature. Physically, it is the 

pivot point of its 1st derivative where the rate of change of temperature changes from positive 

sign to negative sign. Additional effort is under way to reduce such fluctuation. 

In Fig. 8b, it can be seen that the temperature of Room 1 being recovered from Phase II and III 

is still growing exponentially. In the current version, P-Flash does not have additional 

information to predict the temperature decays. However, it is capable to project the temperature 

increase in which the determination of flashover (i.e., temperature approaching 600 ̊C) in 

Room 1 can be made. As shown in the figure, the results obtained based on P-Flash without 

LFF are over-estimated.  

 

 
 

Fig. 8. Comparison between ground truth and predictions obtained from P-Flash with and 

without LFF.   

 

In order to evaluate the model performance over the 1000 different cases, the mean absolute 

error (MAE) is being determined, and it is defined as: 
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𝑀𝐴𝐸 = ∑
1

𝑚
∑

1

𝑛𝑖

𝑛𝑖

𝑗=1

|𝑝𝑖,𝑗 − 𝑦𝑖,𝑗|

𝑚

𝑖=1

 (6) 

 

where p is the prediction and y is the ground truth. The variables m and n represent the number 

of simulation runs and the number of prediction points for each phase associated to each case, 

respectively. The number of simulation runs is 1000 in this study, and since the extrapolation 

of a 5th order polynomial increases dramatically, the number of prediction points for each case 

in Phase IV is determined based on the flashover temperature condition. That means the 

comparison is omitted if the ground truth is larger than 600 ̊C. Table 4 shows the MAE 

associated with different phases. It should be noted that the above results are denoted as 

“current prediction” and this is due to the fact that the prediction at time t is based on 

information obtained in time t.  

Given the prediction and the ground truth, an additional assessment can be carried out to 

examine the overall model accuracy in terms of flashover occurrence prediction. The flashover 

occurrence is true when the temperature is larger than 600 ̊C. The overall accuracy is 

determined as the ratio of correct prediction within 20 s of the time of flashover to the total 

number of flashover occurrence in 1000 cases. Two example cases can be found in Figs. 8. In 

case 1, since the ground truth does not meet the potential flashover occurrence criteria (i.e., 

~ 600 ̊C), no flashover is observed. As compared to prediction from P-Flash, the recovered 

Room 1 temperature does not meet the potential flashover occurrence, false to flashover is also 

observed. For that, the prediction from P-Flash is determined to be correct. In case 2, a potential 

flashover occurrence is observed at about 1050 s. However, the recovered Room 1 temperature 

based on P-Flash does not reach 600 ̊C at that time stamp. For that, P-Flash fails to predict the 

potential occurrence of flashover and this is a miss prediction. In order to discriminate the miss 

prediction, it is further divided into two categories: i) early prediction and ii) late prediction 

where the early prediction and the late prediction indicate that the Room 1 temperature 

recovered based on P-Flash reaches flashover occurrence criteria about more than 20 s prior to 

or more than 20 s after the flashover condition is met based on the ground true, respectively. 

Table 5 shows the overall model accuracy for the prediction of flashover occurrence to be 

approximately 83 %. The early prediction and the late prediction are shown to be 8 % and 9 %, 

respectively.  

Since the current model is developed simple fire and vent opening conditions, Appendix C 

presents additional evaluation to reveal the current limitation of P-Flash and to provide 

guidelines about data requirement for the development of a more robust flashover prediction 

model in multi-compartment buildings. 

 

Table 4. Performance summary for P-Flash. 

  
Phase II Phase III Phase IV 

MAE (̊C) MAE (̊C) MAE (̊C) 

Current Prediction 11 13 30 

Future Prediction 13 16 37 
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Table 5. Overall model accuracy with early and late prediction for potential occurrence of 

flashover. 

 
Accuracy Early Late 

% % % 

Current Prediction 83 8 9 

Future Prediction 81 15 4 

 

In actual firefighting, it is best if fire fighters can obtain the condition of the room of the fire 

origin ahead of time because they can optimize their rescue strategies and fire fighting tactics. 

For that, it is interesting to examine how well P-Flash can forecast temperature in advance (i.e., 

150 s). In this scenario, the prediction at time t+150 s is based on information obtained in time 

t. Since the temperature information for all compartments tends to have a monotonic increasing 

behavior, the temperature relationship at current time, t, can correlate well with flashover 

occurrence in future time, t+150 s. As shown in Table 3 and Table 5, the MAE associated with 

this kind of scenario (denoted as future prediction) only increases slightly and the overall 

accuracy of P-Flash is relatively the same. These observations are expected as the temperature 

increase behaviors are well captured by the regression models and the fittings. However, the 

early prediction for the future prediction cases has noticeable increase and this is due to the 

fact that the temperature information being used generally has large temperature increase rate 

at time, t, as compared to time, t+150 s.  

 

 Conclusions and Outlook 

The development of P-Flash is presented. The realistic treatment of modeled sensor data that 

is not continuously available, but is subject to data loss due to thermal failure, though a 

challenge, was shown to be overcome successfully by the SVR modeling techniques and P-

Flash is capable of recovering required detector temperatures for the determination of flashover 

conditions in the room of fire origin. P-Flash is under further development to handle more 

realistic conditions and these conditions include realistic multi-compartment building 

structures, fire located in any compartments, experimentally validated fire growth behavior of 

burning items, arbitrary vent opening conditions for windows and doors, and sensor limits. In 

order to facilitate data-driven fire fighting, collaborative works are required to develop smart 

fire protection systems and/or information transmission infrastructure. In the near future, P-

Flash or a similar forecasting model could provide fire fighters with trustworthy and actionable 

information about fire scenes under the cognomen smart firefighting. 
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Appendix A: CData Input File 

&HEAD VERSION = 7600, TITLE = ‘FSJ_3_compartments’ / 
 

!! CData Sampling Namelist 

&MHDR NUMBER_OF_CASES = 1000 WRITE_SEEDS = .TRUE. / 
&MRND ID = ‘End of Growth Time Generator’, DISTRIBUTION_TYPE = ‘UNIFORM’ VALUE_TYPE = ‘REAL’ MINIMUM = 75 MAXIMUM = 1400 / 

&MRND ID = ‘Peak HRR Generator’, DISTRIBUTION_TYPE = ‘UNIFORM’ VALUE_TYPE = ‘REAL’ MINIMUM = 50000 MAXIMUM = 2200000/ 

&MRND ID = ‘Plateau End Time’ DISTRIBUTION_TYPE = ‘CONSTANT’ VALUE_TYPE = ‘REAL’ REAL_CONSTANT_VALUE = 2000 / 
&MRND ID = ‘Fire End Time’ DISTRIBUTION_TYPE = ‘CONSTANT’ VALUE_TYPE = ‘REAL’ REAL_CONSTANT_VALUE = 1500 / 

&MRND ID = ‘End of Fire HRR’ DISTRIBUTION_TYPE = ‘CONSTANT’ VALUE_TYPE = ‘REAL’ REAL_CONSTANT_VALUE = 0 / 

&MFIR ID = ‘Fire_generator’ FIRE_ID = ‘Fire’ FIRE_TIME_GENERATORS = ‘End of Growth Time Generator’ 
‘Plateau End Time’ ‘Fire End Time’ FIRE_HRR_GENERATORS = ‘Peak HRR Generator’ ‘Peak HRR Generator’  

‘End of Fire HRR’ NUMBER_OF_GROWTH_POINTS = 20. / 

 
!! CFAST Namelist 

!! Scenario Configuration  

&TIME SIMULATION = 8400 PRINT = 20 SMOKEVIEW = 20 SPREADSHEET = 20 /  
&INIT PRESSURE = 101325 RELATIVE_HUMIDITY = 50 INTERIOR_TEMPERATURE = 20 EXTERIOR_TEMPERATURE = 20 / 

  

