

NIST Technical Note 2163

P-Flash – A Machine Learning based

Flashover Prediction Model to

Enable Smart Firefighting for

Compartment Fires

Wai Cheong Tam

Jun Wang

Richard Peacock

Paul Reneke

Eugene Yujun Fu

Thomas Cleary

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN.2163

NIST Technical Note 2163

P-Flash – A Machine Learning based

Flashover Prediction Model to

Enable Smart Firefighting for

Compartment Fires

Wai Cheong Tam

Richard Peacock

Paul Reneke

Thomas Cleary

Fire Research Division, National Institute of Standards and Technology

Jun Wang

Eugene Yujun Fu

Department of Computing, The Hong Kong Polytechnic University

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2163

June 2021

U.S. Department of Commerce

Gina M. Raimondo, Secretary

National Institute of Standards and Technology

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce

for Standards and Technology & Director, National Institute of Standards and Technology

Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately.

Such identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the

entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2163

Natl. Inst. Stand. Technol. Tech. Note 2163, 52 pages (June 2021)

CODEN: NTNOEF

This publication is available free of charge from:

https://doi.org/10.6028/NIST.TN.2163

 [Intentionally Left Blank]

i

Abstract

This report provides additional technical details to an article entitled P-Flash – A Machine

Learning-based Model for Flashover Prediction using Recovered Temperature Data.

Research was conducted to examine the use of Support Vector Regression (SVR) to build a

model to forecast the potential occurrence of flashover in a single-floor, multi-room

compartment fire. Synthetic temperature data for heat detectors in different rooms were

generated, 1000 simulation cases are considered, and a total of 8 million data points are utilized

for model development. An operating temperature limitation is placed on heat detectors where

they fail at a fixed exposure temperature of 150 ̊C and no longer provide data to more closely

follow actual performance.

The forecast model, P-Flash (Prediction model for Flashover occurrence), is developed to use

an array of heat detector temperature data, including in adjacent spaces, to recover temperature

data from the room of fire origin and predict potential for flashover. Two special treatments,

sequence segmentation and learning from fitting, are proposed to overcome the temperature

limitation of heat detectors in real-life fire scenarios and to enhance prediction capabilities to

determine if the flashover condition is met even with situations where there is no temperature

data from all detectors. Experimental evaluation shows that P-Flash offers reliable prediction.

The model performance is approximately 83 % and 81 %, respectively, for current and future

flashover occurrence, considering heat detector failure at 150 ̊C. Results demonstrate that P-

Flash, a new data-driven model, has potential to provide fire fighters real-time, trustworthy,

and actionable information to enhance situational awareness, operational effectiveness, and

safety for firefighting.

Key words

Machine learning; flashover prediction; fire modeling; heat detector; smart firefighting.

ii

[Intentionally Left Blank]

iii

Table of Contents

 Introduction ... 1

 Data Generation ... 2

2.1. Numerical Setup .. 2

2.2. CData Settings ... 4

2.3. Data Profiles .. 5

 Model Development of P-Flash .. 6

3.1. Sequence Segmentation ... 6

3.2. Feature Extraction ... 8

3.3. Training and Testing .. Error! Bookmark not defined.0

3.3.1. Regression Models ... Error! Bookmark not defined.1

3.3.2. Learning from Fitting .. Error! Bookmark not defined.2

 Results and Discussion .. 13

 Conclusions and Outlook .. 15

References .. 15

Appendix A: CData Input File .. 17

Appendix B: P-Flash Source Codes... 171

Appendix B.1: Main ... 172

Appendix B.2: Read Data .. 175

Appendix B.3: Data Pre-processing and Feature Extraction 177

Appendix B.4: Training and Testing ... 43

Appendix B.5: Fitting .. 47

Appendix C: P-Flash Limitations .. 51

iv

 [Intentionally Left Blank]

v

List of Tables

Table 1. Summary of thermal properties and geometric configurations. 3

Table 2. MRND that specifies random number generator for peak HRR and time to peak

HRR. .. 4

Table 3. Summary of extracted features. ... 9

Table 4. Performance summary for P-Flash. Error! Bookmark not defined.4

Table 5. Overall model accuracy with early and late prediction for potential occurrence of

flashover. .. Error! Bookmark not defined.5

Table B1. P-Flash performance again new test set for current prediction. 52

List of Figures

Fig. 1. Schematic of the single-story three compartments with a fire in action. 3

Fig. 2. Scatter plot for peak HRR vs time to peak. ... 4

Figs. 3. Room 1, Corridor, and Room 2 temperature profiles for a) a fast growth fire with low

peak HRR case and b) a medium growth fire with high peak HRR case. 5

Fig. 4. Mean detector temperature profiles and its deviation in different compartments. 6

Fig. 5. Machine learning pipeline for P-Flash (from raw data to feature extraction). 7

Fig. 6. The overview of model architecture for P-Flash. Error! Bookmark not defined.0

No table of figures entries found.

Figs. 8. Comparison between ground truth and predictions obtained from P-Flash with and

without LFF. ... Error! Bookmark not defined.3

No table of figures entries found.

Fig. B2. Comparison between ground truth and predictions (current) obtained from P- Flash

for Case 3. ... 52

vi

 [Intentionally Left Blank]

1

 Introduction

Over the five-year period from 2013 – 2017, the fire departments in the United States

responded to an average of 500,000 structure fires annually [1]. These fires resulted in

approximately 2,500 civilian fire deaths, 14,000 civilian fire injuries, and more than $10 billion

dollars in direct property losses. In addition, more than 31,000 firefighters were injured, and

approximately 360 of them were killed on the fire ground [2]. Statistics show that rapid fire

development caused by extreme fire behaviors such as flashover is identified as one for the

major causes of fatal injury for fire fighters during structural firefighting. Although flashover

conditions (i.e., hot layer gas temperature approximately 600 ̊C and/or average heat flux at the

floor level reaching 20 kW/m2) are well known in the fire research community, this kind of

detailed information about the interior thermal conditions is usually unavailable. It is rather

difficult for fire fighters to understand the potential fire hazards inside the compartment. In a

structural fire, rollover [3] is one possible indicator. Visually, it can be seen as flames rolling

across the ceiling. When rollover phenomenon is observed, a potential flashover is likely to

occur. However, this extreme fire indicator is not easy to recognize, and it could take many

years of experience to build up the necessary proficiency. Therefore, if fire fighters do not have

such a high level of situational awareness, the flashover threat presents itself as an

unpredictable life-threatening hazard.

Several research efforts have been conducted to develop data-driven models that can estimate

the heat release rate (HRR) based on information obtained from sensors in real-time. Davis

and Forney [4] developed an inverse fire model based on empirical correlations. Provided the

estimated HRR, the location of the fire and the fire size could be obtained using an inverse

modeling technique. Yet, the model is only suitable for one-room compartments. Based on a

generic algorithm, Neviackas and Trouvé [5] obtained a generalized HRR which can be used

to determine flashover conditions in multi-room geometries. Overholt and Ezekoye [6] also

developed an inverse model using a predictor-corrected method. Based on smoke layer

temperature measurements, the prediction accuracy of the model was shown to be within 60 s.

However, a challenging problem exists in which all models [4-6] rely on complete

measurement data sets acquired using laboratory equipment. In practical situations, sensors

such as heat and/or smoke detectors will stop functioning at a certain elevated temperature [7].

If the required temperature/smoke data is missing, the estimated HRR obtained from these

models will become highly uncertain and presumably, the prediction of flashover occurrence

based on the estimated HRR will be unreliable.

Unlike the previous attempts [4-6], the temperature limitation for sensors, such as heat

detectors, are considered in this present work with the objective to develop a machine learning

model, P-Flash (Prediction model for Flashover occurrence) that can predict the flashover

occurrence even with missing temperature data due to malfunctioning heat detectors. In the

next section, the synthetic data being used to develop the model will first be described. Then,

the model development of P-Flash will be presented. In order to demonstrate the prediction

capability of P-Flash, two study cases are included, and Section 4 provides results and

discussion. Section 5 provides additional model testing to highlight the current model

limitation. Finally, some concluding remarks on P-Flash and future work are presented in

Section 6.

2

 Data Generation

Scarcity of real-world data from building sensors during fire events is one of the challenges

for the use of the machine learning (ML) paradigm. The data problem has been raised in

different literature, such as [7]. For the fire safety community, it can be noted that acquiring

the desired sensor data is not trivial because 1) fire events do not happen frequently, 2) time

series data associated with fire events in building environments are not available to the public

data warehouse [8], and 3) physically conducting full-scale fire experiments in buildings such

as [9] is extremely costly and time-consuming. Moreover, no prior research work has been

carried out to provide guidance on the data requirements for ML applications. With that, there

may be a high probability that the obtained experimental data is not usable. When the

conventional ML paradigm demands a large amount of training data, the CFAST Fire Data

Generator (CData) [10] is utilized to generate synthetic data to facilitate the use of ML

paradigms for prediction of fire hazards in buildings.

In general, CData is a computational tool with its front-end written in Python1. The code was

developed to generate time series data for typical devices/sensors (i.e., heat detector, smoke

detector, and other targets) in any user-specified fire environments within a building structure.

CFAST [11] is used as the simulation engine in CData for two reasons. First, the fire simulation

program is mathematically verified and is validated with experimental data [12]. The

verification and validation (V&V) process is an active and continuous effort at the National

Institute of Standards and Technology (NIST) to ensure the fidelity of the code. Second,

CFAST is numerically efficient. Using the Fire Research Division computer cluster at NIST,

more than ten thousand simulation cases with various geometric and fire configurations

specified in this study can be completed in a single day. This advantage provides the flexibility

and capability to conduct parametric studies for obtaining the most relevant and high quality

synthetic data set for researching the use of ML paradigms. It should be noted that the authors2

understood the inherent model assumptions being made in CFAST. When the feasibility of

using synthetic data for the development of ML models is warranted, a more sophisticated fire

simulation program, such as the Fire Dynamic Simulator [13], and/or even full-scale

experimental data can be utilized in future studies. These higher fidelity data would allow the

ML model to account for other realistic conditions, such as the effect of hot gas movement to

the detectors, to improve the model performance.

2.1. Numerical Setup

Consider a single-story building with three compartments as shown in Fig. 1. The dimensions

of Room 1 are 3.5 m x 3.5 m, and the dimensions of Room 2 and Corridor are 4.5 m x 4.5 m

and 3.5 m x 1 m, respectively. The ceiling height is 2.5 m, and it is identical for all

compartments. For simplicity, the material of all walls, ceilings, and floors is gypsum

wallboard. As seen in Fig. 1, there are 4 openings: 1) a window in Room 1, 2) a door between

Room 1 and Corridor, 3) a door between Corridor and Room 2, and 4) an exit-door in Room

2. The openings are fully opened. There is one heat detector in every compartment, and they

are all located at the center of each compartment about 4.5 cm away from the ceiling. The

1 Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the procedures adequately. Such

identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it

intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

2 Richard Peacock and Paul Reneke at NIST are both the principal investigators for continuous development and maintenance of CFAST.

3

response time index for the heat detector is 35 (m·s)0.5. The outdoor conditions are typical with

the temperature at 20 ˚C and atmospheric pressure of 101 kPa. Table 1 provides the summary

of the thermal properties of the gypsum wallboard and the geometric configurations of the

openings.

Fig 1. Schematic of the single-story three compartments with a fire in action.

Table 1. Summary of thermal properties and geometric configurations.

 Conductivity Specific heat Density Thickness Emissivity

(W/[m·K]) (J/[kg·K]) (kg/m3) (m) (-)

Gypsum 0.276 1.017 752 0.0159 0.94

From To Width Length

Distance away
from ceiling

(-) (-) (m) (m) (m)

Window Room 1 Exterior 0.3 0.5 0.5

Door 1 Room 1 Corridor 0.75 2 0.5

Door 2 Corridor Room 2 0.75 2 0.5

Exit door Room 2 Exterior 0.75 2 0.5

Given the experimental setup, a t-squared fire is placed at the center in Room 1. In this study,

simple three-stage t-squared fires are considered. It has a growing stage, a plateau, and a decay

stage. Basically, a fire will grow at a rate proportional to the time raised to the second power.

