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Abstract—In this paper, we describe a methodology and associ-
ated models to evaluate a time-sensitive collaborative robotics ap-
plication enabled by Wireless Time Sensitive Networking (WTSN)
capabilities. We also present a method to configure WTSN
scheduling to meet the application time budget and validate it
in a realistic industrial use case. We detail the methodologies
for implementing and characterizing the performance of key
WTSN capabilities, namely time synchronization and time-aware
scheduling, over an IEEE 802.11-based network. We deploy
the WTSN capabilities with a collaborative robotic workcell
consisting of two robotic arms, which emulate a material handling
application, known as machine tending. We further explore
configurations and measurement methodologies to characterize
application performance of this use case and correlate it to the
performance of the wireless network.

Index Terms—Wireless TSN, IEEE 802.11, Collaborative
Robotics

I. INTRODUCTION

Industry 4.0 and smart manufacturing are seen as the new
industrial revolution and are characterized by a fusion of
physical Operational Technology (OT) and digital Information
Technology (IT) worlds through breakthroughs in robotics,
Artificial Intelligence (AI) and Internet of Things (IoT) [1].
The sharing of network and computing resources between
digital IT and physical OT domains in smart manufacturing
applications needs strictly time-synchronized and deterministic
low latency communications [2]. Time Sensitive Networking
(TSN) [3] and wireless TSN (WTSN) efforts [4] have emerged
as an enabling networking technology to achieve precise time
synchronization and timeliness in a network. Compared to
wired connections, wireless connectivity brings many benefits,
such as flexibility, easy reconfigurability, mobility, and lower
maintenance and life-cycle costs. However, the ability of
wireless technologies to guarantee time-sensitive communi-
cations with low latency and extremely high reliability, with
ensured protection against cybersecurity attacks, has not been
proven [5].

In order to assess the impact of wireless communications
on factory automation processes, a testbed was constructed
to replicate various data flows in a managed environment. In
this paper, a robotic workcell is used to perform a machine
tending application with emulated service requirements that
represent a typical collaborative industrial use case. Time
synchronization was used to keep the collected data aligned in
time and for enabling WTSN. As many industrial applications
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are very sensitive to the performance of the network, it is
important to have standard methods to assess this performance.
An experimental study is performed using the testbed with
an Ethernet-based wired configuration as well as a wireless
IEEE 802.11ac based configuration using 2x2 Multiple-Input
Multiple-Output (MIMO). The testbed’s baseline design with
a wired network was introduced in an earlier publication [6].

TSN Standards [7], being developed by the IEEE 802.1
TSN working group, enable time synchronization and time
bounded data delivery for time-sensitive traffic over IEEE
802 Local Area Networks (LAN) shared with other (e.g.
Best-Effort (BE)) traffic. Extensions of TSN capabilities and
standards into wireless domains have been subject of research
and standardization activities, as described in [8]. Since Wi-
Fi is also an IEEE 802 LAN technology, TSN link layer
capabilities can be mapped seamlessly from Ethernet to Wi-Fi,
without architecture changes nor protocol translation gateways.
However, achieving comparable bounded latency, wired time
synchronization accuracy, and reliability performance over Wi-
Fi involves numerous research questions that are open.

In this paper, we describe two critical TSN features that
extended into IEEE 802.11, specifically, time synchronization
(IEEE 802.1AS) and time-aware shaping (IEEE 802.1Qbv).
We focus on how these features can be deployed leveraging
standard Wi-Fi devices in an industrial testbed and demon-
strate how these features help improve the time sensitive per-
formance over wireless. Our 802.1AS implementation is based
on the 802.1AS over 802.11 Timing Measurements protocol
as defined in the 802.1AS-2020 standard [9]. Our 802.1Qbv
implementation is applied at the network stack leveraging the
open source 802.1Qbv implementation described in [3].

Our paper is structured as follows: in Section II, we discuss
related works. In Section III, we present an overview of WTSN
architecture and various system components. In Section IV,
the use case and the testbed setup are briefly presented.
In Section V, we present the measurement and evaluation
methodology with the key performance indicators (KPIs)
used. We then present the results in Section VI, followed by
conclusions and future directions in Section VII.

II. RELATED WORK

This section covers topics regarding industrial wireless
communications for robotics and TSN with wireless commu-
nications.

A. Industrial Wireless Communications for Robotics

Some of the first industrial communications for robotics
were serial-based field-busses, i.e., Modbus, Profibus, and
DeviceNet [10]. These were used due to their reliability;



however, they lack the bandwidth and maximum node numbers
required for more advanced applications. Ethernet-based field-
busses were used to overcome the challenges of serial-based
communications [11]. Then, to bring real-time performance,
the TCP/IP layers that lacked the required determinism were
substituted with a custom stack in Powerlink, Profinet RT, and
EtherCAT [10].