!! Material Properties  
&MATL ID = ‘GYPSUM’ MATERIAL = ‘GYPSUM Sam’,  

CONDUCTIVITY = 0.276 DENSITY = 752 SPECIFIC HEAT = 1.01699993896484, THICKNESS = 0.0159 EMISSIVITY = 0.94 /  

 
!! Compartments  

&COMP ID = ‘Comp 1’ 
DEPTH = 4.5 HEIGHT = 2.5 WIDTH = 4.5 

CEILING_MATL_ID = ‘GYPSUM’ CEILING_THICKNESS = 0.15 WALL_MATL_ID = ‘GYPSUM’ WALL_THICKNESS = 0.15 FLOOR_MATL_ID = ‘GYPSUM ‘ FLOOR_THICKNESS = 0.15 

ORIGIN = 0, 0, 0 GRID = 50, 50, 50 LEAK AREA_RATIO = 3.77777777777778E-06, 2.5679012345679E-06 / 

&COMP ID = ‘Comp 2’ 

DEPTH = 3.5 HEIGHT = 2.5 WIDTH = 1 

CEILING_MATL_ID = ‘GYPSUM’ CEILING_THICKNESS = 0.15 WALL_MATL_ID = ‘GYPSUM’ WALL_THICKNESS = 0.15 FLOOR_MATL_ID = ‘GYPSUM’ FLOOR_THICKNESS = 0.15 

ORIGIN = 3.5, 4.5, 0 GRID = 50, 50, 50 LEAK AREA_RATIO = 7.55555555555556E-06, 1.48571428571429E-05 / 

&COMP ID = ‘Comp 3’ 

DEPTH = 3.5 HEIGHT = 2.5 WIDTH = 3.5 
CEILING_MATL_ID = ‘GYPSUM’ CEILING_THICKNESS = 0.15 WALL_MATL_ID = ‘GYPSUM’ WALL_THICKNESS = 0.15 FLOOR_MATL_ID = ‘GYPSUM’ FLOOR_THICKNESS = 0.15 

ORIGIN = 0, 4.5, 0 GRID = 50, 50, 50 LEAK AREA_RATIO = 4.85714285714286E-06, 4.24489795918367E-06 / 

 
!! Wall Vents 

&VENT TYPE = ‘WALL’ ID = ‘Window’ COMP_IDS = ‘Comp 3’ ‘OUTSIDE’, BOTTOM = 1.5 HEIGHT = 0.5, WIDTH = 0.3 

FACE = ‘LEFT’ OFFSET = 1.65 / 

&VENT TYPE = ‘WALL’ ID = ‘WallVent2-3’ COMP_IDS = ‘Comp 2’, ‘Comp 3’, BOTTOM = 0 HEIGHT = 2, WIDTH = 0.75 

CRITERION = ‘TIME’ T = 0, 1 F = 1, 1 FACE = ‘LEFT’ OFFSET = 2.5 / 

&VENT TYPE = ‘WALL’ ID = ‘WallVent1-2’ COMP_IDS = ‘Comp 1’, ‘Comp 2’, BOTTOM = 0 HEIGHT = 2, WIDTH = 0.75 

CRITERION = ‘TIME’ T = 0, 1 F = 1, 1 FACE = ‘REAR’ OFFSET = 3.625 / 
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&VENT TYPE = ‘WALL’ ID = ‘Door’ COMP_IDS = ‘Comp 1’ ‘OUTSIDE’, BOTTOM = 0 HEIGHT = 2, WIDTH = 0.75 
CRITERION = ‘TIME’ T = 0, 1 F = 1, 1 FACE = ‘FRONT’ OFFSET = 1.875 / 

 

!! Fires  
&FIRE ID = ‘Fire’ COMP_ID = ‘Comp 3’, FIRE_ID = ‘Random_Fire’ LOCATION = 1.75, 1.75 /  

&CHEM ID = ‘Random_Fire’ CARBON = 3 CHLORINE = 0 HYDROGEN = 7 NITROGEN = 1 OXYGEN = 2 HEAT_OF_COMBUSTION = 26000 RADIATIVE_FRACTION = 0.35 /  

&TABL ID = ‘Random_Fire’ LABELS = ‘TIME’ , ‘HRR’ , ‘HEIGHT’ , ‘AREA’ , ‘CO_YIELD’ , ‘SOOT_YIELD’ , ‘HCN_YIELD’ , ‘HCL_YIELD’ , ‘TRACE_YIELD’  / 
&TABL ID = ‘Random_Fire’, DATA = 0, 0, 0, 0.001, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 22.8551770939605, 21.9006517182919, 0, 0.000134431445407394, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 45.710354187921, 87.6026068731677, 0, 0.000407519937727851, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 68.5655312818815, 197.105865464627, 0, 0.000779641369607396, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 91.420708375842, 350.410427492671, 0, 0.00123536944159478, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 114.275885469803, 547.516292957298, 0, 0.00176543964574354, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 137.131062563763, 788.423461858509, 0, 0.00236343067970157, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 159.986239657724, 1073.1319341963, 0, 0.00302452885528663, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 182.841416751684, 1401.64170997068, 0, 0.00374493985677181, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 205.696593845645, 1773.95278918164, 0, 0.00452156609163308, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 228.551770939605, 2190.06517182919, 0, 0.00535181223645546, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 2228.5517709396, 2190.06517182919, 0, 0.00535181223645546, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 2378.5517709396, 1773.95278918164, 0, 0.00452156609163308, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 2528.5517709396, 1401.64170997068, 0, 0.00374493985677181, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 2678.5517709396, 1073.1319341963, 0, 0.00302452885528663, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 2828.5517709396, 788.423461858509, 0, 0.00236343067970157, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 2978.5517709396, 547.516292957298, 0, 0.00176543964574354, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 3128.5517709396, 350.410427492671, 0, 0.00123536944159478, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 3278.5517709396, 197.105865464627, 0, 0.000779641369607396, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 3428.5517709396, 87.6026068731676, 0, 0.000407519937727851, 0.031, 0.13, 0, 0, 0 / 
&TABL ID = ‘Random_Fire’, DATA = 3578.5517709396, 21.9006517182919, 0, 0.000134431445407394, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 3728.5517709396, 0, 0, 0, 0.031, 0.13, 0, 0, 0 / 

&TABL ID = ‘Random_Fire’, DATA = 3738.5517709396, 0, 0, 0.001, 0.031, 0.13, 0, 0, 0 / 
  

!! Devices 

&DEVC ID = ‘HD1_1_1’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_1_2’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_1_3’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_1_4’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_1_5’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_1_6’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_1_7’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_2_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_2_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_2_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_2_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_2_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_2_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_2_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_3_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_3_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
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&DEVC ID = ‘HD1_3_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_3_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_3_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_3_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_3_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_4_1’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_4_2’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_4_3’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_4_4’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_4_5’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_4_6’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_4_7’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_5_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_5_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_5_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_5_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_5_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_5_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_5_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_6_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_6_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_6_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_6_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_6_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_6_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD1_6_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD1_7_1’ COMP_ID = ‘Comp 3’ LOCATION = 3.45, 3, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
&DEVC ID = ‘HD2_1_1’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 40 / 

&DEVC ID = ‘HD2_1_2’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD2_1_3’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 30 / 
&DEVC ID = ‘HD2_1_4’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 25 / 

&DEVC ID = ‘HD2_1_5’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 20 / 

&DEVC ID = ‘HD2_1_6’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 15 / 
&DEVC ID = ‘HD2_2_1’ COMP_ID = ‘Comp 2’ LOCATION = 0.05, 3, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD2_3_1’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 0.05, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD3_1_1’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 40 / 
&DEVC ID = ‘HD3_1_2’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 

&DEVC ID = ‘HD3_1_3’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 30 / 

&DEVC ID = ‘HD3_1_4’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 25 / 
&DEVC ID = ‘HD3_1_5’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 20 / 

&DEVC ID = ‘HD3_1_6’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 15 / 

&DEVC ID = ‘HD3_2_1’ COMP_ID = ‘Comp 1’ LOCATION = 4, 4.45, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 / 
  

&TAIL / 
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Appendix B: P-Flash Source Codes 

Appendix B consists of 5 parts: B1 to B5. Appendix B1 provides the main codes for P-Flash. 

Appendix B2 presents codes that read the data and assign them to an appropriate format. 

