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Abstract. Multivariate cryptography is dominated by schemes support-
ing various tweaks, or “modifiers,” designed to patch certain algebraic 
weaknesses they would otherwise exhibit. Typically these modifiers are 
linear in nature— either requiring an extra composition with an affine 
map, or being evaluated by a legitimate user via an affine projection. 
This description applies to the minus, plus, vinegar and internal per-
turbation modifiers, to name a few. Though it is well-known that com-
binations of various modifiers can offer security against certain classes 
of attacks, cryptanalysts have produced ever more sophisticated attacks 
against various combinations of these linear modifiers. 
In this article, we introduce a more fundamentally nonlinear modifier, 
called Q, that is inspired from relinearization. The effect of the Q mod-
ifier on multivariate digital signature schemes is to maintain inversion 
efficiency at the cost of slightly slower verification and larger public keys, 
while altering the algebraic properties of the public key. Thus the Q mod-
ifier is ideal for applications of digital signature schemes requiring very 
fast signing and verification without key transport. As an application 
of this modifier, we propose new multivariate digital signature schemes 
with fast signing and verification that are resistant to all known attacks. 
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1 Introduction 

The National Institute of Standards and Technology (NIST) is currently engaged 
in a process to establish new cryptographic standards [19] that offer security 
against adversaries with access to large scale quantum computing technology. 
This process aims to “Shor”-up NIST’s public key suite of algorithms as a re-
sponse to the exponential speed-ups offered by Shor’s quantum algorithms [32] 
for solving the problems on which the current public key infrastructure is based. 
NIST’s process is currently in the third round [26] and consists of 9 public key 
encryption or key-establishment algorithms and 6 digital signature schemes, see 
[20]. 

While the majority of the diverse array of key-establishment candidates tar-
get general use applications and offer good performance in many metrics, the 
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situation for digital signatures is very different. First, applications of digital sig-
natures are extremely diverse and often different applications require dramati-
cally different performance characteristics; moreover, many “niche” applications 
are actually quite pervasive. Secondly, there are very few candidates that are 
general purpose or that offer acceptable performance for some applications. The 
situation is of sufficient concern that NIST has asked for public feedback on the 
issue of signature scheme diversity on the NIST Post-Quantum Cryptography 
(PQC) Forum [11]. 

Part of this concern arises from the recent cryptanalyses [30, 4, 37] of two of 
the non-lattice-based digital signature schemes that made it to the third round 
of NIST’s post-quantum standardization process. These candidate algorithms, 
Rainbow [21] and GeMSS [1], are both multivariate signature schemes with long 
histories. If neither scheme can be repaired in such a way that public confidence 
in the approach is restored, then there can be no Federal Information Process-
ing Standard-compliant (FIPS-compliant) alternative to the lattice signatures 
CRYSTALS-Dilithium [42] and Falcon [39] for applications requiring signatures 
significantly shorter than a kilobyte in length. 

Not only are the above cryptanalyses concerning, also the recent advances 
in generic techniques have contributed to apprehension about the security of 
multivariate signature schemes in general. In particular, the most effective attack 
[4] on the NIST round 3 finalist Rainbow is made efficient by the support minors 
method of solving the MinRank problem, see [2]. This advance alone changes the 
complexity of rank attacks on schemes like Rainbow and GeMSS by orders of 
magnitude in the exponent. 

In addition, the cryptanalysis of GeMSS in [37] bypasses the combination 
of the vinegar and minus modifiers, one of the last remaining combinations of 
modifiers for multivariate systems that was believed to offer security for the so-
called “big field” schemes— schemes requiring the multiplicative structure of an 
extension field. This advance invites the question of whether big field schemes are 
at all viable or whether secure multivariate digital signatures require a structure 
like that of Unbalanced Oil-Vinegar (UOV), see [23]. 

In this article we suggest a very strange answer to the above question. We 
propose that a big field scheme may be secure by turning it into an odd form 
of a UOV scheme by way of a new nonlinear modifier. This modifier, called 
Q, transforms any quadratic map into a UOV map in a way that preserves 
the structure of the original map in the sense that with secret information, the 
legitimate user can use the inversion procedure for the original central map to 
find a preimage. 