There are existing industrial wireless standards that are
based on IEEE 802.15.4, found in [11]. A downside of these
various protocols is the low supported data rates, making them
undesirable for many industrial use cases. In industrial wire-
less, determinism and real-time communication capabilities are
still lacking with higher bandwidth targets [12].

B. TSN with Wireless Communications

With the need to bring real-time performance in Ethernet,
a TSN task group was created [3]. One of the group’s
outputs was deploying time aware traffic scheduling, defined
in 802.1Qbv [13]. The schedule is based on time division
multiple access (TDMA). Another feature of TSN is time
synchronization, accomplished by IEEE 802.1AS, which is
a profile of the IEEE 1588 precision time protocol (PTP)
standard. The TSN requirement is to deliver time synchroniza-
tion information over IEEE 802.3 (Ethernet) or IEEE 802.11
(Wi-Fi) links to achieve sub-microsecond clock error between
devices [10]. Also, Gutiérrez et al. validates improved wired
TSN performance using experimental results and concludes
that TSN will ”become the de facto standard for communica-
tions on layers 1 and 2, in robotics” [10]. An issue with wired
TSN is that wired networks do not scale with the large amount
of nodes required for some automation applications [14], and
hence, a hybrid wired-wireless structure is desired for future
TSN industrial robotic networks.

IEEE 801.AS, specified in [9], is a time synchronization
component of TSN, which we use and describe later in this
work. A work that integrates IEEE 802.1AS synchronization
in IEEE 802.11 can be found in [15]. There is also work
to bring TSN to 5G in release 16 of 3GPP [16]. Another
promising work that proposes a novel method of precise
synchronization using IEEE 802.11 networks with FPGAs
can be found in [14]. Overall, The TSN features that are
incorporated into the wireless domain are promising to bring
the advantages of wireless communications into demanding
industrial automation and robotic applications.

An existing challenge is how to deploy WTSN features and
measure performance in an end-to-end system. In this paper,
we address this challenge by implementing and deploying
two main TSN features: IEEE 802.1AS and IEEE 802.1Qbv
in an IEEE 802.11 wireless network, which is utilized as
the communication system for a realistic industrial robotic
use case. To the best of our knowledge, we are the first
to perform an experimental study assessing the physical and
network performance impact of WTSN with varying levels of
interfering traffic.

III. WIRELESS TSN OVERVIEW

With the need to bring deterministic real-time performance
into standards-based Local Area Networks (LANs), the IEEE
802.1 TSN task group has been defining a set of standards to
time synchronization, guaranteed end-to-end latency and jitter,
as well as extremely low packet loss. Time Synchronization
across the network, as defined by IEEE 802.1AS, Time Aware
Scheduling, as defined by IEEE 802.1Qbv, are two of the
most fundamental TSN standards. IEEE 802.1AS achieves
time synchronization across a set of distributed nodes, which
is a fundamental requirement for synchronous applications
and other TSN features. For instance, IEEE 802.1Qbv utilizes
time synchronization, along with principles of Time Division
Multiplexing (TDM), to define protected time windows. The
IEEE 802.1Qbv Time Aware Scheduling introduced the con-
cept of Gate Control Lists (GCLs), which are a set of gates,
each controlling a queue that is associated with a configurable
traffic class. By controlling the mapping of traffic streams
to classes/queues and when a given queue is open/closed,
it is possible to create a TDM-based schedule that meets
strict latency deadlines for high priority traffic. The GCLs
for all nodes are centrally defined based on the application
requirements and distributed to all nodes. In this paper, we
focus on enabling and evaluating TSN features (802.1AS and
802.1Qbv) applied to an IEEE 802.11 network. It is well
known that the randomness in the 802.11 MAC (Medium
Access Control) is a problem for applications that expect
deterministic low latency and low jitter. There has been
significant research on replacing the traditional contention-
based 802.11 MAC with TDMA-based MAC protocols. For
instance, in [17], [18], the authors propose time synchronized
slotted MACs for 802.11 and evaluate the capabilities to meet
very low latency with high reliability. Although results are
promising, replacing the 802.11 MAC with a TDMA-based
scheme is not feasible in off the shelf Wi-Fi cards and it
would require proprietary chipsets. In this work we focus on
applying the principles of 802.1Qbv on top of a traditional
random access-based 802.11 MAC/PHY layers to achieve
similar behavior expected in a TDMA-based system.

