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Abstract. The multivariate scheme HFEv- used to be considered a 
promising candidate for a post-quantum signature system. First sug-
gested in the early 2000s, a version of the scheme made it to the third 
round of the ongoing NIST post-quantum standardization process. In 
late 2020, the system suffered from an efficient rank attack due to Tao, 
Petzoldt, and Ding. In this paper, we inspect how this recent rank at-
tack is affected by the projection modification. This modification was 
introduced to secure the signature scheme PFLASH against its prede-
cessor’s attacks. We prove upper bounds for the rank of projected HFEv-
(pHFEv-) and PFLASH under the new attack, which are tight for the 
experiments we have performed. We conclude that projection could be a 
useful tool in protecting against this recent cryptanalysis. 

Keywords: post-quantum cryptography, multivariate cryptography, min-
rank 

1 Introduction 

Multivariate cryptography has received increased attention over the last years, 
due to its potential of providing quantum–safe public key cryptosystems. Sig-
nature schemes based on these ideas seemed particularly promising, with one 
finalist, Rainbow [12], and one alternate candidate, GeMSS [8], reaching the 
third and current round of the NIST post–quantum standardization process. 
Recently, new attacks have been presented against both of these candidates [3, 
24]. The rank attack against GeMSS seems particularly effective, breaking all 
the suggested parameters for this scheme. 

A similar story took place over a decade ago, when the signature scheme 
SFLASH was broken [14]. In the aftermath, it was discovered that this attack 
can be avoided by projecting the input space [13], and the amended scheme, 
PFLASH [9], has withstood cryptanalysis up until this point. In this article, we 
study the effect of projection on the new rank attack from [24], with a particular 
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interest in the setting of HFEv- (the core of the GeMSS scheme), and PFLASH. 
After briefly describing the schemes and the attack, we prove that the attack also 
applies to PFLASH, breaking all of the proposed parameters. We then provide 
upper bounds for the rank in both the setting of HFEv- and PFLASH. We 
test the validity of these results through experiments, before concluding with a 
discussion on possible secure parameters and the impact these changes have on 
signing time. 

Notation. For readability, we use the following notational conventions through-
out the article. Fn1×n2 will denote the space of matrices of size n1 × n2 over Fq,q 
and matrices will be written in bold. Row (resp. column) entries in matrices 
will be written as an integer modulo n1 (resp. n2). For two matrices A and B,� � 

A 0 
we let A|B denote their horizontal concatenation, and A ⊕ B = is the 

0 B 
direct sum. Maps over Fq will be written using capital letters, while maps over 
extension fields, Fqn , will be written with lowercase letters. 

2 Big Field Cryptosystems 

We start by describing a general big field cryptosystem, with the vinegar, minus 
and projection modifiers. Let q be the power of a prime, n a positive integer, and 
fix an isomorphism φ : Fn → Fqn . Define ψ = φ × idv : Fn+v → Fqn × Fv , whereq q q 
ψ = φ if v = 0. A quadratic central map is chosen of the form F = φ−1 ◦ f ◦ ψ : 
Fn+v → Fn 
q q , where f is specifically chosen in a way such that it is efficient to find 

preimages of it. Choose a linear map U = (S ⊕ idv) ◦ U 0 : Fn+v−p → Fn+v , whereq q 
: Fn+v−pboth S : Fn−p → Fn and U 0 → Fn+v−p are linear maps of full rank.q q q q 

Let T : Fn be a linear map of full rank. Then the public key is created→ Fn−a 
q q 

as the composition P = T ◦ F ◦ U : Fn+v−p → Fn−a . Figure 1 gives an overview q q 
of the construction. We will say that the scheme uses the minus modification 

f 
× FvFqn q Fqn 

ψ φ−1 

FU T 
Fn+v−p Fn+v Fn Fn−a 
q q q q 

Fig. 1: Diagram of a general big field scheme with minus, vinegar and projection 
modifiers. 

if a > 0, the vinegar modification if v > 0, and the projection modification if 
p > 0. 
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HFEv-. The signature scheme HFEv- is based on the HFE central map pro-
posed in [21]. It inspired two submissions to the NIST post–quantum standard-
ization process: GeMSS [8] and Gui [11], where the former advanced to the third 
round as an alternate candidate. Fix a positive integer D, and denote the vine-
gar variables by xv = (xn+1, . . . , xn+v). The central map is constructed from a 
polynomial f of the form X Xi +qj i 

fhfe(X, xv) = αi,j X
q + βi(xv)X

q + γ(xv), 
i,j∈N i∈N 

q i+q qj ≤D i ≤D 

where αi,j ∈ Fqn , the βi’s are linear maps Fv → Fqn , and γ is a quadratic mapq 
Fv → Fqn . The rank attack introduced in [24], which we will recall in the nextq 
section, breaks GeMSS with the proposed parameters for the third round of the 
NIST Standardization process [8]. 