Appendix B3 provides codes for data pre-processing and feature extraction. Appendix B4 

provides codes for model training and testing. Appendix B5 presents codes for the memory 

component and fitting. The logic flow of the codes strictly follows the model descriptions 

provided in the main text.  

To execute the codes, the reader only needs the original data which can be downloaded from 

https://doi.org/10.18434/M32258 and combines the codes in a single file.

https://doi.org/10.18434/M32258
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Appendix B1: Main 

# Load libraries 

import numpy as np 

from sklearn.svm import SVR 

from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import GridSearchCV 

from sklearn.metrics import mean_absolute_error 

from scipy.optimize import curve_fit 

# Load scripts 

import CsvReader 

import Utility 

 

# Main codes 

# Input files 

DataFile = 'C:\\Users\\xxx\\IdeaProjects\\3compartment\\Inputs\\case1000.csv' 

# Output locations 

resultDir = 'C:\\Users\\xxx\\IdeaProjects\\3compartment\\Results\\' 

# Cross-validation setting 

CV = 5 

 

# 2 major steps are done here: data pro-processing and feature extraction 

# Look at Appendix B2 and B3 

SP = SignalPreprocessing(DataFile, resultDir) 

# Get only allInstances 

allInstances = SP.allInstances 

 

# Construct appropriate training and testing sets for "current" prediction or "future" prediction 

learningTestingDict, TestInstancesGroup = Instance.Instances2GroupLists_multiRoomV3(Instances = allInstances, cv=CV , typeLabel= 'current') # or Future 

 

# Start to carry out training and testing for the 5 different subsets (CV = 5) 

# Another 2 major steps are done here: modeling development and fitting 

# Look at Appendix B4 and B5 

for i in range(0, CV): 

    Xs_train_fast = learningTestingDict['fast_train'][0][i] 

    y_train_fast = learningTestingDict['fast_train'][1][i] 

    Xs_test_fast = learningTestingDict['fast_test'][0][i] 

    y_test_fast = learningTestingDict['fast_test'][1][i] 
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    Xs_train_slow = learningTestingDict['slow_train'][0][i] 

    y_train_slow = learningTestingDict['slow_train'][1][i] 

    Xs_test_slow = learningTestingDict['slow_test'][0][i] 

    y_test_slow = learningTestingDict['slow_test'][1][i] 

 

    TestInstances = TestInstancesGroup[i] 

 

    # Normalization 

    scaler_fast = StandardScaler() 

    Xs_train_fast = scaler_fast.fit_transform(Xs_train_fast) 

    Xs_test_fast = scaler_fast.transform(Xs_test_fast) 

    scaler_slow = StandardScaler() 

    Xs_train_slow = scaler_slow.fit_transform(Xs_train_slow) 

    Xs_test_slow = scaler_slow.transform(Xs_test_slow) 

 

    # Initialize model 

    FTR = FireTemperatureRegression() 

 

    # 2 SVR models: r1 and r2 

    # r1 exists in Phase 2 

    # r2 exists in Phase 2 and 3 

    FTR.fit( 

        Xs_r1 = Xs_train_fast, 

        y_r1 = y_train_fast, 

        Xs_r2 = Xs_train_slow, 

        y_r2 = y_train_slow 

    ) 

 

    for i_test in range(0, len(TestInstances)): 

        testI = TestInstances[i_test] 

        if len(testI[2]) > 0: 

            currentID = testI[-1] 

            # Carrying out fitting 

            predict_values, real_values, p2, r2, p3, r3, p23, r23, p4, r4, fit_type = FTR.predict_instancesV2( 

                fvs_fast = testI[0], 

                fvs_slow = testI[1], 

                reals = testI[2], 

                types = testI[3], 

                ts = testI[5], 
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                scale_fast = scaler_fast, 

                scale_slow = scaler_slow 

            ) 

 

            # Determine overall MAE in Phase 2 to Phase 4 

            MAE, num = FTR.getMAE(predict_values, real_values) 

            # Determine MAE in Phase 2 only 

            try: 

                MAE_p2, _ = FTR.getMAE(p2, r2) 

            except ValueError: 

                MAE_p2 = 0 

            # Determine  MAE in Phase 3 only 

            MAE_p3, _ = FTR.getMAE(p3, r3) 

            # Determine overall MAE in Phase 2 and 3 

            MAE_p23, _ = FTR.getMAE(p23, r23) 

            # Determine MAE in Phase 4 only 

            MAE_p4, _ = FTR.getMAE(p4, r4) 

# End of Main codes 
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Appendix B2: Read Data 

# Step 1 to get data 

class SignalPreprocessing(object): 

    # Getting raw data 

    def __init__(self, signal_fn, resultDir): 

 

        readingModule = CsvReader.CsvReader(signal_fn) 

        Data = readingModule.getData( 

            indexs = [0,1,2,3,4,5], 

            hasHeader = 1, 

            needHandleNegativeOneIndex = [], 

            flag = None 

        ) 

        self.ids_list  = Data[0] 

        self.times_list = Data[1] 

        self.t1s_list = Data[2] 

        self.t2s_list = Data[3] 

        self.t3s_list = Data[4] 

        self.tps_list = Data[5] 

 

        self._buildInstances() 

 

    def _buildInstances(self): 

        self.allInstances = [] 

        temp_ids = [] 

        idxRanges = [] 

        lastID = self.ids_list[0] 

        startIdx = 0 

        for i in range(0, len(self.ids_list)): 

            print(i) 

            currentID = self.ids_list[i] 

            if currentID != lastID: 

                endIdx = i 

                idxRanges.append([startIdx, endIdx]) 

                temp_ids.append(lastID) 

                # Refresh 

                lastID = currentID 

                startIdx = i 
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        # Append last one 

        idxRanges.append([startIdx, len(self.ids_list)]) 

        temp_ids.append(lastID) 

        for i in range(0, len(idxRanges)): 

            print(i) 

            currentRng = idxRanges[i] 

            newInstance = Instance( 

                temp_ids[i], 

                self.times_list[currentRng[0]: currentRng[1]], 

                self.t1s_list[currentRng[0]: currentRng[1]], 

                self.t2s_list[currentRng[0]: currentRng[1]], 

                self.t3s_list[currentRng[0]: currentRng[1]], 

                self.tps_list[currentRng[0]: currentRng[1]]) 

            self.allInstances.append(newInstance) 

# End of step 1 
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Appendix B3: Data Pre-Processing and Feature Extraction 

# Step 2 to do data pre-processing and feature extraction 

class Instance(object): 

    @staticmethod 

    def Instances2GroupLists_multiRoomV3(Instances, cv, typeLabel): 

        Xs_train_group_fastRoom = [] 

        Xs_test_group_fastRoom = [] 

        y_train_group_fastRoom = [] 

        y_test_group_fastRoom = [] 

        Xs_train_group_slowRoom = [] 

        Xs_test_group_slowRoom = [] 

        y_train_group_slowRoom = [] 

        y_test_group_slowRoom = [] 

        TestInstances_group = [] 

 

        totalLength = len(Instances) 

        step = totalLength / float(cv) 

        chunkIdxs = np.arange(0, totalLength, step).tolist() 

        for i in range(0, len(chunkIdxs)): 

            startIdx = chunkIdxs[i] 

            if i + 1 < len(chunkIdxs): 

                endIdx = chunkIdxs[i + 1] 

            else: 

                endIdx = len(Instances) 

            # Training and Testing subsets 

            # Build Xs and Ys 

            Xs_train_fast = [] 

            Xs_test_fast = [] 

            Xs_train_slow = [] 

            Xs_test_slow = [] 

            # --------------- 

            y_train_fast = [] 

            y_test_fast = [] 

            y_train_slow = [] 

            y_test_slow = [] 

            # --------------- 

            TestInstance = [] 

            # --------------- 
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            for i_instance in range(0, len(Instances)): 

                currentInstance = Instances[i_instance] 

                if i_instance >= startIdx and i_instance < endIdx: 

                    Xs_test_slow.extend(currentInstance.instances_r1_fvs) 