We implement the 802.1Qbv GLC on the network stack
above an off-the-shelf 802.11 chipset using TSN function-
alities and tools available in the Linux kernel running on
the nodes. The Linux kernel supports TSN control plane and
configuration through the Linux Traffic Control (TC) system.
The specific functionality that we use to implement the Qbv
schedule as a GCL is the TAPRIO qdisc (queueing discipline),
which implements the Enhancements for Scheduled Traffic
introduced by IEEE 802.1Qbv standard on Linux kernel [19].
These are the same technologies that would be used to test
and certify devices for Wireless/TSN compliance [20]. A
high level overview of the implementation architecture is
shown in Fig. 1. We further evaluate the performance of the
same in an industrial use case. While previous works [17],
[18], [21] focus on optimizing the 802.11 MAC/PHY, this
work focus on the reuse of widely available standard-based



Fig. 1. Implementation overview of IEEE 802.1AS and IEEE802.1Qbv in
Linux.

802.11 implementations and enhance their performance by
introducing TSN features on the link layer. Fig. 2 illustrates
a typical hybrid TSN network architecture where the TSN
capabilities in the wired segment are extended into the Wi-
Fi segment of the network. It is assumed that the network is
centrally managed, which is the case in most industrial IoT
deployments that are relevant for the application considered
in this paper.

Fig. 2. Wired-Wireless hybrid TSN network architecture.

In a TSN network, every traffic stream is centrally managed
and configured. This function is performed by two functional
entities namely, the Central User Configuration (CUC) and
the Central Network Configuration (TSN-CNC1) as specified
by IEEE 802.1Qcc specification. The CUC collects traffic
stream information from all the end devices and provides
the information to the TSN-CNC. The TSN-CNC, using its
discovered knowledge of the network topology, negotiates with
each network element on the path to configure resources in
order to meet the timing requirements of the traffic streams.

1According to the TSN standard this entity is abbreviated as CNC, but
since we have other entities having the same abbreviation in this paper, we
henceforth refer to this entity as TSN-CNC.

This may include configuring IEEE 802.1Qbv schedules at the
bridges in the infrastructure.

A. Time Synchronization over IEEE 802.11

Achieving precise time synchronization across all the de-
vices in the network is foundational to any TSN capable
network. The IEEE 802.1AS standard, a profile of the IEEE
1588 standard, is the protocol defined for time distribution
in a TSN network and it can operate over Ethernet and
Wi-Fi/IEEE 802.11 [15]. IEEE 802.1AS works above the
IEEE 802.11 medium to enable IEEE 802.11 Stations (STAs)
synchronize to a Grand Leader (GL) clock anywhere in the
network. The IEEE 802.11 standard specifies two protocols
to propagate time, as specified in IEEE 802.1AS standard:
Timing Measurement (TM) and Fine Timing Measurement
(FTM) [15]. The TM and FTM protocols both exchange
action frames between nodes to accomplish this. The WTSN
implementation in [8], employed in this paper, uses the TM
feature defined in the IEEE 802.11-2016 specification. Ac-
cording to this specification, an IEEE 802.1AS layer uses the
IEEE 802.11 TM action frames to propagate a reference time,
thereby enabling a receiving STA to estimate the path delay
for calculating its time offset relative to the reference time for
the network, which is provided by a clock source, i.e., the GL.
Fig. 3 demonstrates how the exchange of action frames takes
place between two peers.

Fig. 3. IEEE 802.1AS Time Propagation over IEEE 802.11 where ToA refers
to Time of Arrival and ToD refers to Time of Departure.

B. Time Aware Scheduling based on IEEE 802.1Qbv

Another fundamental TSN feature is enabling delivery of
time sensitive data with deterministic time guarantees, in
the presence of other background/interfering traffic sharing
the network. The IEEE 802.1Qbv standard defines a set of
time controlled gates controlling the queues associated with
multiple traffic classes on a TSN-enabled node. This allows
setting a time schedule for every traffic flow for the entire



network, which is accomplished by configuring time-aware
shapers at these nodes. A time-aware shaper schedules packets
following a TDMA scheme by mapping traffic classes to time
slots during which transmission is allowed. The schedule itself
is defined by a Gate Control List (GCL) [3]. The GCL is a
list of timed gate control commands controlling the open or
closed state of a traffic queue at any given point in time. This
way, end-to-end protected periods or windows are created on
a per-flow basis. As noted earlier, one key requirement for
this to work is that time in every participating device must
be synchronized to a common reference time or clock, GL.
This synchronization is enabled by an implementation of the
IEEE 802.1AS protocol over both wired and wireless. We have
extended and implemented the concept of IEEE 802.1Qbv on
IEEE 802.11 devices, thereby allowing creation of protected
windows for time sensitive traffic by blocking other traffic
classes (queues) from accessing the wireless channel during
such windows. The concept is illustrated in Fig. 4.