PFLASH. The signature scheme PFLASH [13, 9] is based on the C∗ cryp-
tosystem [18], and it uses the projection and minus modifiers. Since there are no 
vinegar modifiers, we will simply write U = S for the input map. For an integer 

X1+q0 < θ < n − 1, the central map is based on the monomial fC∗ = 
θ 
, which 

is a bijection when gcd(qθ + 1, qn − 1) = 1. In this case, fC∗ can be inverted by 
exponentiation. With the secret key, one can also compute bilinear relations of 
inputs and outputs of the central map [20], which can be used to find preimages 
of the public key, as used in [7]. We also refer to [6] for more information on the 
security of PFLASH. 

3 New Rank Attack 

In this section, we briefly recall the new rank attack against HFEv-, that was 
introduced in [24]. More information about the underlying constructions can also 
be found in [2]. For simplicity, we consider Fq to be a field of odd characteristic 
in this section, but note that the results generalize to even fields as well (see e.g., 
Section 6.3 in [2]). In particular, the results in later sections will also hold in the 
binary case. Recall that xv = (xn+1, . . . , xn+v) denotes the vinegar variables, 
and that all matrix entries are counted modulo n. For X ∈ Fqn [X] we will write 
X = (X, Xq, . . . , Xq n−1 

). 

Proposition 1 ([24]). Let fhfe be an HFEv- polynomial over Fqn . Then, � � 
A B 

)>fhfe(X, xv) = (X, xv) (X, xv ,
B> D 

where A = [αi,j ] ∈ Fq
n 
n 
×n , B = [βi,j ] ∈ Fq

n 
n 
×v and D = [δi,j ] ∈ Fv

qn 
×v . Also, for 

each 0 ≤ k < n 

(fhfe(X, xv))
q k 

= (X, xv)F ∗k(X, xv)
> , 
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⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

where F∗k ∈ F( 
q
n 
n 
+v)×(n+v) 

and its (i, j)-coordinate is given by ⎧ k 

αq if 0 ≤ i, j < n − 1i−k,j−k ⎪⎨ βq k 

if n ≤ i < n + v and 0 ≤ j < ni−n,j−k 

βq k 

if n ≤ j < n + v and 0 ≤ i < ni−k,j−n⎪ k⎩ 
δq otherwise.i−n,j−n 

Let M ∈ Fn
qn 
×n be an invertible matrix associated with a vector basis of 

Fqn over Fq (see Proposition 2 [2]), and let us consider an HFEv- public key 
(P1, . . . , Pn−a) = T ◦ F ◦ U . If Pi is the symmetric matrix such that Pi(x) = 

>xPix , then we have 

> >(xP1x , . . . , xPn−ax >) = (xWF ∗0W> x , . . . , xWF ∗(n−1)W> x >)M−1T, 

where W = UM̃ and M̃ = M ⊕ Iv. By symmetry we have the following matrix 
equation � � � � 

(P1| · · · |Pn−a) = WF ∗0W>| · · · |WF ∗(n−1)W> M−1T ⊗ In+v . (1) 

For any vector u ∈ Fn
qn 
+v , we define 

⎡ ⎤ ⎡ ⎤ 
uF ∗0 uP1 ⎢ . ⎥⎦ ∈ Fn×(n+v) ⎢ . ⎦⎥ ∈ F(n−a)×(n+v)

uF ∗ := ⎣ . qn , and uP ∗ := ⎣ . qn . . . 
uF ∗(n−1) uPn−a 

Notice that if the central map of the given public key (P1, . . . , Pn−a) has uni-
variate degree at most D, then 

rank (eF ∗ ) ≤ dlog (D)e,q 

where e ∈ Fn
qn 
+v is any vector of weight one. Since p = 0, W is nonsingular, and 

by equation (1), we have 

rank (uP ∗ ) ≤ dlog (D)e,q 

where u = eW−1 . In [24] the authors find such a vector u by solving an instance 
of the MinRank problem with n + v matrices in F( 

q
n−a)×(n+v) 

and target rank 
dlogq(D)e. Furthermore, [24] shows how this vector u can be used to recover 
an equivalent key for (P1, . . . , Pn−a). That is, to find linear maps T 0, U 0 and a 
HFEv- central map F 0 of degree at most D, such that 

(P1, . . . , Pn−a) = T 0 ◦ F 0 ◦ U 0 . 