As an application of this modifier, we construct multivariate digital signatures 
by applying the Q modifier to C∗ and show that the resulting scheme, QC∗ , is 
secure against all known attacks. We also select a “small field” cryptosystem, 
the Step-wise Triangular System (STS) multivariate encryption scheme, and 
use the Q modifier to create QSTS. Thus, we use the Q modifier to convert two 
insecure encryption schemes into secure digital signature schemes, which is quite 
humorous. 
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This article is organized as follows. In the next section, we introduce some 
of the multivariate cryptosystems we have discussed above and which we will 
be modifying. In Section 3, we present and discuss the common modifiers of 
multivariate schemes and their security properties. We then introduce the new 
Q modifier in the subsequent section. Next, we present a few new schemes based 
on the Q modifier, illustrating the breadth of possible schemes it can produce. 
In Section 6, we present a thorough analysis of the security of these schemes. We 
next propose parameters for the focus of future study and application of these 
schemes in Section 7. Finally, we conclude, discussing the possible directions to 
which this work leads. 

2 Multivariate Signature Schemes 

Multivariate cryptosystems can broadly be categorized as “big field” or “small 
field” schemes. Big field schemes rely on the multiplicative structure of an ex-
tension field to provide a nonlinear efficiently invertible function. In contrast, 
small field schemes accomplish this task directly by selecting nonlinear func-
tions with some special structure embedded. In both cases, the structure that 
allows for efficient inversion is hidden with the application of some morphism of 
polynomials. 

2.1 Unbalanced Oil-Vinegar (UOV) 

The unbalanced oil-vinegar (UOV) signature scheme [23] is the oldest small field 
scheme still considered secure. Like most small field schemes, UOV relies on the 
sequential derivation of preimage variables for the inversion of the private key. 

Given the finite field Fq , one selects integers v ≈ 3o and constructs the vector 
space O ⊕ V ≈ Fo+v , where O ≈ Fo is called the oil subspace and V ≈ Fv isq q q 
known as the vinegar subspace. The private key then consists of a random linear 
map L : Fo

q 
+v → Fo+v , and a random quadratic function F that is affine onq 

cosets of O. Specifically, the map F is defined by 

o+v o+vX X 
F (x1, x2, . . . , xo+v) = aij xixj . 

i=o+1 j=1 

Each coordinate of F can be written as a quadratic form of the shape pre-� � 
sented in Figure 1. Given any constant vector co+1 . . . co+v ∈ V , we have that 
F (·, . . . , ·, co+1, . . . , co+v) is an affine function on O. The public key is then the 
composition P = F ◦ L. 

A preimage for any element in the codomain of P can be efficiently found 
by a legitimate user by randomly selecting an element c of V , inverting the 
affine map F (·, c) and finally inverting L. Verification is accomplished by merely 
evaluating the public key at a given signature. 
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Fig. 1. The shape of the matrix representations of each central quadratic form of 
unbalanced oil-vinegar (UOV). The shaded regions represent possibly nonzero values 
while unshaded areas have coefficients of zero. 

· · · 

(c) Layer k(a) Layer 1 (b) Layer 2 

Fig. 2. The shape of the matrix representations of quadratic forms from each layer 
of the central map of a generic STS system. The shaded regions represent possibly 
nonzero values while unshaded areas have coefficients of zero. 

2.2 Step-wise Triangular System (STS) 

The main line of what we would today call step-wise triangular schemes origi-
nated in Shamir’s birational permutation scheme over large rings in [31]. A very 
similar idea emerged which was called the sequential solution method (SSM) in 
[41]. These ideas were extended to construct the RSE system of [22] and were 
further adapted in [18] where the authors made it clear that these schemes were 
broken. This more general scheme was named triangle-plus-minus (TPM), which 
was further generalized into what we now call step-wise triangular schemes (STS) 
in [43]. There have since been numerous variations on the theme including [40, 
36, 17]. They are all very similar and the simplest exposition to provide a good 
understanding of all of them is to present the generic STS constructions of [43]. 