When the fire reaches its peak, it will sustain for some time (denoted as plateau). It then dies

down (denoted as fire decay) and is extinguished. Based on references provided in [14,15], a

range of fires are selected to describe the fire growing stage. Figure 2 shows the scatter plot of

peak heat release rate (HRR) and time to peak for the 1000 cases. It can be seen that the peak

HRR and the time to peak ranges from approximately 50 kW to 2200 kW and from 50 s to

4

1400 s, respectively. The selected range of peak HRR and time to peak cover various burning

items from an office trash can with a slow fire growth rate to an upholstered furniture fire with

an ultra-fast fire growth rate. In terms of duration for plateau and fire decay, they are assumed

to be constant. The duration for plateau and fire decay are set to be 2000 s and 1500 s,

respectively.

0

550

1100

1650

2200

0 350 700 1050 1400

P
e
a

k
 H

R
R

 (
k

W
)

Time to Peak (s)

Fig. 2. Scatter plot for peak HRR vs time to peak.

2.2. CData Settings

This subsection demonstrates how CData is utilized to configure fire cases as mentioned in

Sec 2.1. Appendix A shows the complete CData input file being used in this study. In general,

the CData input file has similar namelists to that of CFAST input files except that CData has

additional namelists to facilitate data sampling. Based on the descriptions provided in the

previous section, there are two varying conditions for fires: i) the peak HRR and ii) the time to

peak HRR. In order to sample the desired fire conditions, a namelist, MRND, is used. As shown

in the appendix, two lines of code are involved to sample fire conditions uniformly across the

domain of interest. The corresponding information is summarized in the following table:

Table 2. MRND that specifies random number generator for peak HRR and time to peak HRR.

MRND
ID Distribution Type Value Type Minimum Maximum

Peak HRR Generator Uniform Real 50 000 2 200 000

End of Growth Time
Generator

Uniform Real 75 1400

5

There are five parameters in MRND: 1) ID, 2) distribution type, 3) value type, 4) minimum,

and 5) maximum. The first parameter defines the unique name of the desired generator. The

second parameter specifies the required distribution function which would be used for

sampling. In the current version of CData [10], it supports 8 different well-defined distribution

functions, such as uniform, triangle, normal, truncate normal, log normal, truncated log normal,

beta, and linear. Since a set of uniformly distributed fire cases are needed to facilitate the model

training, the uniform distribution is utilized. For value type, real number is chosen because the

bounding conditions are expected to be defined by numerical values. Lastly, minimum and

maximum specify the lower bound and the upper bound of the fire conditions, respectively.

The random number generators, Peak HRR Generator and End of Growth Time Generator,

specify the fire growing stage. In order to construct the three-stage t-squared fires, another

namelist, MFIR, is utilized to combine a number of MRND namelists to generate the namelist

that CFAST would recognize. Specifically, the plateau and the fire decay are specified using

Peak HHR (2nd value) and Plateau End Time, and End of Fire HRR and Fire End Time,

respectively. Since the total number of 1000 cases3 are required, the parameter

NUBMBER_OF_CASES from MHDR namelist is set to be 1000.

2.3. Data Profiles

For all simulation runs, a fire is started in Room 1. Subsequently, the upper layer gas

temperature rises, and the layer thickness increases. Some hot gases leave the building

structure, and some flow through the door. Air mixing between Room 1 and Corridor occurs.

Due to the mixing, the upper gas layer temperature in Corridor also increases. Similar mass

transfer and heat transfer processes take place between Corridor and Room 2, and the Room 2

upper gas layer temperature gradually rises. Figs. 3 show Room 1, Corridor, and Room 2

temperature profiles for two selecting cases: a) a fast growth fire with low peak HRR case and

b) a medium growth fire with high peak HRR case. The total simulation time for each

simulation run is 8400 s, and the temperature output interval is 20 s.

Room 1
Corridor
Room 2

0

200

400

600

800

0 2000 4000 6000 8000

T
e

m
p

e
ra

tu
re

 (
 o
C

)

Time (s)

a)

Room 1
Corridor
Room 2

0

350

700

1050

1400

0 2000 4000 6000 8000

T
e
m

p
e

ra
tu

re
 (

 o
C

)

Time (s)

b)

Fig. 3. Room 1, Corridor, and Room 2 temperature profiles for a) a fast growth fire with low

peak HRR case and b) a medium growth fire with high peak HRR case.

3 The selected number of simulation runs was determined based on a parametric study. Five sets (100, 500, 1000, 2000, and 5000 cases) of

data were considered. Using the experimental setup mentioned in Section 2.1, the model performance for the prediction of flashover achieves
convergency when the number of cases reaches 1000 cases. The full dataset including all input files associated with the 1000 cases can be

found at https://doi.org/10.18434/M32258.

6

Figure 4 shows the mean temperature profiles for the three detectors as a function of time. As

shown in the figure, the temperature profiles in Corridor and Room 2 are lower than that of

Room 1, and the dashed lines represent two times the standard deviation of detector

temperature profiles. Although this study uses only temperature data, in principle other time

series data such as smoke concentration obtained from smoke detectors, can also be used for

the model development. Moreover, building structures with different compartments (in terms

of quantity, orientation, and door connection) and fires involving various fire growth behavior

can also be considered in the data generation so that a more generalized ML model can be

developed for actual use. This research effort is under way, and the findings will be reported

in future publications.

Fig. 4. Mean detector temperature profiles and its deviation in different compartments.

 Model Development of P-Flash

Given a set of data, two additional steps including data preprocessing and model training are

required for the development of P-Flash. Fig. 4 depicts the processes associated with the data

preprocessing and the corresponding main codes are provided in Appendix B1.

3.1. Sequence Segmentation

Loss of detector temperature signal is one of the primary difficulties for the development of an

accurate machine learning-based flashover prediction model. For actual fire scenarios, heat

detectors cannot survive at elevated temperature [7] and would fail at temperatures well below

the estimated flashover temperature (~ 600 ̊C). It is well known that developing a ML model

based on unphysical data significantly jeopardizes the model performance. With the

malfunctioning detectors, the temperature can be unphysical, and a special treatment is needed

to preprocess the data such that unphysical data can be eliminated.

Knowing that detectors4 stop functioning at elevated temperature (here assumed as 150 ̊C), the

detailed view shown in Fig. 5 presents the temperature profiles from ideal detectors (dashed

4 In reference [16], there are 7 classes for heat detector. Each class has different maximum operating temperature range at the ceiling. The

selected cut-off temperature (150 ̊C) is based on the extra high class heat detector.

7

Fig. 5. Machine learning pipeline for P-Flash (from raw data to feature extraction).

8

lines) and those with a cut-off temperature at 150 ̊C (solid lines) for a simulation run with a

fast-growth fire originating in Room 1. As shown in the plot, the available data for the detector

in Room 1 is limited. At t1, the temperature signal from Room 1 is lost. For simplicity, when

the temperature signal is lost, the temperature is artificially turned into a constant in this study

(i.e., a value of zero). In general, it is rather difficult for any models, even ML models, to

provide any reliable flashover prediction with these limited temperature data (i.e., up to only

150 ̊C). However, it is seen that temperature signals from other compartments do exist. Given

this observation, it is believed that the use of the available temperature data from other

compartments helps to “recover” the detector temperature in Room 1 which can be used to

determine the flashover condition. In order to facilitate this process, a sequence segmentation

is applied to the temperature data set.

Using the sequence segmentation, a new data structure is laid out. As shown in same plot, there

are 3 vertical lines, dividing the temperature profiles into 4 phases. Each of the phases contains

different available temperature signals. For example, signals from all detectors are present in

Phase I (t0 - t1). In Phase II (t1 - t2), signals from only Corridor and Room 2 are available. In

Phase III (t2 - t3), the last available signals are from Room 2. No temperature signals exist in

Phase IV, and additional treatment is needed to facilitate the prediction of flashover conditions.

Three benefits are found from using the segmented data: 1) the unphysical information due to

any malfunctioning detectors is eliminated, 2) the ML model can take full advantage of the

available data associated with a specified phase, and 3) the new data structure provides the

basis for the model development of P-Flash. It is worth noting that only temperature data less

than or equal to 150 ̊C are used for model development.

3.2. Feature Extraction

Feature extraction [17] is an essential ML task to facilitate the development of a model. In this

process, the raw data (i.e., discrete temperature data which is uncorrelated in time) is

transformed into a data set with a reduced number of variables which contains more

discriminative information. An example of discriminative information can be the rate of

change of temperature which relates the temperature increase over a period of time. It can be

understood that a large rate of change in temperature indicates a higher chance of having more

rapid fire growth which would possibly lead to a flashover if sufficient oxygen is available and

the fire continues to grow. This higher level information facilitates the learning process for a

ML model which helps develop a more accurate model.

The feature extraction section depicted in Fig. 5 shows the feature vectors5, F, being extracted

from the detector temperature profiles in different phases, and there are five different feature

vectors: 𝐹𝑝1
𝐶𝑜𝑟𝑟, 𝐹𝑝1

𝑅2, 𝐹𝑝2
𝐶𝑜𝑟𝑟, 𝐹𝑝2

𝑅2, and 𝐹𝑝3
𝑅2. In terms of notation, the superscript denotes the

extracted features corresponding to the compartment, and the subscript denotes the extracted

features associated with a specific phase. For general practice, the construction of features and

the required number of feature vectors are based on three factors: 1) the structure of the data

(refer to Section 3.1), 2) how often the prediction is needed, and 3) the architecture of the ML

model.

In Phase I, since no prediction is required, the features are extracted based on a complete time-

window with the intention of encoding the relationships among the temperatures associated

5 A feature vector contains a number of different features.

9

with Room 1 (TR1), Corridor (TCorr), and Room 2 (TR2). In this study, two types of features are

obtained, and they are temperature-based features and trend-based features. Table 3 provides

a list of extracted features. In ML, the temperature based-features provide the overall statistics

of the temperature data and the trend based-features provide the overall temperature behavior

with respect of time. For example, the temperature-based feature, mean of TX(t0:t1), can be

understood as the average temperature in between t0 and t1. For the trend-based feature, the

dTX/dt represents the first derivative of temperature which describes the rate of change of

temperature over a period of time. The superscript X describes three different compartments:

Room 1 (R1), Corridor (Corr), and Room 2 (R2). It should be noted that the differential time

(dt) being used to obtain the first derivative of the temperature is different than the length of

the complete time-window. Since the overall behavior of the temperature profile is relatively

smooth, the differential time is taken to be one time-step (20 s). As shown in the table, six

different features are being extracted in Phase I, and they are added to form the feature vector.

Table 3. Summary of extracted features.

 Phase I Phase II Phase III

Temperature-

based

features

Mean and Max.

of

TX(t0:t1)

Mean and Max.

of

TY(ti:ti+rolling_window)

Mean and Max.

of

TZ(ti:ti+rolling_window)

Trend-based

features

Min., Mean, and Max.

of

dTX/dt

Min., Mean, and Max.

of

dTY/dt

Min., Mean, and Max.

of

dTZ/dt

Index of Max.

of

dTX/dt

divided by length of

fixed window

Index of Max.

of

dTY/dt

divided by length of

rolling window

Index of Max.

of

dTZ/dt

divided by length of

rolling window

X represents R1, Corr, and R2. Y represents Corr and R2 and Z represents R2. The abbreviation Min. and Max. denotes minimum and

maximum, respectively.

In Phase II and III, although similar process is being carried out, the extracted features are

obtained based on a rolling window [17]. Basically, the rolling window contains a sub-data

set. After a feature extraction is executed, the window shifts onwards for one time-step. A

numerical experiment is conducted to determine the optimal size of the rolling window. For

real-time detection, the window size is taken to be six time-steps. In general, the use of rolling

windows helps to provide extracted features containing more localized information. For Phase

IV, since no temperature data is available, no features are being extracted. It is worth noting

that the symbol, ⨁, as shown in Fig. 4 represents concatenation of two vectors. When the

feature extraction process is complete, three feature vectors: ① = 𝐹𝑝1
𝐶𝑜𝑟𝑟 ⨁ 𝐹𝑝2

𝐶𝑜𝑟𝑟 , ② =

𝐹𝑝1
𝑅2 ⨁ 𝐹𝑝2

𝑅2, and ③ = 𝐹𝑝1
𝑅2 ⨁ 𝐹𝑝3

𝑅2, are obtained, and they are used to train/develop the models

for P-Flash. In the next section, the descriptions of model training are presented. It should also

10

be noted that feature selection, such as use of collinearity check and variable importance, can

be made to select the features that contribute the most to the predictions. The corresponding

source codes for data pre-processing and feature extraction are provided in Appendix B3.