Fig. 4. TSN Scheduling in IEEE 802.11.

In this paper we evaluate an implementation of IEEE
802.1Qbv specification over Wi-Fi using a testbed emulating
a industrial workcell. We will evaluate the benefits of enabling
TSN over wireless to improve performance of time sensitive
flows in the presence of competing background traffic.

IV. THE COLLABORATIVE ROBOTIC WORKCELL TESTBED

The machine tending use case emulates a generic work
cell consisting of multiple components such a supervisory
controller, emulated CNC machines, interstage buffers, robots,
and human workers. This use case is designed to replicate
typical and common industrial use cases, such as pick-and-
place applications mentioned in [22]. Supervisory control
applications allow for some packet loss and latency issues in
the communication links without directly affecting the motion
path of the robots, which may happen when the wireless
channel is subject to stress.

In this section, we will describe the baseline design of
the testbed including the various components and network
interfaces defined. Then, we present the timing budget of the
operator’s control loop. Lastly, we describe the extensions to
the testbed to enable the WTSN features described above.

A. The Baseline Testbed

In this work, we extend the testbed with WTSN capabilities
and a measurement method to allow for characterizing and
measuring of the use case performance in conjunction with the
network performance. In this section we describe the machine
tending use case and discuss the architecture and components
used to introduce WTSN capabilities to the testbed.

Fig. 5. Collaborative robotic workcell testbed.

Fig. 5 shows the collaborative industrial workcell and its
components. The workcell consists of two Universal Robots
UR3 robotic arms, a work zone, a Beckhoff CX2020 super-
visor Programmable Logic Controller (PLC) equipped with a
Beckhoff IEEE 1588 Precision Time Protocol (PTP) module,
and 4 Beckhoff CX9020 PLCs functioning as computer numer-
ically controller (CNC) emulators. The supervisor coordinates
an emulated workflow between the robotic arms and the CNCs
to implement a machine tending use case. The two robots in
the workcell play two different roles – the Operator (OPT),
or tender, and the other is the Inspector (INS). The OPT
robot transports parts to the work zone, where the emulated
CNCs, implemented using PLCs, simulate a tooling operation
by waiting for a predetermined time. When a CNC emulation
process is finished, the INS robot emulates a quality inspection
check. The cooperation between the emulated CNC machines
and the robots is managed by the supervisor by coordinating
communication between the CNC machines and the robots

The communications in the workcell are centered around
the supervisor, which coordinates various operational data
flows. The network backbone is formed by two Cisco IE-4000
industrial Ethernet switches. The data exchanged between
the supervisor and the CNC machines are formatted as Au-
tomation Device Specification (ADS) commands and carried
in Transmission Control Protocol/Internet Protocol (TCP/IP)
packets. Similarly, the supervisor exchanges information with
the robots through Modbus communications, for which the
supervisor takes the role of the Modbus server. The cycle rate
of both the supervisor PLC and robot controllers is 125 Hz
for operation and measurement purposes. A Meinberg M900
PTP time server plays the role of a GL clock. The clocks in
all the individual measurement points are being synchronized



routinely to the GL through their connection to the Cisco IE-
4000 switches as well.

Fig. 6. Operator robot’s control loop, after initialization

B. Time Budget Model of Operator Robot’s Control Loop

In order to realize the improvements that WTSN can provide
in a use case, a time budget model is used to determine
how a WTSN schedule can be applied, and how latencies
in communications can effect the application’s efficiency. In
Fig. 6, the state diagram of the operator robot’s control loop
is shown from the perspective of the supervisor. Here, the
robot is either in an idle state or job state. To get to the job
state from idle, the robot must receive a new job using an
exchange of Modbus request and response messages. Then,
after the robot is finished with a job, it sends a Modbus
request message to the supervisor, indicating it is finished.
This message does not require a response message, as it is
writing directly to a register on the supervisor PLC. Derived
from the OPT’s control loop algorithm, we present Eq. (1),
Eq. (2), and Eq. (3). The definitions of all the variables are
presented in Table I. The time of the operator’s control loop
from the perspective of the supervisor, ToptCtrl, is defined in
Eq. (1), which includes times of the Modbus read, TmodR,
and Modbus write, TmodW, messages. The equations of the
Modbus read and write messages are defined in Eq. (2) and
Eq. (3) respectively. Since the Modbus messages are sent over
wireless communications, they are non-deterministic in nature,
such that the time of the application may increase in multiples
of 8 ms if latencies are too large.