The complexity of this attack is dominated by performing the MinRank step to 
recover u. This computation in turn relies heavily on the rank of uP ∗ , which 
will be our primary focus in the next sections. 
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4 Effect of Projection on the New Rank Attack 

We now turn our attention to how the projection modification affects the recently 
introduced rank attack that was described in the previous section. The first thing 
to notice is that the invertibility of the input transformation S is required to 
justify the rank bound. Thus, one may wonder whether the projection modifier 
masks the rank property just as it was shown to protect PFLASH from the 
attack on SFLASH, see [14, 22]. 

Despite the similarities between the HFE and C∗ central maps, we find that 
there are subtle differences in how projection affects the different schemes. As a 
result, we consider the two settings separately in the following subsections. 

4.1 Projection and the HFE Central Map 

We adopt an approach dual to that of [25], where removing equations was shown 
to be equivalent to increasing the degree of the central map. Specifically, we prove 
that projection is equivalent to increasing the degree of the central map. Thus 
pHFEv- with degree bound D and projection p is an instance of HFEv- with 
degree bound qpD. 

For any Fq-subspace K of Fqn there exists a linear polynomial of the form 

Y 
minK (X) = (X − α), 

α∈K 

having K as its kernel. This polynomial is also known as the minimal polynomial 
of K, see [10]. We start by showing the following result. 

Lemma 1. There is a bijective correspondence between k-dimensional subspaces 
of Fqn and (n − k)-dimensional subspaces of Fqn given by 

W 7→ Im(minW (X)). 

Proof. Let Vk be the collection of k-dimensional subspaces of Fqn . Define the map 
ψk : Vk → Vn−k by ψ(W ) = Im(minW (X)) = W 0 . Note that since minW (X) 
has kernel of dimension k, and is Fq–linear, the space W 0 will have dimension 
n − k, and ψk is thus well–defined. Moreover, minW 0 (minW (X)) = 0, and by 
degree considerations we have, more exactly, minW 0 (minW (X)) = Xq n − X. 

Suppose that 

k n−kX i X i 

minW (X) = αiX
q and minW 0 (X) = βiX

q . 
i=0 i=0 
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−

Then we observe that the composition is 

X−k knX i i+j 

αq βiX
q 

jminW 0 ◦ minW (X) = 
i=0 j=0 

X 

⎛ ⎜⎜⎝ 

⎞ 
(2) 

n 

r=0 0≤i≤n−k 
0≤j≤k, j+i=r 

Recalling that αk = βn−k = 1, we find that this relation produces a system of 
n bilinear equations in the k − 1 coefficients αj and the n − k − 1 coefficients 
βi. Now fix a space W 0 in the image of ψk, and let βi be the fixed, associated 
constants of minW 0 (X). Ordering the equations from r = n − 1 to r = 0, we may 
sequentially solve for αj . In fact, other than the Frobenius powers applied to the 
αj values, the system is triangular, and hence uniquely solvable (see Appendix 
A for a small toy example of this). Thus, ψk is injective. Since the action of 
taking the orthogonal complement twice yields the original space, the number 
of subspaces of dimension k and of dimension n − k are equal. It follows that ψk 

X 

is also surjective, and hence bijection.a 

5 Fn → FnNow let S be a linear map q q with kernel of dimension p. Using Lemma 
1, we choose π to be the unique minimal polynomial such that φ−1(Im(π)) = 
Im(S). Note that π has degree qp. Then we have an exact sequence 

φ−1 ◦π◦φFn 
q −−−−−→ Im(S) → 0. 

Since Fq-vector spaces are free (and therefore projective) Fq -modules, there exists 
an S0 such that the following diagram commutes: 

Fn 
q 

⎟⎟⎠ 
i r n 

αq 
j Xq = Xq − X.βi = 

Fn φ
−1(π(φ)) 

S 
S0 

q Im(S) 0 

If S0 is singular, then its rank is at least n−p, and its kernel is then contained 
in the kernel of S. If necessary, we can replace S0 with a nonsingular linear map 
by redefining its value on ker(S0) to map into ker(φ−1 ◦ π ◦ φ). We may then 
without loss of generality choose S0 to be of full rank. Thus, we obtain the matrix 
equation S = S0Q, where xQ = φ−1 ◦ π ◦ φ(x). 