3.3. Training and Testing

Figure 6 depicts the overview of the model architecture for P-Flash. P-Flash consists of two

regression models (Rcor and RR2) and a memory component (M). The primary difference

between the two models is that Rcor is trained based on feature vector ①, and RR2 is trained

based on feature vectors ② and ③. In theory, a single regression model might work. However,

the training process for such a model involving more information is numerically more difficult

and overfitting6 might occur and this is attributed to the fact that all the temperature behaviors

from three different sensors will have to be learned by only one regression model. Since using

either of the approaches (two regression models or single regression model) will provide

relatively the same prediction, the two regression model approach is utilized for training

efficiency. The memory component, M, is a hybrid module: it performs as a storage to contain

outputs from Rcorr and RR2 and provides temperature prediction of Room 1 based on the

historical information. This model architecture provides robust and flexible prediction

capabilities to adapt to more complex cases with a larger number and different types of

detectors.

Fig. 6. The overview of model architecture for P-Flash.

Due to the fact that the model first sees temperature data of three compartments for Phase I

and Phase II, both regression models, RCorr and RR2, are executed simultaneously and two

separate temperature predictions for Room 1 in Phase II are obtained. In order to compensate

for the numeric difference, averaging is conducted, and the temperature prediction is stored in

the memory component. Since only the temperature in Room 2 exists in Phase III, only RR2 is

executed and the temperature of Room 1 in Phase III is obtained. Similarly, the output is stored

in the memory component. The ML algorithm being used for training and the details of model

testing are provided in the next subsection.

6 Overfitting is a modeling error that occurs when a function is too closely fit to a limited set of data points. For example, rather than learning

the overall trend inherent to the data set, the model attempts to memorize the noise from the data.

11

3.3.1. Regression Models

Support vector regression (SVR) [18] is used to develop the two regression models (Rcorr and

RR2). Fundamentally, SVR finds a decision boundary, known as a hyperplane, to correlate data

instances and maximizes the constrained margin such that the distance between the data

instances is optimal to achieve greatest model generalizability. For example, given a training

dataset 𝑇 = {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑛, 𝑦𝑛)} which can be linearly separated, the hyperplane

denoted as 𝑝 can be written as:

 𝑤 • 𝑋 + 𝑏 = 0 (1)

where 𝑋𝑛 is the sample of 𝑛𝑡ℎ instance and 𝑦𝑛 is the target/ground truth. In this study, 𝑋𝑛 will

be the three feature vectors and 𝑦𝑛 will be the Room 1 temperature. 𝑤 and 𝑏 are the weight and

the bias of the hyperplane, respectively. Based on the definition provided in [19], the distance

between the instances for different classes is:

𝑑 = min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
) (2)

where ‖𝑤‖ is norm of 𝑤. For SVR, the distance is known as margin. Therefore, SVR

determines the hyperplane with the largest margin by solving the optimization problem:

arg max

𝑤,𝑏
(min

𝑖=1,2,…,𝑛
𝑦𝑖(

𝑤

‖𝑤‖
∙ 𝑋𝑖 +

𝑏

‖𝑤‖
)) (3)

Figure 7a provides an example case with data in linear behavior. The hyperplane is obtained

to best correlate the data and the margin is determined to include each data point. As shown in

the figure, this form of SVR is similar to the best of fit with a simple linear regression.

Figs. 7. Example of a regression model from a) a linear SVR and b) non-linear SVR.

For real-life applications, fire data are often more complex, and they are not linearly separable

(See Fig. 7b). In order to overcome the numerical difficulty, there are two options. The first

option is called the “kernel trick” [19], and there are four commonly used nonlinear kernel

12

functions: 1) polynomial kernel, 2) Gaussian kernel, 3) radial basis function (RBF), and 4)

sigmoid kernel. The use of a kernel function allows the transformation of data into a higher

dimensional space such that the instances 𝑋𝑛 for different classes separated by a hyperplane

(i.e., nonlinear) exists. The second option is to introduce a regularization/slack variable. With

the implementation for the regularization variable, C, a small proportion of the data are ignored

(see ξ in Fig. 7b). Although there is trade-off for the use of these options, it generally provides

a more generalized model and helps to avoid over-fitting. This implies the situation where the

model only memorizes the data without obtaining any useful patterns and relationships for the

data behavior. If over-fitting occurs, the model performance will be very poor.

In this study, a 5-fold cross validation method [8] is utilized to facilitate the training and testing

process. In principle, the entire dataset from 1000 simulation runs is randomly divided into

five subsets, and each subset/fold contains 200 sessions. In general, one fold of data is being

used as testing data, and the remaining four folds are being used as training data. This process

is carried out iteratively for five times until all five different folds of data are being used as the

testing set. The trained regression models provide Room 1 temperature predictions in Phase II

to Phase III. Utilizing grid search [8], the optimal configurations for SVR are C = 1000 and

Gamma = 0.05 with RBF kernel. The corresponding source codes for the development of the

two regression models are provided in Appendix B4.

3.3.2. Learning from Fitting

In Phase IV, since all detectors are lost, no inputs are available, and therefore no reliable

predictions can be made from the regression models. In order to overcome this physical limit,

learning from fitting is implemented to facilitate the extrapolation of the temperature in

Room 1 using the historical data (i.e., the available temperature in Phase I and predicted

temperature obtained in Phase II and III). Given the current set of data, there can be two

possible scenarios in Phase IV: 1) a scenario where the predicted temperature of Room 1 is

sufficiently long enough to observe a logarithmic temperature increase or 2) the fire is so large

(in terms of peak HRR with short time to peak) that the temperature rise appears to be an

exponential function. For that, two mathematical expressions, a sigmoidal binding function

and a 5th order polynomial, are considered. The sigmoidal binding function is used for the first

scenario:

 𝑝𝑖 = (𝑏√𝑡𝑖)/(√𝑡𝑖 + 𝑎) + 𝑐 (4)

whereas the high order polynomial is used for the second scenario:

 𝑝𝑖 = 𝑑5𝑡𝑖
5 + 𝑑4𝑡𝑖

4 + 𝑑3𝑡𝑖
3 + 𝑑2𝑡𝑖

2 + 𝑑1𝑡𝑖 + 𝑑0𝑓 (5)

where pi is the prediction and ti is the time associated with index i. Optimization is carried to

obtain a, b, c, and d to produce a best fit to generalize the Room 1 temperature data in Phase I

to III. Given the best fit, Room 1 temperature in Phase IV can be extrapolated. The

corresponding source codes for carrying out the fitting are provided in Appendix B5.

13

 Results and Discussion

Figures 8 show the temperature predictions obtained from P-Flash for two selected cases: 1) a

fast growth fire with low peak HRR case and 2) a medium growth fire with high peak HRR

case. There are three sets of curves in each figure: i) ground truth/Room 1 temperature, ii)

prediction with learning from fitting (LFF), and iii) prediction without LFF. For each

prediction curve, it can be composed of up to two lines: a) red line represents the Room 1

temperature predictions associated with Phase II and III and b) blue line is for predictions in

Phase IV. Since no prediction is needed for Phase I, comparison is omitted.

In Fig.8a, it can be seen that P-Flash provides accurate temperature predictions of Room 1 in

all phases, and the benefit of using LFF is noticeable. After approximately 1150 s, when all

detectors are lost, P-Flash is still capable to provide predictions with similar trend and

magnitude. For P-Flash without LFF, the prediction relies on the regression models, and it can

be shown that the temperature prediction is unrealistic (i.e., showing a temperature increase to

as high as 910 ̊C). This observation demonstrates that unphysical inputs will lead to unphysical

outputs. Also, it is worth noting that the discrepancy observed at around 250 s is probably due

to the change of temperature increase in the available detector temperature. Physically, it is the

pivot point of its 1st derivative where the rate of change of temperature changes from positive

sign to negative sign. Additional effort is under way to reduce such fluctuation.

In Fig. 8b, it can be seen that the temperature of Room 1 being recovered from Phase II and III

is still growing exponentially. In the current version, P-Flash does not have additional

information to predict the temperature decays. However, it is capable to project the temperature

increase in which the determination of flashover (i.e., temperature approaching 600 ̊C) in

Room 1 can be made. As shown in the figure, the results obtained based on P-Flash without

LFF are over-estimated.

Fig. 8. Comparison between ground truth and predictions obtained from P-Flash with and

without LFF.

In order to evaluate the model performance over the 1000 different cases, the mean absolute

error (MAE) is being determined, and it is defined as:

14

𝑀𝐴𝐸 = ∑
1

𝑚
∑

1

𝑛𝑖

𝑛𝑖

𝑗=1

|𝑝𝑖,𝑗 − 𝑦𝑖,𝑗|

𝑚

𝑖=1

 (6)

where p is the prediction and y is the ground truth. The variables m and n represent the number

of simulation runs and the number of prediction points for each phase associated to each case,

respectively. The number of simulation runs is 1000 in this study, and since the extrapolation

of a 5th order polynomial increases dramatically, the number of prediction points for each case

in Phase IV is determined based on the flashover temperature condition. That means the

comparison is omitted if the ground truth is larger than 600 ̊C. Table 4 shows the MAE

associated with different phases. It should be noted that the above results are denoted as

“current prediction” and this is due to the fact that the prediction at time t is based on

information obtained in time t.

Given the prediction and the ground truth, an additional assessment can be carried out to

examine the overall model accuracy in terms of flashover occurrence prediction. The flashover

occurrence is true when the temperature is larger than 600 ̊C. The overall accuracy is

determined as the ratio of correct prediction within 20 s of the time of flashover to the total

number of flashover occurrence in 1000 cases. Two example cases can be found in Figs. 8. In

case 1, since the ground truth does not meet the potential flashover occurrence criteria (i.e.,

~ 600 ̊C), no flashover is observed. As compared to prediction from P-Flash, the recovered

Room 1 temperature does not meet the potential flashover occurrence, false to flashover is also

observed. For that, the prediction from P-Flash is determined to be correct. In case 2, a potential

flashover occurrence is observed at about 1050 s. However, the recovered Room 1 temperature

based on P-Flash does not reach 600 ̊C at that time stamp. For that, P-Flash fails to predict the

potential occurrence of flashover and this is a miss prediction. In order to discriminate the miss

prediction, it is further divided into two categories: i) early prediction and ii) late prediction

where the early prediction and the late prediction indicate that the Room 1 temperature

recovered based on P-Flash reaches flashover occurrence criteria about more than 20 s prior to

or more than 20 s after the flashover condition is met based on the ground true, respectively.

Table 5 shows the overall model accuracy for the prediction of flashover occurrence to be

approximately 83 %. The early prediction and the late prediction are shown to be 8 % and 9 %,

respectively.

Since the current model is developed simple fire and vent opening conditions, Appendix C

presents additional evaluation to reveal the current limitation of P-Flash and to provide

guidelines about data requirement for the development of a more robust flashover prediction

model in multi-compartment buildings.

Table 4. Performance summary for P-Flash.

Phase II Phase III Phase IV

MAE (̊C) MAE (̊C) MAE (̊C)

Current Prediction 11 13 30

Future Prediction 13 16 37

15

Table 5. Overall model accuracy with early and late prediction for potential occurrence of

flashover.

Accuracy Early Late

% % %

Current Prediction 83 8 9

Future Prediction 81 15 4

In actual firefighting, it is best if fire fighters can obtain the condition of the room of the fire

origin ahead of time because they can optimize their rescue strategies and fire fighting tactics.