Unlike UOV, the STS-style schemes are designed for encryption. Also unlike 
UOV, STS cryptosystems have a special differentiation in the structure of equa-
tions as well as the structure of the space of variables. As such, STS schemes 
require affine maps mixing both the inputs and outputs of the secret central map 
F . Thus a public key looks like P = T ◦ F ◦ U . The critical structure in the STS 
family is the structure of the central map. 

The central map of a generic STS instance is defined by selecting integers 
0 = u0 < u1 < . . . < uk = n, and random quadratic maps yi = ψi(xi), where 
xi = (x1, . . . , xui ) and dim(yi) = ui − ui−1 for i = {1, . . . , k}. The central mapLk
is then the direct sum ψi, see Figure 2 for a visualization.i=1 
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Fig. 3. The structure of a C ∗ scheme. The map φ is a Fq -vector space isomorphism, F 
is a vector-valued function on Fn

q , and f is an univariate function over E. 

Again, the technique for inversion of the secret map F is sequential. One 
first parses the output vector y into the component vectors yi for each of the k 
layers. Then sequentially, the quadratic equations ψi(xi) = yi are solved using 
the coordinates previously solved for xi−1 as a prefix of xi. 

All of these constructions are vulnerable to generic combinatorial rank at-
tacks as shown in [43]. In fact, all such schemes are vulnerable to both the 
MinRank attack— finding a low rank non-zero linear combination of the public 
quadratic forms— and the dual rank attack— finding a small subspace that is 
in the kernel of a large subspace of the quadratic forms. 

2.3 C∗ 

The progenitor of all “big field” schemes is commonly known as C∗ , or the 
Matsumoto-Imai scheme, see [25]. This scheme exploits the fact that an extension 
field E of Fq is an Fq-algebra to produce two versions of a function— a vector-
valued version which is quadratic over the base field, and a monomial function 
whose input and output lie in the extension field. Specifically, the C∗ central 
map is the univariate function f : E → E defined by 

+1f(X) = Xq θ 

, 

θ nwhere |E : Fq| = n and (q + 1, q − 1) = 1. The final condition ensures that 
the power map is invertible in E∗ . To complete the construction, one composes 
invertible affine maps to produce the public key P (x) = T ◦ F ◦ U , see Figure 3. 
The C∗ scheme can be considered a sort of multivariate version of RSA; in fact, 
the design of C∗ intends for the inversion of F to be accomplished in exactly 
the same way as RSA, that is, by exponentiation by the multiplicative inverse 
of the encryption exponent modulo the size of the unit group. 

C∗ was broken by Patarin in [27] by way of linearization equations. Patarin 
discovered that there is a bilinear relationship between the plaintext x and ci-
phertext y. In all but a few pathological cases, an adversary can interpolate this 
bilinear function by generating many plaintext-ciphertext pairs. Once recovered, 
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these linearization equations provide an even faster method of decryption than 
using the private key. Indeed later derivatives of C∗ derive linearization equations 
from the private key as a fast method of inversion, see [9, 7, 8]. 

3 Modifiers 

The cryptanalysis of the C∗ scheme by Patarin in [27] inspired the creation of 
modifiers to make certain attacks infeasible. There are two categories of such 
alterations: one can modify the central map in some specific way preserving 
efficient invertibility; or one can make one or both affine transformations non-
invertible. Of course, various modifications can be taken together as well. We 
present here some prominent modifiers. 

Shortly after the cryptanalysis of C∗ , Patarin introduced in [29] three mod-
ifiers aiming to enhance the security of C∗ . These three modifiers include the 
minus (-) modifier (the removal of public equations), the plus (+) modifier (the 
addition of random equations in the central map that can be ignored on in-
version) and the projection (p) modifier (the assignment of one or more input 
variables to constant values before the publication of the key). 

The purpose of the minus modifier is clear. The idea is to remove some 
public equations and thereby change the algebraic structure of the central map. 
This method is equivalent to making the output transformation T singular. An 
immediate consequence in the case of C∗ is that the minus modified scheme, 
C∗−, no longer has linearization equations. Still, C∗− was proven weak by an 
attack [14] exploiting a symmetric relation satisfied by the public key. 