5 This is a slight abuse of notation from the S defined in Section 2, which had Fn
q 
−p as 

its domain. This is easily remedied by composing with a projection along the n − p 
first coordinates. 
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We may now apply this result in the case of an HFEv- scheme. In this case, 
we have the public key h i �� � � 

P1| · · = MF∗0 f · MF∗(n−1) f M−1T ⊗ In · |Pn−a Uf M>U>| · · |Uf M>U> , 

where Mf = M ⊕ Iv and U = U0(S ⊕ Iv )
6 . We observe that 

e M>Ue > )f M>(S> ⊕ Iv)U
0>UMFf ∗i f = U0(S ⊕ Iv MF ∗i f 

M>(Q>S0> ⊕ Iv)U
0> = U0(S0Q ⊕ Iv )fMF ∗i f 

)F ∗i(M>Q>S0> ⊕ Iv)U
0> = U0(S0QM ⊕ Iv 

We may further rewrite the last expression to obtain 

)F ∗i(M>Q>M−> ⊕ Iv)(M
>S0> ⊕ Iv)U

0>U0(S0M ⊕ Iv )(M
−1QM ⊕ Iv 

We finally note that 

)F ∗i(M>Q>M−> ⊕ IvX(M−1QM ⊕ Iv )X> = XG ∗iX> , h i 
where X = X Xq · · · Xq n−1 

x1 · · · xv and where 

G(X, x1, . . . , xv) = F (π(X), x1, . . . , xv ). 

Thus the public key can also be expressed as h� � i � � 
U00 f M>U00>| · · |U00 f M>U00>P1| · · · |Pn−a = MG∗0 f · MG∗(n−1) f M−1T ⊗ In , 

where U00 is the nonsingular map U0(S0 ⊕ Iv). Thus, the pHFEv-(n, D, a, v, p) 
public key is also an HFEv-(n, qpD, a, v) public key. 

This allows us to follow the same reasoning used in the attack of HFEv- with 
p+ddegree D = q , and we have proved the following upper bound. 

Proposition 2. Let (P1, . . . , Pn−a) be the symmetric matrices of the public key 
of an instance of pHFEv-(n, D, a, v, p), where p is the projection corank. Then 
there is a non–zero tuple u ∈ Fn

qn 
−p such that uP∗ has rank at most p + d, where 

d = dlogq De. 

We will test the tightness of this upper bound in Section 5. 

4.2 Projection and the C∗ Central Map 

Define the symmetric matrix F∗ 
C
i 
∗ , associated with fC

q i 

∗ , in a manner similar to 
Proposition 1. Describing F∗ 

C
i 
∗ is simpler than what was done in Proposition 1, 

seeing that it is 1 at the entries (i, θ+i) and (θ+i, i), and 0 elsewhere (recall that 

6 Following our slight abuse of notation when compared with Section 2: U 0 will now 
be an invertible linear map Fn

q 
+v → Fq

n+v 
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entries are counted modulo n). While we may apply the theory from Section 4.1, 
the problem is that we no longer have a bound D on the non–zero part of F∗ 

C 
0 
∗ . 

Following the same reasoning as before would have yielded an upper bound of 
2 + 2p for the rank, but it is possible to do better. 

We define v = (v0, . . . , vn−1) = uSM ∈ Fq
n 
n , and examine what rank the 

matrix vF ∗ 
C∗ can take. Note that the entry vi, for i ∈ Zn, will contribute to the 

two entries in positions 

e1(i) = (i, i + θ) and e2(i) = (i − θ, i − θ) , (3) 

in the matrix vF ∗ 
C∗ . Fix an integer i0, and consider the pair vi0 and vi0+θ. They 

will now contribute to four entries in vF ∗ 
C∗ , but two of them, e1(i0) = (i0, i0 + θ) 

and e2(i0 + θ) = (i0, i0), appear in the same row. It follows that the pair vi0 and 
vi0+θ can only make a contribution of at most three to the rank of vF ∗ . This is 
the key observation for the following result. 