                    Xs_test_fast.extend(currentInstance.instances_r2_fvs) 

                    if typeLabel == 'current': 

                        currentTestInstance = [ 

                            currentInstance.test_fvs_fast_current, 

                            currentInstance.test_fvs_slow_current, 

                            currentInstance.test_Labels_current, 

                            currentInstance.test_types_current, 

                            currentInstance.times_refine[currentInstance.thresholdPoint_t1], 

                            currentInstance.test_t_current, 

                            currentInstance.id 

                        ] 

                        TestInstance.append(currentTestInstance) 

                    else: 

                        currentTestInstance = [ 

                            currentInstance.test_fvs_fast_future, 

                            currentInstance.test_fvs_slow_future, 

                            currentInstance.test_Labels_future, 

                            currentInstance.test_types_future, 

                            currentInstance.times_refine[currentInstance.thresholdPoint_t1], 

                            currentInstance.test_t_future, 

                            currentInstance.id 

                        ] 

                        TestInstance.append(currentTestInstance) 

                else: 

                    Xs_train_slow.extend(currentInstance.instances_r1_fvs) 

                    Xs_train_fast.extend(currentInstance.instances_r2_fvs) 

                    if typeLabel == 'current': 

                        y_train_slow.extend(currentInstance.regression_r1_lb0s) 

                        y_train_fast.extend(currentInstance.regression_r2_lb0s) 

                    else: 

                        y_train_slow.extend(currentInstance.regression_r1_lbns) 

                        y_train_fast.extend(currentInstance.regression_r2_lbns) 

 

            Xs_train_group_fastRoom.append(Xs_train_fast) 

            Xs_test_group_fastRoom.append(Xs_test_fast) 
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            y_train_group_fastRoom.append(y_train_fast) 

            y_test_group_fastRoom.append(y_test_fast) 

            Xs_train_group_slowRoom.append(Xs_train_slow) 

            Xs_test_group_slowRoom.append(Xs_test_slow) 

            y_train_group_slowRoom.append(y_train_slow) 

            y_test_group_slowRoom.append(y_test_slow) 

            TestInstances_group.append(TestInstance) 

        return { 

                   'fast_train': [Xs_train_group_fastRoom, y_train_group_fastRoom], 

                   'fast_test': [Xs_test_group_fastRoom, y_test_group_fastRoom], 

                   'slow_train': [Xs_train_group_slowRoom, y_train_group_slowRoom], 

                   'slow_test': [Xs_test_group_slowRoom, y_test_group_slowRoom] 

               }, TestInstances_group 

 

    # Carrying out data pre-processing 

    def __init__(self, id, times, t1s, t2s, t3s, ps, threshold=150, predictTempThreshold=600): 

        # Read values 

        self.id = id 

        self.times = times 

        self.t1s = t1s 

        self.t2s = t2s 

        self.t3s = t3s 

        self.ps = ps 

        self.threshold = threshold 

        self.predictTempThreshold = predictTempThreshold 

        # Process starts here 

        self._preprocess() 

        self._determine_labels() 

        self._applyTemperatureThreshold() 

        self._extract_features_flash() 

        self._extractRegressionFeaturesAndLabels(3, 6) 

        self._buildPhaseTimeRanges() 

        self._buildTestingInstance(3, 6) 

        print('d') 

 

    def _preprocess(self): 

        flag = (self.ps[0] == self.ps[1]) 

        while flag: 

            self.times = self.times[1:] 
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            self.t1s = self.t1s[1:] 

            self.t2s = self.t2s[1:] 

            self.t3s = self.t3s[1:] 

            self.ps = self.ps[1:] 

            flag = (self.ps[0] == self.ps[1]) 

        # Get front data value (for refine use) 

        self.front_p = float(self.ps[0]) 

        self.front_t1 = float(self.t1s[0]) 

        self.front_t2 = float(self.t2s[0]) 

        self.front_t3 = float(self.t3s[0]) 

        # Convert to float 

        self.times = [float(ele) - float(self.times[0]) for ele in self.times] 

        self.t1s = [float(ele) - float(self.t1s[0]) for ele in self.t1s] 

        self.t2s = [float(ele) - float(self.t2s[0]) for ele in self.t2s] 

        self.t3s = [float(ele) - float(self.t3s[0]) for ele in self.t3s] 

        self.ps = [float(ele) - float(self.ps[0]) for ele in self.ps] 

        # Recover original signal 

        self.ps_ori = [e+self.front_p for e in self.ps] 

        self.t1s_ori = [e+self.front_t1 for e in self.t1s] 

        self.t2s_ori = [e+self.front_t2 for e in self.t2s] 

        self.t3s_ori = [e+self.front_t3 for e in self.t3s] 

        # Cut off right hand part 

        flag = (self.ps[-1] < self.ps[-2]) 

        while flag: 

            self.times = self.times[:-1] 

            self.t1s = self.t1s[:-1] 

            self.t2s = self.t2s[:-1] 

            self.t3s = self.t3s[:-1] 

            self.ps = self.ps[:-1] 

            flag = (self.ps[-1] < self.ps[-2]) 

        # Generate other basic features 

        self.times_diff = self.times[1:] 

        self.diff_ps = np.diff(np.array(self.ps)).tolist() 

        self.diff_t1s = np.diff(np.array(self.t1s)).tolist() 

        self.diff_t2s = np.diff(np.array(self.t2s)).tolist() 

        self.diff_t3s = np.diff(np.array(self.t3s)).tolist() 

        # Smoothing 

        self.diff_ps = Utility.move_average(self.diff_ps, 4) 

        self.diff_t1s = Utility.move_average(self.diff_t1s, 4) 



31 
 

        self.diff_t2s = Utility.move_average(self.diff_t2s, 4) 

        self.diff_t3s = Utility.move_average(self.diff_t3s, 4) 

        # Padding 

        self.times_gap = [] 

        self.t1s_gap = [] 

        self.t2s_gap = [] 

        self.t3s_gap = [] 

        for i in range(0, len(self.times)): 

            self.times_gap.append(self.times[i]) 

            self.t1s_gap.append(self.ps_ori[i] - self.t1s_ori[i]) 

            self.t2s_gap.append(self.ps_ori[i] - self.t2s_ori[i]) 

            self.t3s_gap.append(self.ps_ori[i] - self.t3s_ori[i]) 

        print('d') 

 

    # Assign labels 

    def _determine_labels(self): 

        if max(self.ps) >= self.predictTempThreshold: 

            self.isFlash = True 

        else: 

            self.isFlash = False 

 

    # Apply temperature threshold 

    def _applyTemperatureThreshold(self): 

        self.times_refine = [] 

        self.ps_refine = [] 

        self.t1s_refine = [] 

        self.t2s_refine = [] 

        self.t3s_refine = [] 

        self.thresholdPoint_p = None 

        self.thresholdPoint_t1 = None 

        self.thresholdPoint_t2 = None 

        self.thresholdPoint_t3 = None 

 

        for i in range(0, len(self.times)): 

            self.times_refine.append(self.times[i]) 

            # Apply threshold 

            current_p = self.ps[i] + self.front_p 

            current_t1 = self.t1s[i] + self.front_t1 

            current_t2 = self.t2s[i] + self.front_t2 



32 
 

            current_t3 = self.t3s[i] + self.front_t3 

            if current_p < self.threshold: 

                self.ps_refine.append(current_p) 

            else: 

                self.ps_refine.append(-1) 

                if self.thresholdPoint_p == None: 

                    self.thresholdPoint_p = i 

            if current_t1 < self.threshold: 

                self.t1s_refine.append(current_t1) 

            else: 

                self.t1s_refine.append(-1) 

                if self.thresholdPoint_t1 == None: 

                    self.thresholdPoint_t1 = i 

            if current_t2 < self.threshold: 

                self.t2s_refine.append(current_t2) 

            else: 

                self.t2s_refine.append(-1) 

                if self.thresholdPoint_t2 == None: 

                    self.thresholdPoint_t2 = i 

            if current_t3 < self.threshold: 

                self.t3s_refine.append(current_t3) 

            else: 

                self.t3s_refine.append(-1) 

                if self.thresholdPoint_t3 == None: 

                    self.thresholdPoint_t3 = i 

 