ToptCtrl = ToptProc + TmodR + Twait + Tjob + TmodW + Tsync (1)

TmodR = Tcycle(1+⌊TmodReq+TsupProc+TmodRes+ToptProc)/Tcycle⌋)
(2)

TmodW = ToptProc + TmodReq + TsupProc (3)

C. Wireless Time Sensitive Network Extensions

In order to enable WTSN in the testbed, the two robots are
bridged to the controlling PLC through a wireless network.
The two robots acts as Wi-Fi stations connecting to a Wi-
Fi access point (AP), which bridges them to the rest of the
network. All three wireless nodes have the WTSN software
stack installed, extending TSN features over the Wi-Fi domain.
Hardware wise, these nodes are Intel-based Next Unit of
Computing (NUC) systems (Onlogic ML100G-51) equipped

TABLE I
TIME BUDGET DEFINITIONS

Label Definition
ToptCtrl The total time of the operator’s control loop from the su-

pervisor’s perspective, starting when the supervisor writes
a new job in its Modbus register to receiving a complete
job in its Modbus register from the operator.

ToptProc The total time for the operator to process messages or
commands in the operator’s loop.

TmodR Total time it takes to read in a variable’s value using polled
Modbus messages at 125 Hz.

Twait The time spent waiting due to the supervisor not assigning
new job to the operator when it is ready to receive one.

T job The time spent moving to complete a job.
TmodW The total time spent from when the operator sends a

Modbus write request message that signals the supervisor
it is done with a job, to the time when the supervisor has
read that message.

Tsync A variable wait time at the end of the operator’s control
loop, such that the loop time is a multiple of 8 ms.

Tcycle 8 ms, which is determined by the cycle time of the
application.

TmodReq The transmission delay it takes for a Modbus request
message.

TmodRes The transmission delay it takes for a Modbus response
message.

TsupProc The total time spent at the supervisor processing messages.

with Intel 9260 IEEE 802.11ac devices [23]. The AP node is
connected to the main Cisco switch through Ethernet, as seen
in Fig. 7 and synchronizes its time with the GL in the network
over IEEE 1588 protocol. The AP then propagates this time
over wireless to the two stations.

V. WIRELESS TSN EVALUATION

A. Measurement setup and methodology

In this section, we describe the extensions that were added
to enable measurement and comparative analysis of WTSN.
Fig. 7 shows the wired and wireless network configurations
of the testbed, with the red lines representing the data col-
lection flows. The WTSN nodes described in the previous
section also function as measurement probes capturing and
measuring wireless time synchronization data. Wired Ethernet
Test Access Points (TAPs) are installed at strategic points in
the network, shown in Fig. 7, to capture all relevant network
packets sent between the nodes. The traffic flows from the
TAPs are simultaneously captured by multiple 4-port Ethernet
PCIe cards installed at the collection machine. The 4-port
Ethernet cards are Intel i210 gigabit based Ethernet cards that
support TSN features and hardware timestamping features for
each port.

The various network configurations include wired and
wireless (with and without WTSN). The time-synchronized
collection machine is responsible for collecting each of the
TAPs network data, along with the robot state and position
data by utilizing the real-time-data-exchange (RTDE) interface
provided by the robot controllers. In this paper, the wireless
configurations with WTSN and with no WTSN are subject
to a UDP competing traffic stream using iperf with packet
length of 1000 bytes and data rates of 1, 2, 10, and 20



Mbps, respectively. The interfering load in this scenario is
synthetically generated to mimic Best Effort (BE) traffic from
non-critical sensors, such as a camera stream. This interference
is generated by a separate NUC, not shown in the network
setup, and acts as the client, whereas the OPT Ethernet-
wireless NUC acts as the server. In this configuration, the
competing traffic is transmitted to the OPT NUC using the
same access point that is used by the operational traffic of
the testbed. The operational traffic in the testbed consists of
traffic between the supervisor PLC and the two robots as well
as with the CNCs. The flow between the supervisor PLC and
OPT, and the flow between the supervisor PLC and INS are
critical flows that must be protected from interfering traffic,
which can be accomplished by using TSN schedules.

Fig. 7. Wireless TSN measurement setup of workcell testbed.