Lemma 2. Let I = {i0, . . . , ik−1} be a set of k integers in Zn, such that ij+1 = 
ij + θ, for 0 ≤ j < k − 1. Consider the vector vI = (v0, . . . , vn−1), where 
vj ∈ Fqn \ {0} if j ∈ I, and vj = 0 otherwise. Then vI F

∗ 
C∗ has rank at most 

k + 1. 

Proof. For l = 1, 2, let El(x) be the n × n matrix that is 1 at entry el(x) (as 
defined in (3)), and 0 elsewhere. Then we can write vI F

∗ 
C∗ as the sum 

k−1X� � 
vI F ∗ 

C∗ = E1(ij ) + E2(ij ) . 
j=0 

From the discussion prior to the lemma, we know that E1(ij0 ) + E2(ij0+1) has 
rank 1, for 0 ≤ j0 < k−1. Hence, vI F

∗ 
C∗ can be written as the sum of 2k−(k−1) 

matrices of rank 1, which proves the upper bound. 

The next step is to look at which of these vectors vI we can find in the image 
of SM. This leads to the following upper bound. 

Proposition 3. Let (P1, . . . , Pn−a) be the symmetric matrices of the public key 
of an instance of PFLASH with projection p. Then there is a non–zero tuple 
u ∈ Fn

qn 
−p such that uP ∗ has rank at most 2 + p. 

Proof. Let I be as defined in Lemma 2, and consider an associated vector vI , 
with the difference that vj ∈ Fqn if j ∈ I (i.e., allowing 0 in these entries 
as well). SM has cokernel of dimension p, so choosing I of order p + 1 will 
guarantee that there is a non–trivial way to choose the entries in vI such that it 
lies in the image of SM. This can seen by performing Gaussian elimination on 
SM, where the entries corresponding to I are being eliminated last. If all vj for 
j ∈ I are non–zero, we are done by Lemma 2. Otherwise, suppose one of them 
is zero, say vil = 0. Then we may split I into the two (potentially empty) sets 
I1 = {i0, . . . , il−1}, and I2 = {il+1, . . . , ip}. Upon considering the two associated 
vectors vI1 and vI2 , we may write vI FC 

∗ 
∗ = vI1 F

∗ 
C∗ + vI2 F

∗ 
C∗ . Using Lemma 2 
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on vI1 F
∗ 
C∗ and vI2 F

∗ 
C∗ , along with the fact that |I1| + |I2| = p ensures that the 

rank of vI F
∗ 
C∗ sums up to at most p + 2. 

Finally, the cases where several entries vj , j ∈ I are zero, are dealt with by 
induction on this argument. 

This upper bound is tight for the experiments we have run for PFLASH; more 
information can be found in Section 5. For now, we note that the integer set 
I used in the proof of Proposition 3 is not unique, and we can even consider a 
more general class of sets, than what was discussed in Lemma 2. Indeed, from the 
entries in (3), we note that the pair vi0 and vi0+2θ will in particular contribute to 
the entries e1(i0) = (i0, i0 +θ) and e2(i0 +2θ) = (i0 +θ, i0 +θ), each of which lies 
in the same column. Note that Lemma 2, and the proof of Proposition 3, could 
easily have been adopted to sets I where the consecutive indices have relative 
distance 2θ, as opposed to θ. Furthermore, we can use combinations of θ and 2θ 
for distance, as shown in the following result, which is a direct generalization of 
Lemma 2. The proof is identical to that of the aforementioned lemma. 

Lemma 3. Let I = {i0, . . . , ik−1} be a set of k integers in Zn, such that for 
0 ≤ j < k − 1, the difference ij+1 − ij is congruent to either θ or 2θ mod n. 
Consider the vector vI = (v0, . . . , vn−1), where vj ∈ Fqn \ 0 if j ∈ I, and vj = 0 
otherwise. Then vI F

∗ 
C∗ has rank at most k + 1. 

Number of Solutions for the MinRank Step. Recall that [24] suggests 
setting u0 = 1, in order to avoid finding multiples of the same solution to the 
MinRank–step of the attack. Let I a set of the form described in Lemma 3. Note 
that any such I of order p + 1 could have been used to prove Proposition 3. 
Hence, we expect each choice of I to, in general, correspond to a unique solution 
u of the MinRank problem of rank p + 2. If gcd(n, θ) = 1, and 2(p + 1) < n, 
there are n2p ways to construct I (2p combinations of distances θ and 2θ, with 
n rotations). 