    # Construct different phases 

    def _buildPhaseTimeRanges(self): 

        if self.thresholdPoint_p == None: 

            self.thresholdPoint_p = len(self.times_refine)-1 

        if self.thresholdPoint_t1 == None: 

            self.thresholdPoint_t1 = len(self.times_refine)-1 

        if self.thresholdPoint_t2 == None: 

            self.thresholdPoint_t2 = len(self.times_refine)-1 

        self.phase1Range = [self.times_refine[self.thresholdPoint_p], self.times_refine[self.thresholdPoint_t2]] 

        self.phase2Range = [self.times_refine[self.thresholdPoint_t2], self.times_refine[self.thresholdPoint_t1]] 

        self.phase3Range = [self.times_refine[self.thresholdPoint_t1], 999999] # just make sure it is large enough 

 

    # Subroutine of _extract_features_flash 
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    @staticmethod 

    def _FEATURE_single_TS(times, temps, startIndex, endIndex): 

        # compute delta time 

        deltaT = times[endIndex] - times[startIndex] 

        # f1 

        deltaTemp = temps[endIndex] - temps[startIndex] 

        # f2 

        avgDeltaTempRate = float(deltaTemp) / float(deltaT) 

        # compute instant change 

        instantValueChanges = [] 

        for i in range(startIndex+1, endIndex+1): 

            dt_instant = times[i] - times[i-1] 

            dv_instant = temps[i] - temps[i-1] 

            speed_instant =  float(dv_instant) / float(dt_instant) 

            instantValueChanges.append(speed_instant) 

        # f3 min instant speed 

        min_instantValue = min(instantValueChanges) 

        # f4 max instant speed 

        max_instantValue = max(instantValueChanges) 

        # f5 avg instant speed 

        avg_instantValue = np.array(instantValueChanges).mean() 

        # f6 largest index position 

        maxIndax = instantValueChanges.index(max(instantValueChanges)) 

        position_ratio = float(maxIndax) / float(len(instantValueChanges)) 

        # f7 trend 

        # build points 

        X = np.arange(len(instantValueChanges)) 

        Y = np.array(instantValueChanges) 

        A = np.vstack([X, np.ones(len(X))]).T 

        m_all, _ = np.linalg.lstsq(A, Y)[0] 

        X = np.arange(len(instantValueChanges)) 

        Y = np.array(instantValueChanges) 

        A = np.vstack([X, np.ones(len(X))]).T 

        m_all, _ = np.linalg.lstsq(A, Y)[0] 

        # first part and second part 

        middleIndex = int(len(instantValueChanges)/2)+1 

        # first part 

        X = np.arange(len(instantValueChanges[0:middleIndex])) 

        Y = np.array(instantValueChanges[0:middleIndex]) 



34 
 

        A = np.vstack([X, np.ones(len(X))]).T 

        m_front, _ = np.linalg.lstsq(A, Y)[0] 

        # back part 

        X = np.arange(len(instantValueChanges[middleIndex:])) 

        if len(X.tolist()) == 0: 

            m_back = m_front 

        else: 

            Y = np.array(instantValueChanges[middleIndex:]) 

            A = np.vstack([X, np.ones(len(X))]).T 

            m_back, _ = np.linalg.lstsq(A, Y)[0] 

        # fv 

        fv = [deltaT, deltaTemp, avgDeltaTempRate, min_instantValue, max_instantValue, avg_instantValue, position_ratio, m_all, m_front, m_back] 

        return fv 

 

    # Obtain features for Room 1 in Phase 1 

    def _extract_features_flash(self): 

        if self.thresholdPoint_p != None: 

            self.fv_full = [] 

            fv_p_temp = Instance._FEATURE_single_TS(times=self.times_refine, temps=self.ps_refine, startIndex=0, endIndex=self.thresholdPoint_p-1) 

            fv_p_diff = Instance._FEATURE_single_TS(times=self.times_diff, temps=self.diff_ps, startIndex=0, endIndex=self.thresholdPoint_p-1) 

            self.fv_full.extend(fv_p_temp) 

            self.fv_full.extend(fv_p_diff) 

        else: 

            self.fv_full = None 

 

    # Obtain features for 1) Corridor in Phase 1 to 2 and 2) Room 2 in Phase 1 to 3 

    def _extractRegressionFeaturesAndLabels(self, n_space, windowLength = 6): 

        self.isRegression_valid = False 

        self.r1_window_end_ts = [] 

        self.instances_r1_fvs = [] 

        self.regression_r1_lb0s = [] 

        self.regression_r1_lbns = [] 

        self.r2_window_end_ts = [] 

        self.instances_r2_fvs = [] 

        self.regression_r2_lb0s = [] 

        self.regression_r2_lbns = [] 

        # check 

        self.isRegression_valid = True 
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        if self.thresholdPoint_p == None: 

            self.isRegression_valid = False 

            self.fv_fix_slow = None 

            self.fv_fix_fast = None 

        else: 

            if self.thresholdPoint_t1 == None: 

                self.thresholdPoint_t1 = len(self.times_refine)-1 

            if self.thresholdPoint_t2 == None: 

                self.thresholdPoint_t2 = len(self.times_refine)-1 

            # Get basic 

            idxRange_fixing = [0, self.thresholdPoint_p-1] 

            idxRange_changing_r1 = [self.thresholdPoint_p, self.thresholdPoint_t1-1] 

            idxRange_changing_r2 = [self.thresholdPoint_p, self.thresholdPoint_t2-1] 

            # Phase 1 

            fv_fix_r1, self.mean_r1_value, self.mean_r1_change = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s, idxRange_fixing[0], 

idxRange_fixing[1]) 

            fv_fix_r2, self.mean_r2_value, self.mean_r2_change = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s, idxRange_fixing[0], 

idxRange_fixing[1]) 

            self.fv_fix_slow = fv_fix_r1 

            self.fv_fix_fast = fv_fix_r2 

            # Phase 2 and 3 

            # r1 first --- 

            # Apply moving window 

            r1_mv_idxRanges = Instance._movingWindow( 

                frontIndex=0, 

                endIndex=idxRange_changing_r1[1], 

                lengthWindow=windowLength, 

                stepIndex=1 

            ) 

            for i in range(0, len(r1_mv_idxRanges)): 

                currentRange = r1_mv_idxRanges[i] 

                changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s_refine, currentRange[0], currentRange[1], isFix=False, 

deltaT=self.times_refine[currentRange[-1]]-self.times_refine[self.thresholdPoint_p],mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change) 

                fv_full = [] 

                fv_full.extend(changing_fv) 

                fv_full.extend(fv_fix_r1) 

                # Get label 

                currentLabel0 = self.ps_ori[currentRange[-1]] 

                currentLabeln = self.ps_ori[min(len(self.ps_ori)-1, currentRange[-1]+n_space)] 
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                # Append 

                self.r1_window_end_ts.append(self.times_refine[currentRange[-1]]) 

                self.instances_r1_fvs.append(fv_full) 

                self.regression_r1_lb0s.append(currentLabel0) 

                self.regression_r1_lbns.append(currentLabeln) 

            # Then r2 --- 

            # Apply moving window 

            r2_mv_idxRanges = Instance._movingWindow( 

                frontIndex=0, 

                endIndex=idxRange_changing_r2[1], 

                lengthWindow=windowLength, 

                stepIndex=1 

            ) 

            for i in range(0, len(r2_mv_idxRanges)): 

                currentRange = r2_mv_idxRanges[i] 

                changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s_refine, currentRange[0], currentRange[1], isFix=False, 

deltaT=self.times_refine[currentRange[-1]]-self.times_refine[self.thresholdPoint_p], mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change) 

                fv_full = [] 

                fv_full.extend(changing_fv) 

                fv_full.extend(fv_fix_r2) 

                # Get label 

                currentLabel0 = self.ps_ori[currentRange[-1]] 

                currentLabeln = self.ps_ori[min(len(self.ps_ori) - 1, currentRange[-1] + n_space)] 