The projection modifier is the analogous modification on the input space. 
Instead of making the output transformation T singular, the input transforma-
tion U is made singular. Interestingly, this modification does not prevent the 
linearization equations attack if applied to C∗ . The only cryptosystem proposed 
that is essentially of the pC∗ form is SQUARE, see [10], which was broken by 
an attack analogous to that on C∗−, see [5]. 

The plus modifier is in some sense the opposite of the minus modifier. Addi-
tional random equations are added to the central map and then mixed via the 
output transformation. In the case of C∗ , the plus modifier does not enhance se-
curity. The MinRank attack of [3] with a target rank of 2 recovers an equivalent 
C∗ key. Still, this modifier has found use in numerous schemes, most recently 
including the, so named, PCBM scheme, see [35]. 

In [28], the vinegar (v) modifier (the addition of variables in the central map, 
the values of which can be randomly assigned upon inversion) is introduced in 
the QUARTZ scheme. QUARTZ is a parametrization of Hidden Field Equations 
with the vinegar and minus modifiers (HFEv-), the same construction as used 
in GeMSS, see [1]. Thus, the attack of [37] breaks the vinegar modification, even 
in conjunction with the minus modifier, if the central map is of low rank. 

In [13], the internal perturbation (ip) modifier (the addition of a random 
summand with a small support) is used to produce the Perturbed Matsumoto-
Imai (PMI) cryptosystem. The random summand introduced by the internal 
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perturbation modifier has such small support that its value can be guessed and 
subtracted from the output of the central map before inversion. This modifier 
applied to C∗ was also broken, see [16]. 

All of these modifiers share the property that they either constitute a linear 
action on the public key or can be removed by a linear action on the public 
key. More specifically, the projection and minus modifiers are obviously linear 
projections and are dual to each other, while the vinegar and plus modifiers can 
both be removed via the application of the appropriate linear projection on the 
input or output space. Even the internal perturbation modifier can be removed 
via a projection, though the resulting scheme is the same as the original with an 
application of the projection modifier. 

4 The Q Modifier 

In this section we introduce a new generic modifier for multivariate schemes, 
named Q, that is inspired by relinearization, see [24]. As we will see, the Q 
modifier is not linear in the sense that each of the modifiers in the previous 
section are. Q is not a linear function on a public key nor can it be removed by 
a linear function on the public key. 

First let us recall the relinearization technique first introduced in [24]. The 
idea of the technique is to symbolically solve a system of nonlinear equations by 
iteratively linearizing the system and recalling relations between the variables. 
Specifically, given a multivariate system in the variables x1, . . . , xn, the relin-
earization technique assigns a new variable yij to each monomial of the form 
xixj , attempts to solve the resulting linear system, and recalls the relations of 
the form yij yk` = yikyj`, among others. While relinearization did not provide 
the originally promised performance in solving overdefined systems, it did in-
spire the development of XL, see [12], and offers a new technique for modifying 
quadratic systems. 

We begin the description in as general a context as possible and then discuss 
the specifications required to apply Q in special contexts. First, let F : Fm → Fm 

q q� � 
be an arbitrary homogenous quadratic function in the variable x = x1 . . . xm .� � 
We select a short vector of auxiliary variables w = w1, . . . , w` and form prod-
ucts between these variables and terms of F (at this point, in an arbitrary way) 
to create a cubic map Fe : Fm+` → Fm . We then consider the general monomialq q 
of the form xixj wk. Such a monomial must always contain exactly one variable 
from w. We define a vector z of m` new variables zik = xiwk. Thus we have the 
relations 

xixj wk = xizjk = xj zik. (1) 

F : F(`+1)m
We replace Fe with a new function b 

q → Fm in a two step process. q 
First, we use relations of the form of Equation (1) to replace every cubic mono-
mial in x with a monomial bilinear in x and z randomly. Second, we introduce 
new quadratic summands of the form αxizjk − αxj zik and αzij zrs − αziszrj for 
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randomly selected α ∈ Fq. These summands must equal zero by the definition 
of the variables in z. The function Fb is now a new quadratic function.� � 

We illustrate with a small example. Suppose that y1 y2 = F (x1, x2, x3) over 
F7 is given by 

y1 = 2x1x2 + 3x1x3 + x2x3 

2 y2 = x1 + 5x1x3 + 2x2x3. 