TSN schedules are used over the wireless network segment
to prioritize time critical data over the BE traffic. As previously
mentioned, all the measurement nodes are synchronized to the
GL clock, these devices include the collection machine, the
supervisor PLC, and the wireless NUCs. The accuracy of the
wired time synchronization error between the collector and the
GL was observed to be less than 1 microsecond. The error of
the time synchronization over the wireless links were observed
to be less than 100 microseconds with 99% confidence. This
accuracy can be further improved to 1 microsecond by switch-
ing to an integrated Intel 9560 IEEE 802.11ac WiFi card [24],
[25]. The accuracy that can be achieved is very dependent
on the Wi-Fi device that is being used. This is because
one important component that contributes to this accuracy is
the correlation between the timestamps generated at the host
platform and the timestamp generated in the device as the time
synchronization packets are exchanged. In [24], the authors
have shown that using a Wi-Fi device that is more tightly
integrated into the host platform, like the Intel 9560 802.11ac,

it is possible to achieve a time synchronization accuracy of 1
microsecond. These Wi-Fi devices, however, are not industrial
grade and our use case requires industrial grade devices [24],
[25]. We expect these Wi-Fi devices to be made available for
industrial use in near future. The integrated version has its
baseband firmware running much closer to the host processor
in the platform to achieve a tighter synchronization.

The physical performance data is derived from the robot
state change information logged at the collection machine.
The state changes of the use case are sensitive to the network
performance, as the instructions from the supervisor PLC are
sent using Modbus messages transmitted over the wireless
channel. Thus, increases in network delay is correlated with
an increase in the idle time of the robots, which is the
time spent by the robots in the idle state waiting for jobs
from the supervisor. We measured this impact by using the
state transition logs collected from the robot controller to
determine how long the robot was in the idle state. Every
8 ms, the robot’s state is recorded as an integer value at the
time-synchronized data collection machine. The integer value
indicates what job is assigned to the robot, or for it to be
idle. The actual impact of competing wireless traffic can be
measured as any delay in the communication link that causes a
delay in the supervisor’s state messages to the robots, thereby
increasing the idle time of the robots.

To measure the network performance metrics, the traffic
streams captured at TAP points at the supervisor, OPT, and
INS are analyzed to calculate the delay and jitter of packets
between the supervisor and each robot. We can derive the
path delay of these packets using the synchronized packet data
collections.

B. Key Performance Indicators (KPIs)

Two categories of KPIs have been identified to evaluate the
performance of WTSN and the testbed - network performance
KPIs and application KPIs. Each type of these KPIs has
associated metrics - Cumulative Distribution Functions (CDFs)
of Packet Delivery Ratio (PDR) of observed latency measure
performance of time sensitive streams, and Idle Time of the
application measures the performance of the application. Table
II summarizes these metrics.

TABLE II
KPI METRICS

KPI Description
Packet Delivery Ratio
(PDR)

PDR is the ratio of network packets de-
livered within a defined latency bound be-
longing to time sensitive streams.

Latency Cumulative Distri-
bution Function (CDF)

The Latency CDF is the distribution of
latency values for all network packets ob-
served for a traffic stream.

Idle Time Measures the amount of time the applica-
tion driving the robots have spent in the
idle state.

Since the application is supervisory control, the idle time
will be directly impacted by any latency in the network so
any KPI’s representing these two metrics would help evaluate



the use case performance. Some other KPI’s that could be
measured include time synchronization accuracy, packet error
rate, production rate, robot response times etc., however we
selected the most direct KPI’s to assess the network and use
case performance.

C. Deriving Time-aware schedules for the wireless nodes

To enable WTSN, a schedule was derived to match the
requirements of critical application flows over wireless. We
let the schedule start before the initialization phase of the
application such that the application traffic will align with
the schedule. In this case, the worst-case initial delay is the
cycle period, which in this use case is 8 ms. Afterwards the
application will continue to be aligned within the worst-case
time synchronization accuracy of the testbed, which is 100
microseconds. To configure a WTSN schedule, we use the
following steps.

1) Compute the cycle time for a WTSN schedule using
Base Period (BP) [26] of the time critical flows.

Tcycle = GCD(Ti : Fi ∈ F), (4)

where F is the set of all flows, Ti is the cycle time
of the ith flow in the set F , and GCD() computes the
Greatest Common Divisor.

2) Derive the per-flow relative start time and relative offset
in a cycle such that

Tstart,i = Tstart,i−1 + Toffset,i−1, Fi ∈ F and i ̸= 0, (5)

where Tstart,i denotes the relative start time of the ith
flow to the schedule start where Tstart,0 = 0 and Toffset,i
denotes the offset of the next flow relative to the ith,
and hence, it represents the scheduled time for the ith
flow’s transmissions including a guard time window.