For that, it is interesting to examine how well P-Flash can forecast temperature in advance (i.e.,

150 s). In this scenario, the prediction at time t+150 s is based on information obtained in time

t. Since the temperature information for all compartments tends to have a monotonic increasing

behavior, the temperature relationship at current time, t, can correlate well with flashover

occurrence in future time, t+150 s. As shown in Table 3 and Table 5, the MAE associated with

this kind of scenario (denoted as future prediction) only increases slightly and the overall

accuracy of P-Flash is relatively the same. These observations are expected as the temperature

increase behaviors are well captured by the regression models and the fittings. However, the

early prediction for the future prediction cases has noticeable increase and this is due to the

fact that the temperature information being used generally has large temperature increase rate

at time, t, as compared to time, t+150 s.

 Conclusions and Outlook

The development of P-Flash is presented. The realistic treatment of modeled sensor data that

is not continuously available, but is subject to data loss due to thermal failure, though a

challenge, was shown to be overcome successfully by the SVR modeling techniques and P-

Flash is capable of recovering required detector temperatures for the determination of flashover

conditions in the room of fire origin. P-Flash is under further development to handle more

realistic conditions and these conditions include realistic multi-compartment building

structures, fire located in any compartments, experimentally validated fire growth behavior of

burning items, arbitrary vent opening conditions for windows and doors, and sensor limits. In

order to facilitate data-driven fire fighting, collaborative works are required to develop smart

fire protection systems and/or information transmission infrastructure. In the near future, P-

Flash or a similar forecasting model could provide fire fighters with trustworthy and actionable

information about fire scenes under the cognomen smart firefighting.

Acknowledgments

The authors wish to thank Dr. Michael Huang for helpful discussion.

References

 [1] Ahrens, M. (2017). Trends and patterns of US fire loss. National Fire Protection

Association: Quincy, MA, USA.

16

 [2] Fahy, R. F., LeBlanc, P. R., & Molis, J. L. (2009). Firefighter Fatalities in the US-2008.

National Fire Protection Association, Quincy, MA, USA.

 [3] Stowell, F. M. & Murnane, L. (2013). Essentials of Fire Fighting and Fire Department

Operation. 6th Edition. International Fire Service Training Association.

 [4] Richards R., Munk B., Plumb O. (1997) Fire detection, location and heat release rate

through inverse problem solution. Part I: theory. Fire Safety J 28(4):323–350.

 [5] Neviackas A., Trouvé A. (2007) Sensor-driven inverse zone modeling of enclosure fire

dynamics. In: SFPE Professional Development Conference and Exposition. Las Vegas,

NV.

 [6] Overholt, K. J., & Ezekoye, O. A. (2012). Characterizing heat release rates using an inverse

fire modeling technique. Fire Technology, 48(4), 893-909.

 [7] Pomeroy, A. T. (2010). Analysis of the effects of temperature and velocity on the response

time index of heat detectors. University of Maryland. (MS Dissertation).

 [8] Lichman, M., 2013. UCI machine learning repository.

 [9] Madrzykowski, D., & Weinschenk, C. (2019). Impact of fixed ventilation on fire damage

patterns in full-scale structures. National Criminal Justice Reference Service, 252831.

[10] Reneke, R., Peacock, R., Gilbert, S., and Cleary, T. CFAST - Consolidated Fire and Smoke

Transport (Version 7) Volume 5: CFAST Fire Data Generator (CData). NIST Technical

Note. (In review).

[11] Peacock, R. D., Reneke, P. A. and Forney, G. P. (2017). CFAST–Consolidated Model of

Fire Growth and Smoke Transport (Version 7): User’s Guide. NIST Technical Note

1889v2.

[12] Peacock, R. D. CFAST–Consolidated Fire and Smoke Transport (Version 7) Volume 4:

Configuration Management. NIST TN 1889v1.

[13] McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., & Overholt, K.

(2013). Fire dynamics simulator user’s guide. NIST special publication, 1019 (6).

[14] Babrauskas, V. (2016). Heat release rates. In SFPE handbook of fire protection engineering

(pp. 799-904). Springer, New York, NY.

[15] Kim, H. J., & Lilley, D. G. (2002). Heat release rates of burning items in fires. Journal of

propulsion and power, 18(4), 866-870.

[16] NFPA 72 National Fire Alarm Code 2002 Edition. NFPA, Quincy, MA

[17] Liu, H., & Motoda, H. (Eds.). (1998). Feature extraction, construction and selection: A

data mining perspective (Vol. 453). Springer Science & Business Media.

[18] Tam, W. C., Fu, E. Y., Mensch, A., Hamins, A., You, C., Ngai, G., & va Leong, H. (2020).

Prevention of cooktop ignition using detection and multi-step machine learning

algorithms. Fire Safety Journal, 103043.

[19] Yang, C.C. & Shieh, M.D. (2010). A support vector regression based prediction model of

affective responses for product form design. Computers & Industrial Engineering, 59(4),

682-689.

[20] Vapnik, V. (1998). The support vector method of function estimation. In Nonlinear

Modeling (pp. 55-85). Springer, Boston, MA.

17

Appendix A: CData Input File

&HEAD VERSION = 7600, TITLE = ‘FSJ_3_compartments’ /

!! CData Sampling Namelist

&MHDR NUMBER_OF_CASES = 1000 WRITE_SEEDS = .TRUE. /
&MRND ID = ‘End of Growth Time Generator’, DISTRIBUTION_TYPE = ‘UNIFORM’ VALUE_TYPE = ‘REAL’ MINIMUM = 75 MAXIMUM = 1400 /

&MRND ID = ‘Peak HRR Generator’, DISTRIBUTION_TYPE = ‘UNIFORM’ VALUE_TYPE = ‘REAL’ MINIMUM = 50000 MAXIMUM = 2200000/

&MRND ID = ‘Plateau End Time’ DISTRIBUTION_TYPE = ‘CONSTANT’ VALUE_TYPE = ‘REAL’ REAL_CONSTANT_VALUE = 2000 /
&MRND ID = ‘Fire End Time’ DISTRIBUTION_TYPE = ‘CONSTANT’ VALUE_TYPE = ‘REAL’ REAL_CONSTANT_VALUE = 1500 /

&MRND ID = ‘End of Fire HRR’ DISTRIBUTION_TYPE = ‘CONSTANT’ VALUE_TYPE = ‘REAL’ REAL_CONSTANT_VALUE = 0 /

&MFIR ID = ‘Fire_generator’ FIRE_ID = ‘Fire’ FIRE_TIME_GENERATORS = ‘End of Growth Time Generator’
‘Plateau End Time’ ‘Fire End Time’ FIRE_HRR_GENERATORS = ‘Peak HRR Generator’ ‘Peak HRR Generator’

‘End of Fire HRR’ NUMBER_OF_GROWTH_POINTS = 20. /

!! CFAST Namelist

!! Scenario Configuration

&TIME SIMULATION = 8400 PRINT = 20 SMOKEVIEW = 20 SPREADSHEET = 20 /
&INIT PRESSURE = 101325 RELATIVE_HUMIDITY = 50 INTERIOR_TEMPERATURE = 20 EXTERIOR_TEMPERATURE = 20 /

!! Material Properties
&MATL ID = ‘GYPSUM’ MATERIAL = ‘GYPSUM Sam’,

CONDUCTIVITY = 0.276 DENSITY = 752 SPECIFIC HEAT = 1.01699993896484, THICKNESS = 0.0159 EMISSIVITY = 0.94 /

!! Compartments

&COMP ID = ‘Comp 1’
DEPTH = 4.5 HEIGHT = 2.5 WIDTH = 4.5

CEILING_MATL_ID = ‘GYPSUM’ CEILING_THICKNESS = 0.15 WALL_MATL_ID = ‘GYPSUM’ WALL_THICKNESS = 0.15 FLOOR_MATL_ID = ‘GYPSUM ‘ FLOOR_THICKNESS = 0.15

ORIGIN = 0, 0, 0 GRID = 50, 50, 50 LEAK AREA_RATIO = 3.77777777777778E-06, 2.5679012345679E-06 /

&COMP ID = ‘Comp 2’

DEPTH = 3.5 HEIGHT = 2.5 WIDTH = 1

CEILING_MATL_ID = ‘GYPSUM’ CEILING_THICKNESS = 0.15 WALL_MATL_ID = ‘GYPSUM’ WALL_THICKNESS = 0.15 FLOOR_MATL_ID = ‘GYPSUM’ FLOOR_THICKNESS = 0.15

ORIGIN = 3.5, 4.5, 0 GRID = 50, 50, 50 LEAK AREA_RATIO = 7.55555555555556E-06, 1.48571428571429E-05 /

&COMP ID = ‘Comp 3’

DEPTH = 3.5 HEIGHT = 2.5 WIDTH = 3.5
CEILING_MATL_ID = ‘GYPSUM’ CEILING_THICKNESS = 0.15 WALL_MATL_ID = ‘GYPSUM’ WALL_THICKNESS = 0.15 FLOOR_MATL_ID = ‘GYPSUM’ FLOOR_THICKNESS = 0.15

ORIGIN = 0, 4.5, 0 GRID = 50, 50, 50 LEAK AREA_RATIO = 4.85714285714286E-06, 4.24489795918367E-06 /

!! Wall Vents

&VENT TYPE = ‘WALL’ ID = ‘Window’ COMP_IDS = ‘Comp 3’ ‘OUTSIDE’, BOTTOM = 1.5 HEIGHT = 0.5, WIDTH = 0.3

FACE = ‘LEFT’ OFFSET = 1.65 /

&VENT TYPE = ‘WALL’ ID = ‘WallVent2-3’ COMP_IDS = ‘Comp 2’, ‘Comp 3’, BOTTOM = 0 HEIGHT = 2, WIDTH = 0.75

CRITERION = ‘TIME’ T = 0, 1 F = 1, 1 FACE = ‘LEFT’ OFFSET = 2.5 /

&VENT TYPE = ‘WALL’ ID = ‘WallVent1-2’ COMP_IDS = ‘Comp 1’, ‘Comp 2’, BOTTOM = 0 HEIGHT = 2, WIDTH = 0.75

CRITERION = ‘TIME’ T = 0, 1 F = 1, 1 FACE = ‘REAR’ OFFSET = 3.625 /

18

&VENT TYPE = ‘WALL’ ID = ‘Door’ COMP_IDS = ‘Comp 1’ ‘OUTSIDE’, BOTTOM = 0 HEIGHT = 2, WIDTH = 0.75
CRITERION = ‘TIME’ T = 0, 1 F = 1, 1 FACE = ‘FRONT’ OFFSET = 1.875 /

!! Fires
&FIRE ID = ‘Fire’ COMP_ID = ‘Comp 3’, FIRE_ID = ‘Random_Fire’ LOCATION = 1.75, 1.75 /

&CHEM ID = ‘Random_Fire’ CARBON = 3 CHLORINE = 0 HYDROGEN = 7 NITROGEN = 1 OXYGEN = 2 HEAT_OF_COMBUSTION = 26000 RADIATIVE_FRACTION = 0.35 /

&TABL ID = ‘Random_Fire’ LABELS = ‘TIME’ , ‘HRR’ , ‘HEIGHT’ , ‘AREA’ , ‘CO_YIELD’ , ‘SOOT_YIELD’ , ‘HCN_YIELD’ , ‘HCL_YIELD’ , ‘TRACE_YIELD’ /
&TABL ID = ‘Random_Fire’, DATA = 0, 0, 0, 0.001, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 22.8551770939605, 21.9006517182919, 0, 0.000134431445407394, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 45.710354187921, 87.6026068731677, 0, 0.000407519937727851, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 68.5655312818815, 197.105865464627, 0, 0.000779641369607396, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 91.420708375842, 350.410427492671, 0, 0.00123536944159478, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 114.275885469803, 547.516292957298, 0, 0.00176543964574354, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 137.131062563763, 788.423461858509, 0, 0.00236343067970157, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 159.986239657724, 1073.1319341963, 0, 0.00302452885528663, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 182.841416751684, 1401.64170997068, 0, 0.00374493985677181, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 205.696593845645, 1773.95278918164, 0, 0.00452156609163308, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 228.551770939605, 2190.06517182919, 0, 0.00535181223645546, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 2228.5517709396, 2190.06517182919, 0, 0.00535181223645546, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 2378.5517709396, 1773.95278918164, 0, 0.00452156609163308, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 2528.5517709396, 1401.64170997068, 0, 0.00374493985677181, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 2678.5517709396, 1073.1319341963, 0, 0.00302452885528663, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 2828.5517709396, 788.423461858509, 0, 0.00236343067970157, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 2978.5517709396, 547.516292957298, 0, 0.00176543964574354, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 3128.5517709396, 350.410427492671, 0, 0.00123536944159478, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 3278.5517709396, 197.105865464627, 0, 0.000779641369607396, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 3428.5517709396, 87.6026068731676, 0, 0.000407519937727851, 0.031, 0.13, 0, 0, 0 /
&TABL ID = ‘Random_Fire’, DATA = 3578.5517709396, 21.9006517182919, 0, 0.000134431445407394, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 3728.5517709396, 0, 0, 0, 0.031, 0.13, 0, 0, 0 /