We ran a few toy examples to test this theory, by running the MinRank–step 
for the parameters q = 2, n = 13, θ = 3, and p = 1, 2 and 3. In each test we found 
all possible solutions u, and inspected the corresponding v = uSM. In each test 
the number of solutions were indeed n2p, and the v-vectors corresponded to all 
the different choices for I. 

Weak Choices of n and θ. In special cases, it would be possible to derive 
a lower upper bound than what was presented in Proposition 3. This can, for 
instance, happen if the set I from Lemma 3 of order k ≥ 1 is a loop, in the sense 
that ik−1 − i0 ≡ θ or 2θ mod n. This is possible if the following equation has a 
solution: 

xθ + y2θ ≡ 0 mod n, x, y ∈ Z≥0, and x + y = k − 1. (4) 

Solutions for this condition, with low values of k, can be found when the least 
common multiple of n and θ is small, or equivalently, when gcd(n, θ) is large. 
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Indeed, we can observe this effect in the last two rows of the right side of Table 
1: in both tests we have n = 14 and p = 4, but they differ by θ = 5 and 6. In the 
first case, we have gcd(14, 5) = 1, and we find no solutions u such that uP∗ has 
rank 5. In the second case we have gcd(14, 6) = 2, and x = 1, y = 3 is a solution 
of (4), with k = 5. The resulting effect is that we are able to find solutions of u 
such that uP∗ is of rank 5. We include the condition gcd(n, θ) = 1 in our other 
PFLASH experiments in order to exclude weak cases like these. 

5 Experiments 

In the previous section we proved an upper bound on the rank of uP∗ , for both 
pHFEv-, and PFLASH; we will now examine this bound through experiments. 

All tests have been performed as follows. After creating the public key P , 
we construct uP∗ with the indeterminate vector u, where u0 = 1. For rank r, 
we follow the minors modelling [17], by computing the (r + 1) × (r + 1) minors 
of uP ∗ , and solving the associated polynomial system using the implementation 
of F4 [15] in the Magma Computer Algebra System7 , see [4]. For efficiency, we 
did not always include all the minors when computing the Gröbner basis. We 
chose the rank r to be one less than, or equal, to the upper bound determined 
in Propositions 2 and 3 for pHFE- and PFLASH, respectively. Red marks that 
the polynomial system from the minors modelling at this rank was inconsis-
tent, whereas blue indicates that we were able to find solutions. The results are 
presented in Table 1. 

Table 1: Experimentally found rank of uP ∗ for various parameters of pHFE- (left) 
and PFLASH (right). The number X indicates that there are no u such that uP ∗ has 
rank ≤ X. The number X means that we were able to find a solution u yielding uP ∗ 

of rank ≤ X. See Section 4.2 for a discussion on †. 

q n a p D 
Upper 
Bound 

Rank 
of uP ∗ 

2 13 0 1 5 4 3, 4 
2 13 0 2 5 5 4, 5 
2 13 0 3 5 6 5 
2 15 0 4 5 7 6 
2 13 0 0 9 4 3, 4 
2 13 4 1 9 5 4, 5 
2 13 4 2 9 6 5, 6 
2 17 6 1 9 5 4, 5 
2 13 4 0 17 5 4, 5 
2 13 4 1 17 6 5, 6 
2 13 0 2 17 7 6 

q n a p θ 
Upper 
Bound 

Rank 
of uP ∗ 

2 21 0 1 13 3 2, 3 
2 21 0 2 13 4 3, 4 
4 31 0 1 7 3 2 
4 13 0 3 5 5 4, 5 
4 25 8 0 11 2 1, 2 
4 25 8 1 11 3 2, 3 
4 17 5 3 7 5 4, 5 
2 15 1 4 7 6 5, 6 
2 15 0 5 7 7 6 
4 14 4 4 5 6 5 
4 14 4 4 6 6† 5 

7 Any mention of commercial products does not indicate endorsement by NIST. 
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We note that in all our experiments, the upper bound seems to be tight. The 
notable exception is the last row on the right side of Table 1, where gcd(n, θ) 6= 1, 
as discussed in Section 4.2. The tests include cases where fC∗ is not a permuta-

θtion, i.e., gcd(qn − 1, q + 1) 6= 1, and this does not seem to have an effect on 
this attack. Finally, the target r and the dimension of uP∗ cannot be too close, 
in order to ensure that the solutions we find are truly a result of the extension 
field structure of the scheme. We have chosen to keep (n − a) > r + 3 in our 
experiments. Indeed, in an earlier experiment with pHFE- of parameters q = 2, 
n = 13, a = 4, p = 2 and D = 17, we found a unique solution to u at r = 6, even 
though our upper bound is seven here. Upon further inspection, this solution was 
in the subfield Fq (as opposed to being in Fqn proper, which is the case for the 
other tests), and we have not been able to find such solutions when rerunning 
the case. Hence, we conclude that this was a “false positive” caused by the small 
parameters of the test. 