                # Append 

                self.r2_window_end_ts.append(self.times_refine[currentRange[-1]]) 

                self.instances_r2_fvs.append(fv_full) 

                self.regression_r2_lb0s.append(currentLabel0) 

                self.regression_r2_lbns.append(currentLabeln) 

 

    # Subroutine of _extractRegressionFeaturesAndLabels 

    @staticmethod 

    def _FEATURE_regression(times, ps, ts, startIndex, endIndex, isFix = True, deltaT = None, mean_t_value =None, mean_t_change=None): 

        # ps is the fire room 

        # ts is other room 

        mean_ps_v = np.array(ps[startIndex:endIndex+1]).mean() 

        mean_ts_v = np.array(ts[startIndex:endIndex+1]).mean() 

        instantValueChanges_ps = [] 

        for i in range(startIndex + 1, endIndex + 1): 

            dt_instant = times[i] - times[i - 1] 
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            dv_instant = ps[i] - ps[i - 1] 

            speed_instant = float(dv_instant) / float(dt_instant) 

            instantValueChanges_ps.append(speed_instant) 

        instantValueChanges_ts = [] 

        for i in range(startIndex + 1, endIndex + 1): 

            dt_instant = times[i] - times[i - 1] 

            dv_instant = ts[i] - ts[i - 1] 

            speed_instant = float(dv_instant) / float(dt_instant) 

            instantValueChanges_ts.append(speed_instant) 

        meanPs = np.array(instantValueChanges_ps).mean() 

        maxPs = np.array(instantValueChanges_ps).max() 

        minPs = np.array(instantValueChanges_ps).min() 

        meanTs = np.array(instantValueChanges_ts).mean() 

        maxTs = np.array(instantValueChanges_ts).max() 

        minTs = np.array(instantValueChanges_ts).min() 

        # Compute ratio 

        maxIndax = instantValueChanges_ps.index(max(instantValueChanges_ps)) 

        position_ratio_p = float(maxIndax) / float(len(instantValueChanges_ps)) 

        maxIndax = instantValueChanges_ts.index(max(instantValueChanges_ts)) 

        position_ratio_t = float(maxIndax) / float(len(instantValueChanges_ts)) 

        if isFix == False: 

            fv = [mean_ts_v,meanTs, maxTs, minTs, position_ratio_t, deltaT] 

            return fv 

        else: 

            fv = [mean_ps_v, mean_ts_v, meanPs, maxPs, minPs, meanTs, maxTs, minTs, position_ratio_p, position_ratio_t] 

            mean_ts_value = mean_ts_v 

            mean_ts_change = meanTs 

            return fv, mean_ts_value, mean_ts_change 

 

    # Subroutine of _extractRegressionFeaturesAndLabels 

    @staticmethod 

    def _movingWindow(frontIndex, endIndex, lengthWindow, stepIndex): 

        eachWindowIndexRanges = [] 

        # paras 

        totalLength = endIndex-frontIndex+1 

        i = frontIndex 

        while i < endIndex-lengthWindow: 

            # iterate window 

            currentWindowStartIdx = i 
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            currentWindowEndIdx = i + lengthWindow 

            eachWindowIndexRanges.append([currentWindowStartIdx, currentWindowEndIdx]) 

            # refresh 

            i = i+stepIndex 

        return eachWindowIndexRanges 

 

    # Subroutine of _extractRegressionFeaturesAndLabels 

    @staticmethod 

    def _isInIndexRange(idx, rng): 

        # if idx >= rng[0] and idx<=rng[1]: 

        #     return True 

        if idx<=rng[1]: 

            return True 

        else: 

            return False 

 

    # Combine instances 

    def _buildTestingInstance(self, n_space, lengthWindow): 

        if self.id == '3': 

            print('d') 

        if self.isRegression_valid == False: 

            self.test_t_current = [] 

            self.test_Labels_current = [] 

            self.test_t_future = [] 

            self.test_Labels_future= [] 

            self.test_types_future = []  # 'multi' or 'single' 

            self.test_types_current = [] 

            self.test_fvs_slow_future = []  # 1 

            self.test_fvs_fast_future = []  # 2 

            self.test_fvs_slow_current = []  # 1 

            self.test_fvs_fast_current = []  # 2 

            # logInfo --- 

            self.test_logInfo_historyTemp_slow = [] 

            self.test_logInfo_windowTemp_slow = [] 

            self.test_logInfo_deltaTs = [] 

        else: 

            idxRange_changing_slow = [self.thresholdPoint_p, self.thresholdPoint_t1 - 1] 

            idxRange_changing_fast = [self.thresholdPoint_p, self.thresholdPoint_t2 - 1] 

            # Build test fvs and types (one room or two room) and labels 
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            self.test_t_current = [] 

            self.test_Labels_current = [] 

            self.test_t_future = [] 

            self.test_Labels_future = [] 

            self.test_types_future = [] 

            self.test_types_current = [] 

            self.test_fvs_slow_future = [] # 1 

            self.test_fvs_fast_future = [] # 2 

            self.test_fvs_slow_current = []  # 1 

            self.test_fvs_fast_current = []  # 2 

            # logInfo --- 

            self.test_logInfo_historyTemp_slow = [] 

            self.test_logInfo_windowTemp_slow = [] 

            self.test_logInfo_deltaTs = [] 

            # Build -- future 

            for i in range(self.thresholdPoint_p, self.thresholdPoint_t1): 

                # Determine window 

                currentPredictIndex = i 

                currentWindowEndIndex = max(0, currentPredictIndex-n_space) 

                currentWindowStartIndex = max(0, currentWindowEndIndex - lengthWindow +1) 

                if currentWindowEndIndex - currentWindowStartIndex+1 <= (1/2)* lengthWindow: 

                    continue 

                self.test_Labels_future.append(self.ps_ori[currentPredictIndex]) 

                self.test_t_future.append(self.times_refine[currentPredictIndex]) 

                # Determine type 

                flag_slow = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_slow) 

                flag_fast = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_fast) 

                if flag_slow == True and flag_fast == True: 

                    self.test_types_future.append('multi') 

                else: 

                    # It should not go here 

                    self.test_types_future.append('single') 

                # ------- test fv -------------- 

                if flag_slow == True: 

                    # Build fv 

                    changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s_refine, 

                                                               currentWindowStartIndex, currentWindowEndIndex, isFix=False, 

                                                               deltaT=self.times_refine[currentWindowEndIndex] -self.times_refine[self.thresholdPoint_p], 

mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change) 
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                    fv_full = [] 

                    fv_full.extend(changing_fv) 

                    fv_full.extend(self.fv_fix_slow) 

                    # Append -- test fv 

                    self.test_fvs_slow_future.append(fv_full) 

                    # Append -- history temp for slow room 

                    self.test_logInfo_historyTemp_slow.append( 

                        self.t1s_refine[0:currentWindowEndIndex+1] 

                    ) 

                    self.test_logInfo_windowTemp_slow.append( 

                        self.t1s_refine[currentWindowStartIndex:currentWindowEndIndex+1] 

                    ) 

                    self.test_logInfo_deltaTs.append( 

                        self.times_refine[currentWindowEndIndex+1] - self.times_refine[self.thresholdPoint_p] 

                    ) 

                else: 

                    self.test_fvs_slow_future.append(None) 

                    self.test_logInfo_historyTemp_slow.append(None) 

                    self.test_logInfo_deltaTs.append(None) 

                if flag_fast == True: 

                    # Build fv 

                    changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s_refine, 

                                                               currentWindowStartIndex, currentWindowEndIndex, isFix=False, 

                                                               deltaT=self.times_refine[currentWindowEndIndex] - self.times_refine[self.thresholdPoint_p], 

mean_t_value=self.mean_r2_value, mean_t_change=self.mean_r2_change) 

                    fv_full = [] 

                    fv_full.extend(changing_fv) 

                    fv_full.extend(self.fv_fix_fast) 

                    # Append 

                    self.test_fvs_fast_future.append(fv_full) 

                else: 

                    self.test_fvs_fast_future.append(None) 