3) Compute the slot duration of each slot, which is equal
to the transmission time of all packet exchange during
that slot.

Ptdelay = NP ∗
Pavg-size

transmission rate
+ Tprocessing, (6)

where NP is the number of packets and Tprocessing de-
notes any processing delay associated with the packet
exchange.

There are two critical flows that are relevant in this ex-
periment: the flow between the supervisor PLC and OPT,
and the flow between the supervisor PLC and INS. We will
denote these flows as FOPT and FINS respectively. We use the
formulation above to compute the Tcycle as follows

Tcycle = GCD(TOPT, TINS) = 8 ms. (7)

We use the start time, average transaction duration, and the
average packet size of the Modbus packets exchanged in these
flows to derive the per-flow relative offsets in each cycle. The
relative start time for the two flows FOPT and FINS has been
configured as follows

Tstart,OPT = 0; Toffset,OPT = 2 ms;

Tstart,INS = Tstart,OPT + 2 ms. (8)

This configuration gives a budget of 2 ms for the total
transmission delay (Ptdelay) for the Modbus transaction for
FOPT in each cycle. The average transaction duration for each
of the transaction happening in a cycle is given by adding
TmodReq, TsupProc and TmodRes as defined in section IV. C. So,
the total transmission delay is given by

Ptdelay = (TmodReq + TmodRes + TsupProc) =

4 ∗ (Pavg-size/transmission rate) + TsupProc, (9)

where Pavg-size is the average packet size associated with
the Modbus packets exchanged during this transaction and
transmission rate refers to the link speed of the wireless
link between the OPT and the supervisor, or INS and the
supervisor. Also note that each Modbus packet is a TCP packet
and is associated with a corresponding acknowledgement mes-
sage. We used a client device as software-based AP (SoftAP)
in our experiments operating at the 2.4 GHz band with a
channel bandwidth of 20 MHz. From this test configuration,
we assume a conservative transmission rate of 54 Mbps to
create a transmission schedule according to IEEE 802.1Qbv.
This assumption is made from the observation of sniffed Wi-
Fi packets, and the testbed is isolated without mobility or
other significant interferers during the experiments. Also, our
assumptions enable a reliable schedule to be made. We further
observe, by analyzing the packet trace of the traffic exchange
between these entities, that the average packet size of packets
exchanged in such transactions is around 80 bytes. We also
observe that the average processing time of the supervisor
(TsupProc) is around 1 ms. So, the total transmission delay in
this case can be computed as 1.05 ms, which is well below
the budget available. Ideally, we need to take the worst case
of the requirement while formulating the schedule, however
in this case, the packet sizes and rate of generation are very
consistent. Consequently, the deviation in measured values
from the average for transmission time and processing times is
in the nanoseconds, which is small compared to the worst-case
time synchronization error of 100 microsecond. Also, each
time critical flow has been allocated a time budget that is
sufficiently larger than what is required.

Using the formulation described, a schedule is derived as
illustrated in Fig. 8. Each cycle is divided into two time slots
– one for TS traffic, which is 5 ms long, and the other for
BE traffic, which is 3 ms long. This 5 ms window was further
split into slots for FOPT and FINS, according to the formulations
above into 2 ms slots, with some room acting as guard bands.
The traffic streams have been classified as Time Sensitive (TS)
and BE, and are directed into correspondingly labelled queues
on the interfaces at each of the wireless nodes. The queues
are then gated by a time-based schedule, which repeats every
8 ms. When gate G1 is open, BE traffic is let through, and
when gate G0 is open, the TS traffic is let through.

Each wireless transmitter/receiver node implements a Prior-
ity Mapping Function and a Time Aware Scheduling function.
These working of these functions are described in Fig. 9.



Fig. 8. WTSN Schedule in the wireless medium.

Fig. 9. Main Functions in WTSN Node.

The application start time and the schedule start time is
synchronized as close as possible using automated scripts. In a
TSN network, this schedule and time synchronization are coor-
dinated by the central entities CUC and TSN-CNC. Although
these functional entities have been defined in the standards,
implementation of these functional entities and derivation of
schedules is still an active area of research, especially in a
hybrid wired-wireless network. The available bandwidth for
BE traffic is reduced as this traffic only gets, approximately,
one-third of the cycle period for transmission after adequately
allocating bandwidth for shaping and protective guard bands.