6 Complexity 

In this section we compute the complexity of signing for pHFEv- and PFLASH. 
The inversion methods are quite disparate, so, again, we separate the exposition. 

6.1 pHFEv- Signing 

For this subsection we consider the base field q = 2. This is what was used in 
the GeMSS submission, which is what we will use as a baseline for comparing 
pHFEv-. The most complex step of the inversion of an HFEv- public key lies in 
the application of the Berlekamp algorithm, see [1], for inverting the central map. 
In the case of pHFEv-, there is a tension between the complexity of inverting 
the degree D polynomial and the number, 2p, of times that the polynomial must 
be inverted. 

As shown in Section 4, an instance of pHFEv-(n, D, a, v, p) is also an instance 
of HFEv-(n, 2pD, a, v). Thus, we may always invert pHFEv-(n, D, a, v, p) by us-
ing the inversion procedure for HFEv-(n, 2pD, a, v). On the other hand, we may 
invert the instance of pHFEv- by inverting the central map of degree D, until 
the preimage lies in the image of the input projection. For each preimage, the 
probability that it lies in the image of a corank p projection is 2−p. To see which 
is the better of the two methods, we begin by making the analysis in [8] for the 
complexity of inversion more tight. 

As noted in [8, Theorem 1], the complexity of Berlekamp applied to a polyno-
mial of degree D is O (M2n (D)(n + log2 D) log2 D), where M2n (D) is the number 
of operations in the field F2n required to multiply two polynomials of degree D. 
The well-known formula, see [5], for this quantity 

M2n (D) = O (D log2 D log2 log2 D) 

produces a complexity of � � 
O D(log2 D)2(n + log2 D) log2 log2 D . 
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The above quantity only provides the algebraic complexity of polynomial in-
2version over F2n . Since each multiplication in F2n requires 2n +n bit operations, 

we have that inverting the central map has a bit complexity of � �
2O (2n + n)D log2(D)2(n + log2 D) log2 log2 D . 

Since we are considering values of log2 D that are far less than n, we may further 
simplify to obtain the approximate bit complexity 

Cn3D log2(D)2 log2 log2 D, 

for some constant C. We note that log2 log2 D may be as large as three or four, 
for the values of D needed to secure against [24]. It is thus a nontrivial factor in 
this expression. 

Since the complexity of inverting pHFEv-(n, D, a, v, p) is 2p times the com-
plexity of inverting HFEv-(n, D, a, v), it is a factor of 

(p + log2 D)2 log2(p + log2 D) 
log2(D)2 log2 log2 D 

faster than inverting the scheme as an instance of HFEv-(n, 2pD, a, v). 
Thus, securing the parameters of GeMSS while maintaining the array of 

parameters merely requires applying the projection modifier with a sufficiently 
large corank p to secure the scheme from the attack of [24]. We should note that 
projection does have the negative effect of increasing the signature failure rate 
by a factor of approximately e2

p 
, but the rate is still exp(2p − 2a+v) which is 

negligible for any realistic parameters. 

Parameters for pHFEv-. Let d = dlog2 De. Similar to [24], we use the support 
minors equations to derive a bilinear system in nx+ny variables, where nx = n+vl m� � 

n 0 0 (n+v)(d+p+1)and ny = , and n = + d + p + 1. Such a bilinear system isd+p n−a 

expected to be solved at degree 3. The overall complexity of solving this system� � 
2 2 )ωis then given by O (nxny + nxny , where ω is the linear algebra constant. 

In Appendix B, Table 2, we consider the third round parameters of GeMSS, 
and compute the size of the projection that is needed to achieve the required 
security level. 

6.2 PFLASH Signing 

For PFLASH, we recommend using the private key to derive the linearization 
equations proven to exist by Patarin in [20]. With these equations the legitimate 
user can find a preimage of the public key in one step instead of inverting the 
input and output transformations and using exponentiation to invert the central 
map. 