&TABL ID = ‘Random_Fire’, DATA = 3738.5517709396, 0, 0, 0.001, 0.031, 0.13, 0, 0, 0 /

!! Devices

&DEVC ID = ‘HD1_1_1’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_1_2’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_1_3’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_1_4’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_1_5’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_1_6’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_1_7’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 1.75, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_2_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_2_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_2_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_2_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_2_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_2_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_2_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 1.75, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_3_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_3_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

19

&DEVC ID = ‘HD1_3_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_3_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_3_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_3_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_3_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 1.75, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_4_1’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_4_2’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_4_3’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_4_4’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_4_5’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_4_6’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_4_7’ COMP_ID = ‘Comp 3’ LOCATION = 0.55, 2.95, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_5_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_5_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_5_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_5_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_5_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_5_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_5_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.15, 2.95, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_6_1’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_6_2’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.365 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_6_3’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.265 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_6_4’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.165 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_6_5’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 2.065 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_6_6’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 1.965 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD1_6_7’ COMP_ID = ‘Comp 3’ LOCATION = 1.75, 2.95, 1.865 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD1_7_1’ COMP_ID = ‘Comp 3’ LOCATION = 3.45, 3, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /
&DEVC ID = ‘HD2_1_1’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 40 /

&DEVC ID = ‘HD2_1_2’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD2_1_3’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 30 /
&DEVC ID = ‘HD2_1_4’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 25 /

&DEVC ID = ‘HD2_1_5’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 20 /

&DEVC ID = ‘HD2_1_6’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 1.75, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 15 /
&DEVC ID = ‘HD2_2_1’ COMP_ID = ‘Comp 2’ LOCATION = 0.05, 3, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD2_3_1’ COMP_ID = ‘Comp 2’ LOCATION = 0.5, 0.05, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD3_1_1’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 40 /
&DEVC ID = ‘HD3_1_2’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&DEVC ID = ‘HD3_1_3’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 30 /

&DEVC ID = ‘HD3_1_4’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 25 /
&DEVC ID = ‘HD3_1_5’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 20 /

&DEVC ID = ‘HD3_1_6’ COMP_ID = ‘Comp 1’ LOCATION = 2, 2, 2.465 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 15 /

&DEVC ID = ‘HD3_2_1’ COMP_ID = ‘Comp 1’ LOCATION = 4, 4.45, 1.95 TYPE = ‘HEAT_DETECTOR’ SETPOINT = 65, RTI = 35 /

&TAIL /

20

[Intentionally Left Blank]

21

Appendix B: P-Flash Source Codes

Appendix B consists of 5 parts: B1 to B5. Appendix B1 provides the main codes for P-Flash.

Appendix B2 presents codes that read the data and assign them to an appropriate format.

Appendix B3 provides codes for data pre-processing and feature extraction. Appendix B4

provides codes for model training and testing. Appendix B5 presents codes for the memory

component and fitting. The logic flow of the codes strictly follows the model descriptions

provided in the main text.

To execute the codes, the reader only needs the original data which can be downloaded from

https://doi.org/10.18434/M32258 and combines the codes in a single file.

https://doi.org/10.18434/M32258

22

Appendix B1: Main

Load libraries

import numpy as np

from sklearn.svm import SVR

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_absolute_error

from scipy.optimize import curve_fit

Load scripts

import CsvReader

import Utility

Main codes

Input files

DataFile = 'C:\\Users\\xxx\\IdeaProjects\\3compartment\\Inputs\\case1000.csv'

Output locations

resultDir = 'C:\\Users\\xxx\\IdeaProjects\\3compartment\\Results\\'

Cross-validation setting

CV = 5

2 major steps are done here: data pro-processing and feature extraction

Look at Appendix B2 and B3

SP = SignalPreprocessing(DataFile, resultDir)

Get only allInstances

allInstances = SP.allInstances

Construct appropriate training and testing sets for "current" prediction or "future" prediction

learningTestingDict, TestInstancesGroup = Instance.Instances2GroupLists_multiRoomV3(Instances = allInstances, cv=CV , typeLabel= 'current') # or Future

Start to carry out training and testing for the 5 different subsets (CV = 5)

Another 2 major steps are done here: modeling development and fitting

Look at Appendix B4 and B5

for i in range(0, CV):

 Xs_train_fast = learningTestingDict['fast_train'][0][i]

 y_train_fast = learningTestingDict['fast_train'][1][i]

 Xs_test_fast = learningTestingDict['fast_test'][0][i]

 y_test_fast = learningTestingDict['fast_test'][1][i]

23

 Xs_train_slow = learningTestingDict['slow_train'][0][i]

 y_train_slow = learningTestingDict['slow_train'][1][i]

 Xs_test_slow = learningTestingDict['slow_test'][0][i]

 y_test_slow = learningTestingDict['slow_test'][1][i]

 TestInstances = TestInstancesGroup[i]

 # Normalization

 scaler_fast = StandardScaler()

 Xs_train_fast = scaler_fast.fit_transform(Xs_train_fast)

 Xs_test_fast = scaler_fast.transform(Xs_test_fast)

 scaler_slow = StandardScaler()

 Xs_train_slow = scaler_slow.fit_transform(Xs_train_slow)

 Xs_test_slow = scaler_slow.transform(Xs_test_slow)

 # Initialize model

 FTR = FireTemperatureRegression()

 # 2 SVR models: r1 and r2

 # r1 exists in Phase 2

 # r2 exists in Phase 2 and 3

 FTR.fit(

 Xs_r1 = Xs_train_fast,

 y_r1 = y_train_fast,

 Xs_r2 = Xs_train_slow,

 y_r2 = y_train_slow

)

 for i_test in range(0, len(TestInstances)):

 testI = TestInstances[i_test]

 if len(testI[2]) > 0:

 currentID = testI[-1]

 # Carrying out fitting

 predict_values, real_values, p2, r2, p3, r3, p23, r23, p4, r4, fit_type = FTR.predict_instancesV2(

 fvs_fast = testI[0],

 fvs_slow = testI[1],

 reals = testI[2],

 types = testI[3],

 ts = testI[5],

24

 scale_fast = scaler_fast,

 scale_slow = scaler_slow

)

 # Determine overall MAE in Phase 2 to Phase 4

 MAE, num = FTR.getMAE(predict_values, real_values)

 # Determine MAE in Phase 2 only

 try:

 MAE_p2, _ = FTR.getMAE(p2, r2)

 except ValueError:

 MAE_p2 = 0

 # Determine MAE in Phase 3 only

 MAE_p3, _ = FTR.getMAE(p3, r3)

 # Determine overall MAE in Phase 2 and 3

 MAE_p23, _ = FTR.getMAE(p23, r23)

 # Determine MAE in Phase 4 only

 MAE_p4, _ = FTR.getMAE(p4, r4)

End of Main codes

25

Appendix B2: Read Data

Step 1 to get data

class SignalPreprocessing(object):

 # Getting raw data

 def __init__(self, signal_fn, resultDir):

 readingModule = CsvReader.CsvReader(signal_fn)

 Data = readingModule.getData(

 indexs = [0,1,2,3,4,5],

 hasHeader = 1,

 needHandleNegativeOneIndex = [],

 flag = None

)

 self.ids_list = Data[0]

 self.times_list = Data[1]

 self.t1s_list = Data[2]

 self.t2s_list = Data[3]

 self.t3s_list = Data[4]

 self.tps_list = Data[5]

 self._buildInstances()

 def _buildInstances(self):

 self.allInstances = []

 temp_ids = []

 idxRanges = []

 lastID = self.ids_list[0]

 startIdx = 0

 for i in range(0, len(self.ids_list)):

 print(i)

 currentID = self.ids_list[i]

 if currentID != lastID:

 endIdx = i

 idxRanges.append([startIdx, endIdx])

 temp_ids.append(lastID)

 # Refresh

 lastID = currentID

 startIdx = i

26

 # Append last one

 idxRanges.append([startIdx, len(self.ids_list)])

 temp_ids.append(lastID)

 for i in range(0, len(idxRanges)):

 print(i)

 currentRng = idxRanges[i]

 newInstance = Instance(

 temp_ids[i],

 self.times_list[currentRng[0]: currentRng[1]],

 self.t1s_list[currentRng[0]: currentRng[1]],

 self.t2s_list[currentRng[0]: currentRng[1]],

 self.t3s_list[currentRng[0]: currentRng[1]],

 self.tps_list[currentRng[0]: currentRng[1]])

 self.allInstances.append(newInstance)

End of step 1

27

Appendix B3: Data Pre-Processing and Feature Extraction

Step 2 to do data pre-processing and feature extraction

class Instance(object):

 @staticmethod

 def Instances2GroupLists_multiRoomV3(Instances, cv, typeLabel):

 Xs_train_group_fastRoom = []

 Xs_test_group_fastRoom = []

 y_train_group_fastRoom = []

 y_test_group_fastRoom = []

 Xs_train_group_slowRoom = []

 Xs_test_group_slowRoom = []

 y_train_group_slowRoom = []

 y_test_group_slowRoom = []

 TestInstances_group = []

 totalLength = len(Instances)

 step = totalLength / float(cv)

 chunkIdxs = np.arange(0, totalLength, step).tolist()

 for i in range(0, len(chunkIdxs)):

 startIdx = chunkIdxs[i]

 if i + 1 < len(chunkIdxs):

 endIdx = chunkIdxs[i + 1]

 else:

 endIdx = len(Instances)

 # Training and Testing subsets

 # Build Xs and Ys

 Xs_train_fast = []

 Xs_test_fast = []

 Xs_train_slow = []

 Xs_test_slow = []

 # ---------------

 y_train_fast = []

 y_test_fast = []

 y_train_slow = []

 y_test_slow = []

 # ---------------

 TestInstance = []

 # ---------------

28

 for i_instance in range(0, len(Instances)):

 currentInstance = Instances[i_instance]

 if i_instance >= startIdx and i_instance < endIdx:

 Xs_test_slow.extend(currentInstance.instances_r1_fvs)

 Xs_test_fast.extend(currentInstance.instances_r2_fvs)

 if typeLabel == 'current':

 currentTestInstance = [

 currentInstance.test_fvs_fast_current,

 currentInstance.test_fvs_slow_current,

 currentInstance.test_Labels_current,

 currentInstance.test_types_current,

 currentInstance.times_refine[currentInstance.thresholdPoint_t1],

 currentInstance.test_t_current,

 currentInstance.id

]

 TestInstance.append(currentTestInstance)

 else:

 currentTestInstance = [

 currentInstance.test_fvs_fast_future,

 currentInstance.test_fvs_slow_future,

 currentInstance.test_Labels_future,

 currentInstance.test_types_future,

 currentInstance.times_refine[currentInstance.thresholdPoint_t1],

 currentInstance.test_t_future,

 currentInstance.id

]

 TestInstance.append(currentTestInstance)

 else:

 Xs_train_slow.extend(currentInstance.instances_r1_fvs)

 Xs_train_fast.extend(currentInstance.instances_r2_fvs)

 if typeLabel == 'current':

 y_train_slow.extend(currentInstance.regression_r1_lb0s)

 y_train_fast.extend(currentInstance.regression_r2_lb0s)

 else:

 y_train_slow.extend(currentInstance.regression_r1_lbns)

 y_train_fast.extend(currentInstance.regression_r2_lbns)

 Xs_train_group_fastRoom.append(Xs_train_fast)

 Xs_test_group_fastRoom.append(Xs_test_fast)

29

 y_train_group_fastRoom.append(y_train_fast)

 y_test_group_fastRoom.append(y_test_fast)