We multiply by the variables w1 and w2 in an arbitrary way producing Fe defined 
by 

y1 = 2x1x2w2 + 3x1x3w1 + 3x1x3w2 + x2x3w1 

2 2 y2 = x1w1 + x1w2 + 5x1x3w2 + 2x2x3w1. 

Next we substitute for xiwj and add cancelling terms (in parentheses below) in 
the new variables z11, z12, . . . , z32 to produce Fb of the form 

y1 = 2x2z12 + 3x1z31 + 3x1z32 + x3z21 + (4z12z31 + 3z11z32 + x1z22 + 6x2z12) 

y2 = x1z11 + x1z12 + 5x3z12 + 2x2z31 + (x3z12 + 6x1z32 + 4z22z11 + 3z12z21) . 

bThere are three things to notice. First, the resulting function F is a UOV 
map. The map is clearly linear in x and quadratic in z. Therefore, we can find a 
preimage under Fb by using the inversion procedure for UOV. Consequently, we 
can see that the Q modifier embeds some distribution of quadratic maps into a 
subspace of the space of UOV keys necessarily having less entropy. 

Second— and this is a key point— if there is an assignment of the ` variables 
w that makes Fe(·, w) an efficient to invert quadratic system, then we have a bsecond way to invert F . Specifically, the user assigns values to w, solves for x 
such that Fe(x, w) = y, and computes z = x ⊗ w. We note here that quadratic 
terms in z never need to be computed unlike in the case of inversion as a UOV 
map. Thus, for functions Fe(·, w) with sufficiently efficient inversion, the inversion 
of the maps transformed by Q is more efficient than UOV inversion. 

Finally, since the original monomials are gone, there exists no linear projec-
tion on the input nor the output that transforms Fb into a linear function of F . In 
fact, the Q transformation is a quadratic substitution, hence the name. There-
fore attacks exploiting projections away from a modifier are ineffective against 
Q. 

Thus, the Q modifier is particularly useful in cases in which we have families 
of efficiently invertible quadratic maps that can be parametrized by an additional 
auxiliary set of variables. In such a case for any fixed w, the function Fe(·, w) 
is efficiently invertible. Then we may use the inversion procedure for Fe(·, w) to bfind preimages of F with greater efficiency than the UOV inversion procedure. 
We present some explicit examples of constructing such parametrized families Fe 

in Section 5. 
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5 New Schemes 

We can now explain the most complicated part of the Q modifier, the task of 
creating the parametrized family of efficiently invertible functions Fe(x, w) from 
an efficiently invertible function F . The key is to use the structure that makes 
F efficiently invertible. 

5.1 QC∗ 

Xq +1Let F (x) = φ−1 ◦ f ◦ φ(x) where f(X) = 
θ 

is a C∗ central map. We may 
select a linear transformation B : F`

q → Fn
q and construct the function 

eF (x, w) = φ−1 (φ(B(w))f(φ(x))) . 

For any fixed nonzero w, the quantity aw = φ(B(w)) is just some constant 
in E, therefore the family of functions is simply the small field representations 

Xq +1of the functions aw 
θ 

, a collection of C∗ maps with coefficients other than 
1. Every such function has linearization equations which are trivial for the user 
to derive and use for extremely efficient inversion. 

In fact, when ` is very small, linearization equations can be derived for all 
nonzero values of w and inversion is accomplished with a very small number of 
multiplications. Specifically, let Lw be the ith linearization equation correspond-i 

Xq +1ing to aw 
θ 

. Then we may invert P (x̃) = T ◦ Fb(U x̃) = y by first computing 
a left kernel element u of the block matrix � � 

Lw 
1 T

−> > Lw T−> >y · · · y ,m 

T−>appending u ⊗ w, and multiplying on the right by U−1 . Since Lw 
i are all 

precomputed as part of the private key, inversion only involves computing m +1 
matrix vector products, an m` dimensional Kronecker product and solving a 
linear system. 