VI. RESULTS

The machine tending use case experiments were run with
the various network configurations and interfering traffic de-
scribed in section IV-A. In summary, the experiments consist
of wired and wireless baselines, then wireless without TSN,
and wireless with TSN scenarios, for which there was 1, 2,
10, and 20 Mbps of BE interfering traffic. The resulting traces
collected with the TAPs, RTDE, and the supervisor PLC, are
analyzed to comparatively evaluate any benefits achieved using

TSN in the presence of competing BE traffic. In this section,
we discuss the results that are observed as a result of the
analysis.

Using the measurement methodology highlighted in section
IV-A, the traffic streams from all the scenarios previously
discussed are analyzed for latency. Fig. 10 shows the PDR
for packets having latency less than 5 ms, beyond which the
efficiency and stability of the use case is degraded. We can
clearly see in Fig. 10 that, in the presence of BE traffic, when
there are no TSN schedule applied over wireless, there is a
drastic drop in the PDR. When compared to the similar metric
in the case of wireless baseline (99.81%) and wired baseline
(100%), we can see that enabling the TSN schedule is able to
bring the overall latency profile of the time sensitive streams
closer to the benchmark.

Fig. 10. Packet Delivery Ratio for latency < 5 ms with TSN and no-TSN
cases with varying levels of interference traffic.

Fig. 11. Latency CDF of packets with and without TSN enabled.

Fig. 11 shows a more detailed picture of the latency distri-
bution and how TSN helps in improving the overall latency
experienced by the use case. We show the CDF comparison
of the latency distribution experienced by time sensitive traffic
in the presence of the worst-case interference (20Mbps) when
TSN schedule is active and when it is not. Here, we can see
that, when TSN schedule is active, more than 99% of time
sensitive packets experience a bounded latency of less than 5
ms. This contrasts with the scenario when TSN schedule is
not active, where the percentage of packets within the latency



bound of 5 ms drops down to around 77%. Bounded latency is
very important for industrial robotic use cases and has a direct
impact on the performance and efficiency of the use case. The
latency CDF figure also shows that the number and maximum
range of outliers are reduced when wireless TSN is enabled.

This increase in the percentage of packets experiencing
latency outside of tolerable bounds is also reflected in the
application performance, as shown in Fig. 12.

Fig. 12. Operator (OPT) Idle time across all scenarios.

We can clearly see here that the idle time experienced by
the operator robot is higher compared to the case when TSN
schedules are employed or compared to the baseline cases. The
reason for this can be attributed to the fact that when there is
competing BE traffic in the network there is no protection
for the time sensitive traffic, so the operator spends more time
waiting to receive state change commands from the supervisor
PLC as the packets are getting delayed. This will have a
cumulative effect as the delay from the last state change from
the robot will result in a delay in the subsequent state changes.
The wireless link delay is a direct contributor to an efficiency
drop in an industrial setting where collaborative robots are
jointly accomplishing supervisory tasks over wireless.

VII. CONCLUSIONS

Time sensitive and deterministic connectivity will play a
key role in enabling next generation industrial systems, which
require deterministic data delivery with high reliability. In this
paper, WTSN features were utilized to enable low latency
wireless communications in an industrial collaborative robotics
use case. The analysis of network latency and its correlation
to the use case efficiency was presented. Although we have
shown an implementation of TSN on top of an existing
traditional WiFi MAC and PHY without any support from
the underlying wireless device, it should be noted that an
ideal implementation would involve changes to the MAC
packet scheduling mechanism to incorporate the Time Aware
Scheduling concepts outlined in 802.1Qbv, as well as expose
interfaces to support and configure this. In the results, we have
shown how we have been able to limit the latency for over
99 percent of the time sensitive packets to less than 5 ms,
but this is still not ideal, and an ideal implementation would
help us improve this further. To ensure interoperability, these
modifications will have to be accomplished in a way that is

consistent with the evolving 802.11 standards and not in a pro-
prietary way [17], [18], [21]. As far as we are aware, this paper
is the first kind of paper exploring TSN implementation over
standards-based Wi-Fi with a robotics-based industrial testbed.
In future work we intend to explore further improvements
with TSN over standards-based Wi-Fi with some of the newer
features, such as trigger-based OFDMA scheduling in Wi-Fi
6 and multi-link enhancements being developed in 802.11be
the next generation of Wi-Fi standard. Beside these, new
scheduling capabilities enabled by Wi-Fi 6 can help reduce
latency and provide more deterministic access. We plan to
extend the WTSN implementation to Wi-Fi 6 to enable further
experiments and hope to revisit these scenarios to examine
further improvements in the KPIs presented.

DISCLAIMER

Certain commercial equipment, instruments, or materials are
identified in this paper in order to specify the experimental
procedure adequately. Such identification is not intended to
imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the
best available for the purpose.
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