 Xs_train_group_slowRoom.append(Xs_train_slow)

 Xs_test_group_slowRoom.append(Xs_test_slow)

 y_train_group_slowRoom.append(y_train_slow)

 y_test_group_slowRoom.append(y_test_slow)

 TestInstances_group.append(TestInstance)

 return {

 'fast_train': [Xs_train_group_fastRoom, y_train_group_fastRoom],

 'fast_test': [Xs_test_group_fastRoom, y_test_group_fastRoom],

 'slow_train': [Xs_train_group_slowRoom, y_train_group_slowRoom],

 'slow_test': [Xs_test_group_slowRoom, y_test_group_slowRoom]

 }, TestInstances_group

 # Carrying out data pre-processing

 def __init__(self, id, times, t1s, t2s, t3s, ps, threshold=150, predictTempThreshold=600):

 # Read values

 self.id = id

 self.times = times

 self.t1s = t1s

 self.t2s = t2s

 self.t3s = t3s

 self.ps = ps

 self.threshold = threshold

 self.predictTempThreshold = predictTempThreshold

 # Process starts here

 self._preprocess()

 self._determine_labels()

 self._applyTemperatureThreshold()

 self._extract_features_flash()

 self._extractRegressionFeaturesAndLabels(3, 6)

 self._buildPhaseTimeRanges()

 self._buildTestingInstance(3, 6)

 print('d')

 def _preprocess(self):

 flag = (self.ps[0] == self.ps[1])

 while flag:

 self.times = self.times[1:]

30

 self.t1s = self.t1s[1:]

 self.t2s = self.t2s[1:]

 self.t3s = self.t3s[1:]

 self.ps = self.ps[1:]

 flag = (self.ps[0] == self.ps[1])

 # Get front data value (for refine use)

 self.front_p = float(self.ps[0])

 self.front_t1 = float(self.t1s[0])

 self.front_t2 = float(self.t2s[0])

 self.front_t3 = float(self.t3s[0])

 # Convert to float

 self.times = [float(ele) - float(self.times[0]) for ele in self.times]

 self.t1s = [float(ele) - float(self.t1s[0]) for ele in self.t1s]

 self.t2s = [float(ele) - float(self.t2s[0]) for ele in self.t2s]

 self.t3s = [float(ele) - float(self.t3s[0]) for ele in self.t3s]

 self.ps = [float(ele) - float(self.ps[0]) for ele in self.ps]

 # Recover original signal

 self.ps_ori = [e+self.front_p for e in self.ps]

 self.t1s_ori = [e+self.front_t1 for e in self.t1s]

 self.t2s_ori = [e+self.front_t2 for e in self.t2s]

 self.t3s_ori = [e+self.front_t3 for e in self.t3s]

 # Cut off right hand part

 flag = (self.ps[-1] < self.ps[-2])

 while flag:

 self.times = self.times[:-1]

 self.t1s = self.t1s[:-1]

 self.t2s = self.t2s[:-1]

 self.t3s = self.t3s[:-1]

 self.ps = self.ps[:-1]

 flag = (self.ps[-1] < self.ps[-2])

 # Generate other basic features

 self.times_diff = self.times[1:]

 self.diff_ps = np.diff(np.array(self.ps)).tolist()

 self.diff_t1s = np.diff(np.array(self.t1s)).tolist()

 self.diff_t2s = np.diff(np.array(self.t2s)).tolist()

 self.diff_t3s = np.diff(np.array(self.t3s)).tolist()

 # Smoothing

 self.diff_ps = Utility.move_average(self.diff_ps, 4)

 self.diff_t1s = Utility.move_average(self.diff_t1s, 4)

31

 self.diff_t2s = Utility.move_average(self.diff_t2s, 4)

 self.diff_t3s = Utility.move_average(self.diff_t3s, 4)

 # Padding

 self.times_gap = []

 self.t1s_gap = []

 self.t2s_gap = []

 self.t3s_gap = []

 for i in range(0, len(self.times)):

 self.times_gap.append(self.times[i])

 self.t1s_gap.append(self.ps_ori[i] - self.t1s_ori[i])

 self.t2s_gap.append(self.ps_ori[i] - self.t2s_ori[i])

 self.t3s_gap.append(self.ps_ori[i] - self.t3s_ori[i])

 print('d')

 # Assign labels

 def _determine_labels(self):

 if max(self.ps) >= self.predictTempThreshold:

 self.isFlash = True

 else:

 self.isFlash = False

 # Apply temperature threshold

 def _applyTemperatureThreshold(self):

 self.times_refine = []

 self.ps_refine = []

 self.t1s_refine = []

 self.t2s_refine = []

 self.t3s_refine = []

 self.thresholdPoint_p = None

 self.thresholdPoint_t1 = None

 self.thresholdPoint_t2 = None

 self.thresholdPoint_t3 = None

 for i in range(0, len(self.times)):

 self.times_refine.append(self.times[i])

 # Apply threshold

 current_p = self.ps[i] + self.front_p

 current_t1 = self.t1s[i] + self.front_t1

 current_t2 = self.t2s[i] + self.front_t2

32

 current_t3 = self.t3s[i] + self.front_t3

 if current_p < self.threshold:

 self.ps_refine.append(current_p)

 else:

 self.ps_refine.append(-1)

 if self.thresholdPoint_p == None:

 self.thresholdPoint_p = i

 if current_t1 < self.threshold:

 self.t1s_refine.append(current_t1)

 else:

 self.t1s_refine.append(-1)

 if self.thresholdPoint_t1 == None:

 self.thresholdPoint_t1 = i

 if current_t2 < self.threshold:

 self.t2s_refine.append(current_t2)

 else:

 self.t2s_refine.append(-1)

 if self.thresholdPoint_t2 == None:

 self.thresholdPoint_t2 = i

 if current_t3 < self.threshold:

 self.t3s_refine.append(current_t3)

 else:

 self.t3s_refine.append(-1)

 if self.thresholdPoint_t3 == None:

 self.thresholdPoint_t3 = i

 # Construct different phases

 def _buildPhaseTimeRanges(self):

 if self.thresholdPoint_p == None:

 self.thresholdPoint_p = len(self.times_refine)-1

 if self.thresholdPoint_t1 == None:

 self.thresholdPoint_t1 = len(self.times_refine)-1

 if self.thresholdPoint_t2 == None:

 self.thresholdPoint_t2 = len(self.times_refine)-1

 self.phase1Range = [self.times_refine[self.thresholdPoint_p], self.times_refine[self.thresholdPoint_t2]]

 self.phase2Range = [self.times_refine[self.thresholdPoint_t2], self.times_refine[self.thresholdPoint_t1]]

 self.phase3Range = [self.times_refine[self.thresholdPoint_t1], 999999] # just make sure it is large enough

 # Subroutine of _extract_features_flash

33

 @staticmethod

 def _FEATURE_single_TS(times, temps, startIndex, endIndex):

 # compute delta time

 deltaT = times[endIndex] - times[startIndex]

 # f1

 deltaTemp = temps[endIndex] - temps[startIndex]

 # f2

 avgDeltaTempRate = float(deltaTemp) / float(deltaT)

 # compute instant change

 instantValueChanges = []

 for i in range(startIndex+1, endIndex+1):

 dt_instant = times[i] - times[i-1]

 dv_instant = temps[i] - temps[i-1]

 speed_instant = float(dv_instant) / float(dt_instant)

 instantValueChanges.append(speed_instant)

 # f3 min instant speed

 min_instantValue = min(instantValueChanges)

 # f4 max instant speed

 max_instantValue = max(instantValueChanges)

 # f5 avg instant speed

 avg_instantValue = np.array(instantValueChanges).mean()

 # f6 largest index position

 maxIndax = instantValueChanges.index(max(instantValueChanges))

 position_ratio = float(maxIndax) / float(len(instantValueChanges))

 # f7 trend

 # build points

 X = np.arange(len(instantValueChanges))

 Y = np.array(instantValueChanges)

 A = np.vstack([X, np.ones(len(X))]).T

 m_all, _ = np.linalg.lstsq(A, Y)[0]

 X = np.arange(len(instantValueChanges))

 Y = np.array(instantValueChanges)

 A = np.vstack([X, np.ones(len(X))]).T

 m_all, _ = np.linalg.lstsq(A, Y)[0]

 # first part and second part

 middleIndex = int(len(instantValueChanges)/2)+1

 # first part

 X = np.arange(len(instantValueChanges[0:middleIndex]))

 Y = np.array(instantValueChanges[0:middleIndex])

34

 A = np.vstack([X, np.ones(len(X))]).T

 m_front, _ = np.linalg.lstsq(A, Y)[0]

 # back part

 X = np.arange(len(instantValueChanges[middleIndex:]))

 if len(X.tolist()) == 0:

 m_back = m_front

 else:

 Y = np.array(instantValueChanges[middleIndex:])

 A = np.vstack([X, np.ones(len(X))]).T

 m_back, _ = np.linalg.lstsq(A, Y)[0]

 # fv

 fv = [deltaT, deltaTemp, avgDeltaTempRate, min_instantValue, max_instantValue, avg_instantValue, position_ratio, m_all, m_front, m_back]

 return fv

 # Obtain features for Room 1 in Phase 1

 def _extract_features_flash(self):

 if self.thresholdPoint_p != None:

 self.fv_full = []

 fv_p_temp = Instance._FEATURE_single_TS(times=self.times_refine, temps=self.ps_refine, startIndex=0, endIndex=self.thresholdPoint_p-1)

 fv_p_diff = Instance._FEATURE_single_TS(times=self.times_diff, temps=self.diff_ps, startIndex=0, endIndex=self.thresholdPoint_p-1)

 self.fv_full.extend(fv_p_temp)

 self.fv_full.extend(fv_p_diff)

 else:

 self.fv_full = None

 # Obtain features for 1) Corridor in Phase 1 to 2 and 2) Room 2 in Phase 1 to 3

 def _extractRegressionFeaturesAndLabels(self, n_space, windowLength = 6):

 self.isRegression_valid = False

 self.r1_window_end_ts = []

 self.instances_r1_fvs = []

 self.regression_r1_lb0s = []

 self.regression_r1_lbns = []

 self.r2_window_end_ts = []

 self.instances_r2_fvs = []

 self.regression_r2_lb0s = []

 self.regression_r2_lbns = []

 # check

 self.isRegression_valid = True

35

 if self.thresholdPoint_p == None:

 self.isRegression_valid = False

 self.fv_fix_slow = None

 self.fv_fix_fast = None

 else:

 if self.thresholdPoint_t1 == None:

 self.thresholdPoint_t1 = len(self.times_refine)-1

 if self.thresholdPoint_t2 == None:

 self.thresholdPoint_t2 = len(self.times_refine)-1

 # Get basic

 idxRange_fixing = [0, self.thresholdPoint_p-1]

 idxRange_changing_r1 = [self.thresholdPoint_p, self.thresholdPoint_t1-1]

 idxRange_changing_r2 = [self.thresholdPoint_p, self.thresholdPoint_t2-1]

 # Phase 1

 fv_fix_r1, self.mean_r1_value, self.mean_r1_change = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s, idxRange_fixing[0],

idxRange_fixing[1])

 fv_fix_r2, self.mean_r2_value, self.mean_r2_change = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s, idxRange_fixing[0],

idxRange_fixing[1])

 self.fv_fix_slow = fv_fix_r1

 self.fv_fix_fast = fv_fix_r2

 # Phase 2 and 3

 # r1 first ---

 # Apply moving window

 r1_mv_idxRanges = Instance._movingWindow(

 frontIndex=0,

 endIndex=idxRange_changing_r1[1],

 lengthWindow=windowLength,

 stepIndex=1

)

 for i in range(0, len(r1_mv_idxRanges)):

 currentRange = r1_mv_idxRanges[i]

 changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s_refine, currentRange[0], currentRange[1], isFix=False,

deltaT=self.times_refine[currentRange[-1]]-self.times_refine[self.thresholdPoint_p],mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change)

 fv_full = []

 fv_full.extend(changing_fv)

 fv_full.extend(fv_fix_r1)