 

            for i in range(self.thresholdPoint_t1, len(self.times_refine)): 

                self.test_t_future.append(self.times_refine[i]) 

                self.test_Labels_future.append(self.ps_ori[i]) 

                self.test_types_future.append('trend') 

            # Build -- current 

            for i in range(self.thresholdPoint_p, self.thresholdPoint_t1): 
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                # Determine window 

                currentPredictIndex = i 

                currentWindowEndIndex = max(currentPredictIndex, 0) 

                currentWindowStartIndex = max(0,currentWindowEndIndex - lengthWindow +1) 

                if currentWindowEndIndex - currentWindowStartIndex + 1 <= (1 / 2) * lengthWindow: 

                    continue 

                self.test_Labels_current.append(self.ps_ori[currentPredictIndex]) 

                self.test_t_current.append(self.times_refine[currentPredictIndex]) 

                # Determine type 

                flag_slow = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_slow) 

                flag_fast = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_fast) 

                if flag_slow == True and flag_fast == True: 

                    self.test_types_current.append('multi') 

                else: 

                    # It should not go here 

                    self.test_types_current.append('single') 

                # ------- test fv -------------- 

                if flag_slow == True: 

                    # Build fv 

                    changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s_refine, 

                                                               currentWindowStartIndex, currentWindowEndIndex, isFix=False, 

                                                               deltaT=self.times_refine[currentWindowEndIndex] -self.times_refine[self.thresholdPoint_p], 

mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change) 

                    f = Utility.list_contain_nan(changing_fv) 

                    if f == True: 

                        print('a') 

 

                    fv_full = [] 

                    fv_full.extend(changing_fv) 

                    fv_full.extend(self.fv_fix_slow) 

                    # Append 

                    self.test_fvs_slow_current.append(fv_full) 

                else: 

                    self.test_fvs_slow_current.append(None) 

                if flag_fast == True: 

                    # Build fv 

                    changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s_refine, 

                                                               currentWindowStartIndex, currentWindowEndIndex, isFix=False, 

                                                               deltaT=self.times_refine[currentWindowEndIndex] - self.times_refine[self.thresholdPoint_p], 
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mean_t_value=self.mean_r2_value, mean_t_change=self.mean_r2_change) 

                    fv_full = [] 

                    fv_full.extend(changing_fv) 

                    fv_full.extend(self.fv_fix_fast) 

                    # Append 

                    self.test_fvs_fast_current.append(fv_full) 

                else: 

                    self.test_fvs_fast_current.append(None) 

            for i in range(self.thresholdPoint_t1, len(self.times_refine)): 

                self.test_t_current.append(self.times_refine[i]) 

                self.test_Labels_current.append(self.ps_ori[i]) 

                self.test_types_current.append('trend') 

 

            print('d') 

# End of step 2 
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Appendix B4: Training and Testing 

# Step 3 to do training and testing 

class FireTemperatureRegression(object): 

    # Initialize parameters 

    def __init__(self): 

        self.regressionModule_room1 = None 

        self.regressionModule_room2 = None 

        # Time range 

        self.Phase1TimeRange = None 

        self.Phase2TimeRange = None 

        self.Phase3TimeRange = None 

 

    # Training and Testing the model 

    def fit(self, Xs_r1, y_r1, Xs_r2, y_r2, isGrid = True): 

        # r1 

        gsc = GridSearchCV( 

            estimator=SVR(kernel='rbf'), 

            param_grid={ 

                'C': [0.1, 1, 100, 1000], 

                'epsilon':[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 

                'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5] 

            }, 

            cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1) 

        grid_result = gsc.fit(Xs_r1, y_r1) 

        best_params = grid_result.best_params_ 

        print('Room 1---C: ' + str(best_params["C"])) 

        print('Room 1---epsilon: ' + str(best_params["epsilon"])) 

        print('Room 1---gamma: ' + str(best_params["gamma"])) 

        self.regressionModule_room1 = SVR(kernel='rbf', C=best_params["C"], epsilon=best_params["epsilon"], gamma=best_params["gamma"], 

                  coef0=0.1, shrinking=True, 

                  tol=0.001, cache_size=200, verbose=False, max_iter=-1) 

        self.regressionModule_room1.fit(Xs_r1, y_r1) 

        # r2 

        gsc = GridSearchCV( 

            estimator=SVR(kernel='rbf'), 

            param_grid={ 

                'C': [0.1, 1, 100, 1000], 

                'epsilon': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10], 
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                'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5] 

            }, 

            cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1) 

        grid_result = gsc.fit(Xs_r2, y_r2) 

        best_params = grid_result.best_params_ 

        print('Room 2---C: ' + str(best_params["C"])) 

        print('Room 2---epsilon: ' + str(best_params["epsilon"])) 

        print('Room 2---gamma: ' + str(best_params["gamma"])) 

        self.regressionModule_room2 = SVR(kernel='rbf', C=best_params["C"], epsilon=best_params["epsilon"], 

                                          gamma=best_params["gamma"], 

                                          coef0=0.1, shrinking=True, 

                                          tol=0.001, cache_size=200, verbose=False, max_iter=-1) 

        self.regressionModule_room2.fit(Xs_r2, y_r2) 

 

    # Padding and smoothing 

    @staticmethod 

    def MA(y, N=4): 

        y_padded = np.pad(y, (N // 2, N - 1 - N // 2), mode='edge') 

        y_smooth = np.convolve(y_padded, np.ones((N,)) / N, mode='valid') 

        return y_smooth 

 

    # Subroutine of predict_instancesV2 

    # To get fitting type (binding or polynomial) 

    @staticmethod 

    def predict_instance_trend(memory_ts, memory_temps, predict_ts): 

        FTP_trend = FireTemperaturePredictionForSameRoom() 

        FTP_trend.fit(memory_ts, FireTemperatureRegression.MA(memory_temps)) 

        predict_temps = FTP_trend.predict(predict_ts) 

        return predict_temps, FTP_trend.type 

 

    # Fitting 

    def predict_instancesV2(self, fvs_fast, fvs_slow, reals, types, ts, scale_fast, scale_slow): 

        p2 =[] 

        r2 =[] 

        p3 = [] 

        r3 = [] 

        p23 = [] 

        r23 = [] 

        p4 = [] 
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        r4 = [] 

 

        predict_values = [] 

        i_trend = types.index('trend') 

        for i in range(0, i_trend): 

            currentType = types[i] 

            fv_fast = fvs_fast[i] 

            fv_slow = fvs_slow[i] 

            if fv_fast != None: 

                fv_fast = scale_fast.transform([fv_fast])[0] 

            if fv_slow != None: 

                fv_slow = scale_slow.transform([fv_slow])[0] 

            if currentType == 'multi': 

                pred = self.predict_instanceV2( 

                    fv_fast = fv_fast, 

                    fv_slow = fv_slow, 

                    type = 1 

                ) 

                p2.append(pred) 

                r2.append(reals[i]) 

                p23.append(pred) 

                r23.append(reals[i]) 

            elif currentType == 'single': 

                pred = self.predict_instanceV2( 

                    fv_fast=fv_fast, 

                    fv_slow=fv_slow, 

                    type=2 

                ) 

                p3.append(pred) 

                r3.append(reals[i]) 

                p23.append(pred) 

                r23.append(reals[i]) 

            predict_values.append(pred) 

        predict_ts = ts[i_trend:] 

        predict_temps, fit_type = FireTemperatureRegression.predict_instance_trend(ts[:i_trend], predict_values, predict_ts) 

        predict_values.extend(predict_temps) 

        p4 = predict_temps 

        r4 = reals[i_trend:] 

        return predict_values, reals, p2, r2, p3, r3, p23, r23, p4, r4, fit_type 
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    # To produce final results for Phase 2 and 3 

    def predict_instanceV2(self, fv_fast, fv_slow, type): 

        if type == 1: 

            temperature_r1 = self.regressionModule_room1.predict([fv_fast])[0] 

            temperature_r2 = self.regressionModule_room2.predict([fv_slow])[0] 

            return (temperature_r1 + temperature_r2) / 2.0 

        elif type == 2: 

            temperature_r2 = self.regressionModule_room2.predict([fv_slow])[0] 

            return temperature_r2 

 