3 ωThus, the complexity of inversion is m +m +m2(`+1)2 +m`, multiplications 
in Fq where 2 ≤ ω ≤ 3 is the linear algebra constant. For comparison, the 
complexity of inverting UOV(m,m`) using the structure of equivalent keys, see 

3`2 ω 3[44], is 1 m + m3` + m + m2` multiplications in Fq .2 2 

5.2 QSTS 

Let F (x) be a step-wise triangular function with m steps of size 1. For any vector 
w we can construct the function Fe(x, w) from F by randomly multiplying each 
term by a linear form in w. For all constant nonzero assignments w = c the 
resulting function of x, Fe(x, c) is still a triangular map, so inversion can proceed 
as normal. 

Inversion of the public key is straightforward. Given y = P (x̃) = T ◦ 
Fb(U 0x̃, U 00x̃), the user simply inverts T , finds the preimage u under Fe(·, w), 
appends u ⊗ w and inverts the input transformation U . 
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Since the inversion process for Fe(·, w) is inversion of a triangular map, it� � 
3 m+2is very efficient. In total, inversion requires m + 2 + m2(` + 1)2 + m`3 

multiplications in Fq. 

6 Security Analysis 

In this section we consider the security of the schemes introduced in the previous 
section as well as some general considerations for the security of Q modified 
schemes. Attacks on the UOV structure are well known and easy to avoid. Thus, 
we consider four main attack avenues. 

6.1 Q Kernel Attacks 

In the case of using the Q modifier generically, there exists an injection M : 
→ Fm(`+1)Fm

q q such that MPiM
> = 0m×m for all 1 ≤ i ≤ m. Notice also, bthough, since monomials of the form zikzjk do not occur in F that there also 

→ Fm(`+1)
exist injections M 0 : F`

q such that M0PiM
0> = 0`×` for all 1 ≤ i ≤ m.q 

3Thus, we either have a system of m homogeneous quadratic equations in the 
m2(` + 1) unknown coefficients of M or a system of m`2 homogeneous quadratic 
equations in the m`(` + 1) unknown coefficients of M0 . 

Such systems can be solved via Gröbner basis methods. Given a hybrid ap-
proach of guessing k variables and resolving the system, we either obtain a 
system of m3 equations in m2(` + 1) − k variables or a system of m`2 equations 
in m`(` + 1) − k variables. Let dsr and d0 represent the semi-regular degrees sr 
of such systems. These values are given by the degree of the first nonpositive 
coefficient in the series expansions of 

3 
(1 − t2)m`2 

(1 − t2)m 

S(t) = , S0(t) = .2(`+1)−k (1 − t)m`(`+1)−k(1 − t)m 

Assuming that such systems are semi-regular, we find a complexity � � �ω � � � �ω� 
m2(` + 1) − k + dsr m`(` + 1) − k + d0 k k srO q , or O q . 

d0dsr sr 

6.2 Direct Attacks 

Direct attacks try to invert the public key directly as a quadratic function. 
Typically this process involves using some polynomial system solver based on 
either XL, see [12], or F4, see [15]. 

Since the public key of a Q modified scheme is underdetermined, we can 
employ the reduction procedure from [38] to convert the public key into a system 
of m − ` − 1 equations in m − ` − 1 variables. We can then take a hybrid 
approach and guess the values of k variables. The semi-regular degree for systems 
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of m − ` − 1 equations in m − ` − 1 − k variables is the degree dsr of the first 
nonpositive coefficient in the series 

(1 − t2)m−`−1 

S(t) = . 
(1 − t)m−`−1−k 

Under the assumption that the system derived from the public key is semi-
regular, the complexity of the direct attack is � � �ω� 

k m − ` − 1 − k + dsrO q . 
dsr 

6.3 Rank Attacks 

The STS cryptosystem is vulnerable to every type of rank attack, as shown in 
[43]. The Q modification, because it introduces terms involving all variables, in 
general makes all of the maps full rank when the field is large enough. Thus 
QSTS has no rank defect. 

The C∗ scheme does have a rank defect with respect to the extension field 
E. We note, however, that due to the addition of the cancelling terms of the 
form xizjk − xj zik and zij zrs − ziszrj that there is no longer an E combination 
of the public quadratic forms with low rank. In particular, there exists no linear 

→ Fm(`+1)
injection M : Fm

q such that P ◦ M is a C∗ public key; thus, QC∗ isq 
safe from rank attack. 