 # Get label

 currentLabel0 = self.ps_ori[currentRange[-1]]

 currentLabeln = self.ps_ori[min(len(self.ps_ori)-1, currentRange[-1]+n_space)]

36

 # Append

 self.r1_window_end_ts.append(self.times_refine[currentRange[-1]])

 self.instances_r1_fvs.append(fv_full)

 self.regression_r1_lb0s.append(currentLabel0)

 self.regression_r1_lbns.append(currentLabeln)

 # Then r2 ---

 # Apply moving window

 r2_mv_idxRanges = Instance._movingWindow(

 frontIndex=0,

 endIndex=idxRange_changing_r2[1],

 lengthWindow=windowLength,

 stepIndex=1

)

 for i in range(0, len(r2_mv_idxRanges)):

 currentRange = r2_mv_idxRanges[i]

 changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s_refine, currentRange[0], currentRange[1], isFix=False,

deltaT=self.times_refine[currentRange[-1]]-self.times_refine[self.thresholdPoint_p], mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change)

 fv_full = []

 fv_full.extend(changing_fv)

 fv_full.extend(fv_fix_r2)

 # Get label

 currentLabel0 = self.ps_ori[currentRange[-1]]

 currentLabeln = self.ps_ori[min(len(self.ps_ori) - 1, currentRange[-1] + n_space)]

 # Append

 self.r2_window_end_ts.append(self.times_refine[currentRange[-1]])

 self.instances_r2_fvs.append(fv_full)

 self.regression_r2_lb0s.append(currentLabel0)

 self.regression_r2_lbns.append(currentLabeln)

 # Subroutine of _extractRegressionFeaturesAndLabels

 @staticmethod

 def _FEATURE_regression(times, ps, ts, startIndex, endIndex, isFix = True, deltaT = None, mean_t_value =None, mean_t_change=None):

 # ps is the fire room

 # ts is other room

 mean_ps_v = np.array(ps[startIndex:endIndex+1]).mean()

 mean_ts_v = np.array(ts[startIndex:endIndex+1]).mean()

 instantValueChanges_ps = []

 for i in range(startIndex + 1, endIndex + 1):

 dt_instant = times[i] - times[i - 1]

37

 dv_instant = ps[i] - ps[i - 1]

 speed_instant = float(dv_instant) / float(dt_instant)

 instantValueChanges_ps.append(speed_instant)

 instantValueChanges_ts = []

 for i in range(startIndex + 1, endIndex + 1):

 dt_instant = times[i] - times[i - 1]

 dv_instant = ts[i] - ts[i - 1]

 speed_instant = float(dv_instant) / float(dt_instant)

 instantValueChanges_ts.append(speed_instant)

 meanPs = np.array(instantValueChanges_ps).mean()

 maxPs = np.array(instantValueChanges_ps).max()

 minPs = np.array(instantValueChanges_ps).min()

 meanTs = np.array(instantValueChanges_ts).mean()

 maxTs = np.array(instantValueChanges_ts).max()

 minTs = np.array(instantValueChanges_ts).min()

 # Compute ratio

 maxIndax = instantValueChanges_ps.index(max(instantValueChanges_ps))

 position_ratio_p = float(maxIndax) / float(len(instantValueChanges_ps))

 maxIndax = instantValueChanges_ts.index(max(instantValueChanges_ts))

 position_ratio_t = float(maxIndax) / float(len(instantValueChanges_ts))

 if isFix == False:

 fv = [mean_ts_v,meanTs, maxTs, minTs, position_ratio_t, deltaT]

 return fv

 else:

 fv = [mean_ps_v, mean_ts_v, meanPs, maxPs, minPs, meanTs, maxTs, minTs, position_ratio_p, position_ratio_t]

 mean_ts_value = mean_ts_v

 mean_ts_change = meanTs

 return fv, mean_ts_value, mean_ts_change

 # Subroutine of _extractRegressionFeaturesAndLabels

 @staticmethod

 def _movingWindow(frontIndex, endIndex, lengthWindow, stepIndex):

 eachWindowIndexRanges = []

 # paras

 totalLength = endIndex-frontIndex+1

 i = frontIndex

 while i < endIndex-lengthWindow:

 # iterate window

 currentWindowStartIdx = i

38

 currentWindowEndIdx = i + lengthWindow

 eachWindowIndexRanges.append([currentWindowStartIdx, currentWindowEndIdx])

 # refresh

 i = i+stepIndex

 return eachWindowIndexRanges

 # Subroutine of _extractRegressionFeaturesAndLabels

 @staticmethod

 def _isInIndexRange(idx, rng):

 # if idx >= rng[0] and idx<=rng[1]:

 # return True

 if idx<=rng[1]:

 return True

 else:

 return False

 # Combine instances

 def _buildTestingInstance(self, n_space, lengthWindow):

 if self.id == '3':

 print('d')

 if self.isRegression_valid == False:

 self.test_t_current = []

 self.test_Labels_current = []

 self.test_t_future = []

 self.test_Labels_future= []

 self.test_types_future = [] # 'multi' or 'single'

 self.test_types_current = []

 self.test_fvs_slow_future = [] # 1

 self.test_fvs_fast_future = [] # 2

 self.test_fvs_slow_current = [] # 1

 self.test_fvs_fast_current = [] # 2

 # logInfo ---

 self.test_logInfo_historyTemp_slow = []

 self.test_logInfo_windowTemp_slow = []

 self.test_logInfo_deltaTs = []

 else:

 idxRange_changing_slow = [self.thresholdPoint_p, self.thresholdPoint_t1 - 1]

 idxRange_changing_fast = [self.thresholdPoint_p, self.thresholdPoint_t2 - 1]

 # Build test fvs and types (one room or two room) and labels

39

 self.test_t_current = []

 self.test_Labels_current = []

 self.test_t_future = []

 self.test_Labels_future = []

 self.test_types_future = []

 self.test_types_current = []

 self.test_fvs_slow_future = [] # 1

 self.test_fvs_fast_future = [] # 2

 self.test_fvs_slow_current = [] # 1

 self.test_fvs_fast_current = [] # 2

 # logInfo ---

 self.test_logInfo_historyTemp_slow = []

 self.test_logInfo_windowTemp_slow = []

 self.test_logInfo_deltaTs = []

 # Build -- future

 for i in range(self.thresholdPoint_p, self.thresholdPoint_t1):

 # Determine window

 currentPredictIndex = i

 currentWindowEndIndex = max(0, currentPredictIndex-n_space)

 currentWindowStartIndex = max(0, currentWindowEndIndex - lengthWindow +1)

 if currentWindowEndIndex - currentWindowStartIndex+1 <= (1/2)* lengthWindow:

 continue

 self.test_Labels_future.append(self.ps_ori[currentPredictIndex])

 self.test_t_future.append(self.times_refine[currentPredictIndex])

 # Determine type

 flag_slow = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_slow)

 flag_fast = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_fast)

 if flag_slow == True and flag_fast == True:

 self.test_types_future.append('multi')

 else:

 # It should not go here

 self.test_types_future.append('single')

 # ------- test fv --------------

 if flag_slow == True:

 # Build fv

 changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s_refine,

 currentWindowStartIndex, currentWindowEndIndex, isFix=False,

 deltaT=self.times_refine[currentWindowEndIndex] -self.times_refine[self.thresholdPoint_p],

mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change)

40

 fv_full = []

 fv_full.extend(changing_fv)

 fv_full.extend(self.fv_fix_slow)

 # Append -- test fv

 self.test_fvs_slow_future.append(fv_full)

 # Append -- history temp for slow room

 self.test_logInfo_historyTemp_slow.append(

 self.t1s_refine[0:currentWindowEndIndex+1]

)

 self.test_logInfo_windowTemp_slow.append(

 self.t1s_refine[currentWindowStartIndex:currentWindowEndIndex+1]

)

 self.test_logInfo_deltaTs.append(

 self.times_refine[currentWindowEndIndex+1] - self.times_refine[self.thresholdPoint_p]

)

 else:

 self.test_fvs_slow_future.append(None)

 self.test_logInfo_historyTemp_slow.append(None)

 self.test_logInfo_deltaTs.append(None)

 if flag_fast == True:

 # Build fv

 changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s_refine,

 currentWindowStartIndex, currentWindowEndIndex, isFix=False,

 deltaT=self.times_refine[currentWindowEndIndex] - self.times_refine[self.thresholdPoint_p],

mean_t_value=self.mean_r2_value, mean_t_change=self.mean_r2_change)

 fv_full = []

 fv_full.extend(changing_fv)

 fv_full.extend(self.fv_fix_fast)

 # Append

 self.test_fvs_fast_future.append(fv_full)

 else:

 self.test_fvs_fast_future.append(None)

 for i in range(self.thresholdPoint_t1, len(self.times_refine)):

 self.test_t_future.append(self.times_refine[i])

 self.test_Labels_future.append(self.ps_ori[i])

 self.test_types_future.append('trend')

 # Build -- current

 for i in range(self.thresholdPoint_p, self.thresholdPoint_t1):

41

 # Determine window

 currentPredictIndex = i

 currentWindowEndIndex = max(currentPredictIndex, 0)

 currentWindowStartIndex = max(0,currentWindowEndIndex - lengthWindow +1)

 if currentWindowEndIndex - currentWindowStartIndex + 1 <= (1 / 2) * lengthWindow:

 continue

 self.test_Labels_current.append(self.ps_ori[currentPredictIndex])

 self.test_t_current.append(self.times_refine[currentPredictIndex])

 # Determine type

 flag_slow = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_slow)

 flag_fast = Instance._isInIndexRange(currentWindowEndIndex, idxRange_changing_fast)

 if flag_slow == True and flag_fast == True:

 self.test_types_current.append('multi')

 else:

 # It should not go here

 self.test_types_current.append('single')

 # ------- test fv --------------

 if flag_slow == True:

 # Build fv

 changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t1s_refine,

 currentWindowStartIndex, currentWindowEndIndex, isFix=False,

 deltaT=self.times_refine[currentWindowEndIndex] -self.times_refine[self.thresholdPoint_p],

mean_t_value=self.mean_r1_value, mean_t_change=self.mean_r1_change)

 f = Utility.list_contain_nan(changing_fv)

 if f == True:

 print('a')

 fv_full = []

 fv_full.extend(changing_fv)

 fv_full.extend(self.fv_fix_slow)

 # Append

 self.test_fvs_slow_current.append(fv_full)

 else:

 self.test_fvs_slow_current.append(None)

 if flag_fast == True:

 # Build fv

 changing_fv = Instance._FEATURE_regression(self.times_refine, self.ps_refine, self.t2s_refine,

 currentWindowStartIndex, currentWindowEndIndex, isFix=False,

 deltaT=self.times_refine[currentWindowEndIndex] - self.times_refine[self.thresholdPoint_p],

42

mean_t_value=self.mean_r2_value, mean_t_change=self.mean_r2_change)

 fv_full = []

 fv_full.extend(changing_fv)

 fv_full.extend(self.fv_fix_fast)

 # Append

 self.test_fvs_fast_current.append(fv_full)

 else:

 self.test_fvs_fast_current.append(None)

 for i in range(self.thresholdPoint_t1, len(self.times_refine)):

 self.test_t_current.append(self.times_refine[i])

 self.test_Labels_current.append(self.ps_ori[i])

 self.test_types_current.append('trend')

 print('d')

End of step 2

43

Appendix B4: Training and Testing

Step 3 to do training and testing

class FireTemperatureRegression(object):

 # Initialize parameters

 def __init__(self):

 self.regressionModule_room1 = None

 self.regressionModule_room2 = None

 # Time range

 self.Phase1TimeRange = None

 self.Phase2TimeRange = None

 self.Phase3TimeRange = None

 # Training and Testing the model

 def fit(self, Xs_r1, y_r1, Xs_r2, y_r2, isGrid = True):

 # r1

 gsc = GridSearchCV(

 estimator=SVR(kernel='rbf'),

 param_grid={

 'C': [0.1, 1, 100, 1000],

 'epsilon':[0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10],

 'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5]