    # Calculate MAE 

    @staticmethod 

    def getMAE(preds, reals): 

        mae = mean_absolute_error(preds, reals) 

        return mae, len(preds) 

# End of step 3 
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Appendix B5: Fitting 

# Step 4 to do fitting 

class FireTemperaturePredictionForSameRoom(object): 

    # Initialize the inner parameter 

    def __init__(self): 

        self.timeToFit = None 

        self.temperatureToFit = None 

 

    # Carrying fitting 

    def fit(self, times, temperatures): 

        self.timeToFit = times 

        self.temperatureToFit = temperatures 

        self.type = FireTemperaturePredictionForSameRoom._determine_fit_type(self.temperatureToFit) 

        # Type = 0, binding curve 

        if self.type == 0: 

            sigma = np.ones(len(self.timeToFit)) 

            sigma[[-2,-1]] = 0.001 

 

            self.param = curve_fit(FireTemperaturePredictionForSameRoom._binding, self.timeToFit, self.temperatureToFit, 

                                   bounds=((0,0,0), (500,10000,500)), sigma=sigma, maxfev=np.inf) 

        # Type = 1, 3rd order polynomial 

        elif self.type == 1: 

            diff = np.diff(np.array(self.temperatureToFit)).tolist() 

            idx = diff.index(max(diff)) 

 

            sigma = np.ones(len(self.timeToFit)) 

            sigma[[0, idx-1]] = 0.001 

            self.param = curve_fit(FireTemperaturePredictionForSameRoom._poly3, self.timeToFit, self.temperatureToFit, 

                                   bounds=((0,-1,-1,-1000), (1,1,1,8000)),sigma=sigma, maxfev=np.inf) 

        # 5th order polynomial 

        else: 

            diff = np.diff(np.array(self.temperatureToFit)).tolist() 

            idx = diff.index(max(diff)) 

            sigma = np.ones(len(self.timeToFit)) 

            sigma[[0, idx-1]] = 0.001 

            self.param = curve_fit( 

                FireTemperaturePredictionForSameRoom._poly5, self.timeToFit, self.temperatureToFit, 

                bounds=((0,-1,-1,-1,-1,-1), (1,1,1,1,1,1)),maxfev=np.inf) 
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    # Gather values 

    def predict(self, ts_predict): 

        if self.type == 0: 

            values_a = FireTemperaturePredictionForSameRoom._binding(np.array(ts_predict), *self.param[0]) 

        elif self.type == 1: 

            values_a = FireTemperaturePredictionForSameRoom._poly3(np.array(ts_predict), *self.param[0]) 

        else: 

            values_a = FireTemperaturePredictionForSameRoom._poly5(np.array(ts_predict), *self.param[0]) 

        values = values_a.tolist() 

        return values 

 

    # Fitting options 

    @staticmethod 

    def _poly5(x,a,b,c,d,e,f): 

        return a*x**5 + b*x**4 +c*x**3 +d*x**2 +e*x +f 

    @staticmethod 

    def _binding(x, kd, bmax, e): 

        return ((bmax * x**.5) / (x**.5 + kd))+e 

    @staticmethod 

    def _log(x, a, b): 

        return a*(np.log(x) / np.log(5))+ b 

    @staticmethod 

    def _poly3(x,a,b,c,d): 

        return a*x**3+b*x**2+c*x+d 

 

    # To determine fitting type 

    @staticmethod 

    def _determine_fit_type(values): 

        # Type 0 => binding || 1 => poly 

        diffs = np.diff(np.array(values)).tolist() 

        diffs = FireTemperatureRegression.MA(diffs).tolist() 

        diffs = FireTemperatureRegression.MA(diffs).tolist() 

        maxV = max(diffs) 

        maxIdx = diffs.index(maxV) 

        maxIdxRatio = float(maxIdx) / float(len(diffs)) 

        if maxIdxRatio < 0.65: 

            return 0 

        else: 
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            return 1 

# End of step 4 
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 Appendix C: P-Flash Limitations 

In this section, P-Flash is tested against a new test set and it is believed that the following 

evaluation helps to reveal the current limitation of P-Flash and to provide guidelines about data 

requirement for the development of a more robust flashover prediction model in multi-

compartment buildings.  

The new test set accounts for three additional effects: 1) a different surface material, 2) 

arbitrary opening conditions of vents, and 3) a different fire growth behavior. For the new 

surface material concrete [12] is considered and the thermal conductivity, specific heat, 

density, thickness and surface emissivity is given as 1.75 W/m2, 1 kJ/(kg·̊C), 2200 kg/m3, 

0.15 m, and 0.94, respectively. For vent conditions, all vents such as doors and windows are 

initially closed, but they can be opened at any time during a numerical experiment. Due to the 

arbitrary opening of the closed vents, a more complex fire growth behavior can also be 

introduced. For example, in Room 1 with two initially closed vents, a t-squared fire will begin 

to decay due to depletion of oxygen. When there is an opened door or window in Room 1, 

fresh air is entrained to the room. Given the added oxygen, a fire may continue to grow. Figure 

B1 shows the corresponding heat detector temperature profiles. This kind of event provide fires 

with double-peak growing behavior which is different from the t-squared fire. This example 

case is denoted as Case 3 and is discussed below. Similar to that described in Section 2, the 

remaining numerical setups are identical. In general, the simulation time for each numerical 

experiment is 8400 s, and the temperature output interval is 20 s. In total, there are 4000 

different cases.  

In order to provide insights on the influence of each of the additional effects, model 

performance against two limiting scenarios are first provided in Table B1. Scenario 1 consists 

of cases where only the effect of new surface material is accounted for where all vents are still 

open. For Scenario 2, besides having new surface material, cases with arbitrarily opening a 

Room 1 exterior window and the Room 2 exterior door are also considered. As shown in the 

table, the model performance for Scenario 1 remains similar to that of seen in Table 4. A 

physical interpretation for having relatively similar results is that since P-flash learns patterns 

associated with the higher level temperature information, such as the statistically-based rate of 

change in temperature for the heat detectors, and with the fact that the change of wall material 

does not lead to a significant change in temperature behavior, the model is capable of providing 

reliable predictions. However, model performance drops substantially for Scenario 2, 

especially in Phase IV where temperature signals from the heat detectors are no longer 

available, the MAE increases to more than 150 ̊C. Figure B2 presents temperature comparison 

between ground-truth (black dash line) and P-Flash predictions (red line for Phase II and III 

and blue line for Phase IV). As shown in the figure, the temperature predictions in Phase II and 

III capture the relative trend as compared to the ground-truth and same behavior is observed 

even for the 2nd temperature rise appearing at around 2150 s. However, it can be seen that the 

prediction in Phase IV captures neither the trend nor magnitude of the ground-truth. The large 

discrepancy in Phase IV is largely due to the assumption imposed on the memory component 

(M) that the overall temperature behavior assumes either the sigmoidal binding function or the 

high order polynomial function based on the initial temperature rise. Table B1 shows the 

overall model performance of P-Flash. An increase to MAE in both Phase II and III is observed 

and the decrease in model performance is primarily due to the cases where there are arbitrarily 
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opening doors between Room 1 and Corridor, and Corridor and Room 2 (when doors are 

closed, the temperature from the corresponding heat detector in a particular compartment 

remains essentially at room temperature). In order to overcome the data complexity inherent 

in the new test set, additional data is needed for modeling training and additional treatments 

are required to facilitate the learning during the training process. This work is currently 

underway.  
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Figure B1. Temperature profiles for an example case (Case 3) demonstrating the effect of 

arbitrarily opening to vents. 

 

Table B1. P-Flash performance again new test set for current prediction. 

 Phase II Phase III Phase IV 

MAE (̊C) MAE (̊C) MAE (̊C) 

Scenario 1 10 14 33 

Scenario 2 23 30 > 150 

Overall 47 58 > 150 
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Figure B2. Comparison between ground truth and predictions (current) obtained from 

P- Flash for Case 3. 