As shown in Section 4, the rank of uP ∗ is p + 2. The parameters suggested in 
[9] had p = 1, which makes them vulnerable to the rank attack we have studied. 
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It is, once again, possible to protect against this by increasing the projection. 
However, the signing time will now be multiplied by a factor qp, which favours the 
use of a small ground field, maybe even q = 2. In this setting, direct methods may 
also become an issue. Particularly a generalized version of the analysis presented 
in [19], perhaps using some of the notions from [26] should be considered. This 
is, however, beyond the scope of this article, and we leave it as an open question 
to determine if and how secure and efficient parameters for PFLASH may be 
chosen. 

7 Conclusion 

We have studied how projection affects the new rank attack from [24]. For the 
pHFEv- and PFLASH systems we have derived an upper bound on how the 
rank grows with the projection p, which in turn can be used to estimate the 
complexity of the attack as a whole. These bounds were furthermore observed 
to be tight in experiments. 

While projection is a cheap modification for encryption systems, it does in-
crease the signing time for signature schemes, typically by a factor of q for each 
dimension. Nevertheless, in the HFEv- setting, we note that projecting is a use-
ful alternative to simply increasing the degree D. PFLASH can also be made 
secure against rank attacks by increasing p, but we believe more analysis on 
direct attacks are needed before we can suggest potential parameters. 
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A Toy Example of Composing Minimal Polynomials 

We provide a small toy example of the bilinear system from the proof of Lemma 
1. Consider n = 5 and k = 2. Then, by Equation (2), and recalling α2 = β3 = 1, 
we have 

minW 0 ◦ minW (X) = Xq 5 

− X 

= α0β0X + (β0α1 + β1α
q)Xq + (β0 + β1α

q 
1 + β2α

q 2 

)Xq 2 

0 0 
2 3 3 3 4 5 

+ (β1 + β2α
q + αq )Xq + (αq + β2)X

q + Xq .1 0 1 

If the βj ’s are known constants, we note that α1 is uniquely determined by 

the equation αq 3 

+ β2 = 0. Subsequently, α0 will be uniquely determined by 1 

αq 3 2 

+ β2α
q + β1 = 0.0 1 

B GeMSS Minrank Complexity 

In Table 2, we consider the third round parameters of GeMSS, and compute the 
size of the projection that is needed to achieve the required security level. We 
do this for two values of ω: ω1 = 2.37 is the best known asymptotic bound [16], 
and ω2 = 2.81 is the more realistic value from Strassen’s algorithm [23]. 

15 

https://eprint.iacr.org/2020/1442


Table 2: Complexity of the MinRank attack from [24] against the GeMSS pa-
rameters with projection. The value p1 (resp. p2) is the minimum projection 
needed to achieve security with ω1 (resp. ω2), and Cω1 (resp. Cω2 ) denotes log2 
of the resulting complexity. 

Scheme (n, v, D, a) p1 Cω1 p2 Cω2 

GeMSS128 (174, 12, 513, 12) 2 136 0 139 

BlueGeMSS128 (175, 14, 129, 13) 4 140 1 128 

RedGeMSS128 (177, 15, 17, 15) 6 131 4 128 

WhiteGeMSS128 (175, 12, 513, 12) 2 136 0 139 

CyanGeMSS128 (177, 13, 129, 14) 4 140 1 128 

MagentaGeMSS128 (178, 15, 17, 15) 6 131 4 128 

GeMSS192 (265, 20, 513, 22) 7 192 5 201 

BlueGeMSS192 (265, 23, 129, 22) 9 192 7 201 

RedGeMSS192 (266, 25, 17, 23) 12 192 10 205 

WhiteGeMSS192 (268, 21, 513, 21) 7 192 5 201 

CyanGeMSS192 (270, 22, 129, 23) 9 192 7 201 

MagentaGeMSS192 (271, 24, 17, 24) 12 192 10 205 

GeMSS256 (354, 33, 513, 30) 14 263 10 267 

BlueGeMSS256 (358, 32, 129, 34) 16 267 11 256 

RedGeMSS256 (358, 35, 17, 34) 18 258 14 256 

WhiteGeMSS256 (364, 29, 513, 31) 14 263 10 263 

CyanGeMSS256 (364, 32, 129, 31) 16 263 12 263 

MagentaGeMSS256 (366, 33, 17, 33) 19 263 15 267 
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