 },

 cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)

 grid_result = gsc.fit(Xs_r1, y_r1)

 best_params = grid_result.best_params_

 print('Room 1---C: ' + str(best_params["C"]))

 print('Room 1---epsilon: ' + str(best_params["epsilon"]))

 print('Room 1---gamma: ' + str(best_params["gamma"]))

 self.regressionModule_room1 = SVR(kernel='rbf', C=best_params["C"], epsilon=best_params["epsilon"], gamma=best_params["gamma"],

 coef0=0.1, shrinking=True,

 tol=0.001, cache_size=200, verbose=False, max_iter=-1)

 self.regressionModule_room1.fit(Xs_r1, y_r1)

 # r2

 gsc = GridSearchCV(

 estimator=SVR(kernel='rbf'),

 param_grid={

 'C': [0.1, 1, 100, 1000],

 'epsilon': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10],

44

 'gamma': [0.0001, 0.001, 0.005, 0.1, 1, 3, 5]

 },

 cv=5, scoring='neg_mean_squared_error', verbose=0, n_jobs=-1)

 grid_result = gsc.fit(Xs_r2, y_r2)

 best_params = grid_result.best_params_

 print('Room 2---C: ' + str(best_params["C"]))

 print('Room 2---epsilon: ' + str(best_params["epsilon"]))

 print('Room 2---gamma: ' + str(best_params["gamma"]))

 self.regressionModule_room2 = SVR(kernel='rbf', C=best_params["C"], epsilon=best_params["epsilon"],

 gamma=best_params["gamma"],

 coef0=0.1, shrinking=True,

 tol=0.001, cache_size=200, verbose=False, max_iter=-1)

 self.regressionModule_room2.fit(Xs_r2, y_r2)

 # Padding and smoothing

 @staticmethod

 def MA(y, N=4):

 y_padded = np.pad(y, (N // 2, N - 1 - N // 2), mode='edge')

 y_smooth = np.convolve(y_padded, np.ones((N,)) / N, mode='valid')

 return y_smooth

 # Subroutine of predict_instancesV2

 # To get fitting type (binding or polynomial)

 @staticmethod

 def predict_instance_trend(memory_ts, memory_temps, predict_ts):

 FTP_trend = FireTemperaturePredictionForSameRoom()

 FTP_trend.fit(memory_ts, FireTemperatureRegression.MA(memory_temps))

 predict_temps = FTP_trend.predict(predict_ts)

 return predict_temps, FTP_trend.type

 # Fitting

 def predict_instancesV2(self, fvs_fast, fvs_slow, reals, types, ts, scale_fast, scale_slow):

 p2 =[]

 r2 =[]

 p3 = []

 r3 = []

 p23 = []

 r23 = []

 p4 = []

45

 r4 = []

 predict_values = []

 i_trend = types.index('trend')

 for i in range(0, i_trend):

 currentType = types[i]

 fv_fast = fvs_fast[i]

 fv_slow = fvs_slow[i]

 if fv_fast != None:

 fv_fast = scale_fast.transform([fv_fast])[0]

 if fv_slow != None:

 fv_slow = scale_slow.transform([fv_slow])[0]

 if currentType == 'multi':

 pred = self.predict_instanceV2(

 fv_fast = fv_fast,

 fv_slow = fv_slow,

 type = 1

)

 p2.append(pred)

 r2.append(reals[i])

 p23.append(pred)

 r23.append(reals[i])

 elif currentType == 'single':

 pred = self.predict_instanceV2(

 fv_fast=fv_fast,

 fv_slow=fv_slow,

 type=2

)

 p3.append(pred)

 r3.append(reals[i])

 p23.append(pred)

 r23.append(reals[i])

 predict_values.append(pred)

 predict_ts = ts[i_trend:]

 predict_temps, fit_type = FireTemperatureRegression.predict_instance_trend(ts[:i_trend], predict_values, predict_ts)

 predict_values.extend(predict_temps)

 p4 = predict_temps

 r4 = reals[i_trend:]

 return predict_values, reals, p2, r2, p3, r3, p23, r23, p4, r4, fit_type

46

 # To produce final results for Phase 2 and 3

 def predict_instanceV2(self, fv_fast, fv_slow, type):

 if type == 1:

 temperature_r1 = self.regressionModule_room1.predict([fv_fast])[0]

 temperature_r2 = self.regressionModule_room2.predict([fv_slow])[0]

 return (temperature_r1 + temperature_r2) / 2.0

 elif type == 2:

 temperature_r2 = self.regressionModule_room2.predict([fv_slow])[0]

 return temperature_r2

 # Calculate MAE

 @staticmethod

 def getMAE(preds, reals):

 mae = mean_absolute_error(preds, reals)

 return mae, len(preds)

End of step 3

47

Appendix B5: Fitting

Step 4 to do fitting

class FireTemperaturePredictionForSameRoom(object):

 # Initialize the inner parameter

 def __init__(self):

 self.timeToFit = None

 self.temperatureToFit = None

 # Carrying fitting

 def fit(self, times, temperatures):

 self.timeToFit = times

 self.temperatureToFit = temperatures

 self.type = FireTemperaturePredictionForSameRoom._determine_fit_type(self.temperatureToFit)

 # Type = 0, binding curve

 if self.type == 0:

 sigma = np.ones(len(self.timeToFit))

 sigma[[-2,-1]] = 0.001

 self.param = curve_fit(FireTemperaturePredictionForSameRoom._binding, self.timeToFit, self.temperatureToFit,

 bounds=((0,0,0), (500,10000,500)), sigma=sigma, maxfev=np.inf)

 # Type = 1, 3rd order polynomial

 elif self.type == 1:

 diff = np.diff(np.array(self.temperatureToFit)).tolist()

 idx = diff.index(max(diff))

 sigma = np.ones(len(self.timeToFit))

 sigma[[0, idx-1]] = 0.001

 self.param = curve_fit(FireTemperaturePredictionForSameRoom._poly3, self.timeToFit, self.temperatureToFit,

 bounds=((0,-1,-1,-1000), (1,1,1,8000)),sigma=sigma, maxfev=np.inf)

 # 5th order polynomial

 else:

 diff = np.diff(np.array(self.temperatureToFit)).tolist()

 idx = diff.index(max(diff))

 sigma = np.ones(len(self.timeToFit))

 sigma[[0, idx-1]] = 0.001

 self.param = curve_fit(

 FireTemperaturePredictionForSameRoom._poly5, self.timeToFit, self.temperatureToFit,

 bounds=((0,-1,-1,-1,-1,-1), (1,1,1,1,1,1)),maxfev=np.inf)

48

 # Gather values

 def predict(self, ts_predict):

 if self.type == 0:

 values_a = FireTemperaturePredictionForSameRoom._binding(np.array(ts_predict), *self.param[0])

 elif self.type == 1:

 values_a = FireTemperaturePredictionForSameRoom._poly3(np.array(ts_predict), *self.param[0])

 else:

 values_a = FireTemperaturePredictionForSameRoom._poly5(np.array(ts_predict), *self.param[0])

 values = values_a.tolist()

 return values

 # Fitting options

 @staticmethod

 def _poly5(x,a,b,c,d,e,f):

 return a*x**5 + b*x**4 +c*x**3 +d*x**2 +e*x +f

 @staticmethod

 def _binding(x, kd, bmax, e):

 return ((bmax * x**.5) / (x**.5 + kd))+e

 @staticmethod

 def _log(x, a, b):

 return a*(np.log(x) / np.log(5))+ b

 @staticmethod

 def _poly3(x,a,b,c,d):

 return a*x**3+b*x**2+c*x+d

 # To determine fitting type

 @staticmethod

 def _determine_fit_type(values):

 # Type 0 => binding || 1 => poly

 diffs = np.diff(np.array(values)).tolist()

 diffs = FireTemperatureRegression.MA(diffs).tolist()

 diffs = FireTemperatureRegression.MA(diffs).tolist()

 maxV = max(diffs)

 maxIdx = diffs.index(maxV)

 maxIdxRatio = float(maxIdx) / float(len(diffs))

 if maxIdxRatio < 0.65:

 return 0

 else:

49

 return 1

End of step 4

50

[Intentionally Left Blank]

51

 Appendix C: P-Flash Limitations

In this section, P-Flash is tested against a new test set and it is believed that the following

evaluation helps to reveal the current limitation of P-Flash and to provide guidelines about data

requirement for the development of a more robust flashover prediction model in multi-

compartment buildings.

The new test set accounts for three additional effects: 1) a different surface material, 2)

arbitrary opening conditions of vents, and 3) a different fire growth behavior. For the new

surface material concrete [12] is considered and the thermal conductivity, specific heat,

density, thickness and surface emissivity is given as 1.75 W/m2, 1 kJ/(kg·̊C), 2200 kg/m3,

0.15 m, and 0.94, respectively. For vent conditions, all vents such as doors and windows are

initially closed, but they can be opened at any time during a numerical experiment. Due to the

arbitrary opening of the closed vents, a more complex fire growth behavior can also be

introduced. For example, in Room 1 with two initially closed vents, a t-squared fire will begin

to decay due to depletion of oxygen. When there is an opened door or window in Room 1,

fresh air is entrained to the room. Given the added oxygen, a fire may continue to grow. Figure

B1 shows the corresponding heat detector temperature profiles. This kind of event provide fires

with double-peak growing behavior which is different from the t-squared fire. This example

case is denoted as Case 3 and is discussed below. Similar to that described in Section 2, the

remaining numerical setups are identical. In general, the simulation time for each numerical

experiment is 8400 s, and the temperature output interval is 20 s. In total, there are 4000

different cases.

In order to provide insights on the influence of each of the additional effects, model

performance against two limiting scenarios are first provided in Table B1. Scenario 1 consists

of cases where only the effect of new surface material is accounted for where all vents are still

open. For Scenario 2, besides having new surface material, cases with arbitrarily opening a

Room 1 exterior window and the Room 2 exterior door are also considered. As shown in the

table, the model performance for Scenario 1 remains similar to that of seen in Table 4. A

physical interpretation for having relatively similar results is that since P-flash learns patterns

associated with the higher level temperature information, such as the statistically-based rate of

change in temperature for the heat detectors, and with the fact that the change of wall material

does not lead to a significant change in temperature behavior, the model is capable of providing

reliable predictions. However, model performance drops substantially for Scenario 2,

especially in Phase IV where temperature signals from the heat detectors are no longer

available, the MAE increases to more than 150 ̊C. Figure B2 presents temperature comparison

between ground-truth (black dash line) and P-Flash predictions (red line for Phase II and III

and blue line for Phase IV). As shown in the figure, the temperature predictions in Phase II and

III capture the relative trend as compared to the ground-truth and same behavior is observed

even for the 2nd temperature rise appearing at around 2150 s. However, it can be seen that the

prediction in Phase IV captures neither the trend nor magnitude of the ground-truth. The large

discrepancy in Phase IV is largely due to the assumption imposed on the memory component

(M) that the overall temperature behavior assumes either the sigmoidal binding function or the

high order polynomial function based on the initial temperature rise. Table B1 shows the

overall model performance of P-Flash. An increase to MAE in both Phase II and III is observed

and the decrease in model performance is primarily due to the cases where there are arbitrarily

52

opening doors between Room 1 and Corridor, and Corridor and Room 2 (when doors are

closed, the temperature from the corresponding heat detector in a particular compartment

remains essentially at room temperature). In order to overcome the data complexity inherent

in the new test set, additional data is needed for modeling training and additional treatments

are required to facilitate the learning during the training process. This work is currently

underway.

Room 1
Corridor
Room 2

0

200

400

600

800

0 1000 2000 3000 4000

T
e

m
p

e
ra

tu
re

 (
 o
C

)

Time (s)
Figure B1. Temperature profiles for an example case (Case 3) demonstrating the effect of

arbitrarily opening to vents.

Table B1. P-Flash performance again new test set for current prediction.

 Phase II Phase III Phase IV

MAE (̊C) MAE (̊C) MAE (̊C)

Scenario 1 10 14 33

Scenario 2 23 30 > 150

Overall 47 58 > 150

Ground Truth
P-Flash Prediction (Phase II and III)
P-Flash Prediction (Phase IV)

0

140

280

420

560

700

200 600 1000 1400 1800 2200 2600

T
e

m
p

e
ra

tu
re

 (
 o
C

)

Time (s)
Figure B2. Comparison between ground truth and predictions (current) obtained from

P- Flash for Case 3.