6.4 Differential Attacks 

The C∗ scheme and higher degree analogues are also vulnerable to differential 
attacks directly as shown, for example, in [34]. Therefore, we need to verify that 
the Q transformation prevents such an attack. 

As outlined in [33], the only maps that satisfy a differential symmetry on an 
E-algebra are componentwise multiples of C∗ monomial maps. Thus the attack is 
only possible if there exists a linear injection M such that P ◦M is componentwise 
C∗ . Due to the quadratic substitution, there exists no such injection. 

7 Parameters and Performance 

Selecting parameters to achieve security against the attacks from Section 6, we 
find that the limiting attack is the direct attack. With the complexity estimate 
then given in Section 6, we find that the optimal attack classically uses a hybrid 
approach with k = 3 in the case of q = 28 for all realistic parameters. 

Using a linear algebra exponent of ω = 2.8, we find that m = 44 and ` = 3 
are sufficient to achieve 151-bit security, which is comfortably NIST Level I. For 
a fair comparison, we implemented simple proof of concept implementations of 
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QC∗ , QSTS and UOV with the same parameters in the Magma Computer Alge-
bra System1 see [6]. We observed that at the precision of measurement we were 
able to make that the performance of the Q modified schemes was extremely 
consistent between the variants and was better than that of our implementation 
of UOV. The results are presented in Table 1. Please note that these implemen-
tations are not at all optimized. 

Table 1. The parameters and performance of QC ∗ and QSTS in comparision to UOV. 
The Q schemes performance data were essentially identical and are presented under 
the row labelled Q-schemes. 

q m ` # Eqs. # Vars. sig. (B) PK (B) sign (ms) ver. (ms) 

Q-schemes 28 44 3 44 176 176 677600 0.6 2.9 
UOV N/A N/A 44 176 176 677600 3.7 2.928 

8 Conclusion 

Digital signature schemes based on systems of nonlinear multivariate equations 
have been around for a long time. The break-and-patch evolution of the discipline 
as well as the multitude of attack paths available has always made multivariate 
cryptography a somewhat risky venture. The appeal of some of the performance 
characteristics of these schemes (e.g., very short signatures, very fast verification) 
has helped to keep alive the hope that multivariate schemes will find a permanent 
home in our future standards. 

Recent advances in cryptanalytic techniques, however, have further shaken 
public confidence in certain multivariate approaches. Most multivariate schemes 
rely on a low rank property at some point in the inversion process. The new 
support minors method introduced in [2] is a dramatic improvement in generic 
technique and led to a significant attack against Rainbow, see [4]. Another recent 
advance, see [37], shows that the combination of vinegar and minus modifiers are 
not sufficient alone to secure big field schemes. As a result, there are no remaining 
multivariate candidates in NIST’s post-quantum standardization process that 
have not suffered some significant attack. 

In this work we present the Q modifier and show that it is qualitatively 
different from the modifiers that have been studied for a couple of decades. 
Q is inherently nonlinear and creates a new map divorced from the algebraic 
properties of the original map. Still, the new map, which is of UOV form, is 
related via a hidden quadratic relationship to the original map, so that inversion 
can still be accomplished with the original structure. 

The fact that the Q modifier is generic suggests that it may be a promising 
direction requiring further study. In particular, it is possible to eliminate the 

1 Any mention of commercial products does not indicate endorsement by NIST. 
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UOV structure of the resulting scheme by appending a 1 at the end of the vector 
w defined in Section 4. The consequence of this change is that one may include 
terms quadratic in x in the central map. Thus, depending on the structure of 
the map, there may exist a linear projection onto the prototype function for the 
scheme. This alteration seems risky for systems with a rank defect, but is a topic 
worthy of further research in the general case. 
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A Toy Example 

In this section we present a toy example of QSTS. We illustrate the selection e bof F , F and F and then present a valid public key. Finally, we demonstrate 
inversion of the public key. 

We randomly select a function F of STS shape: 

2 y1 = 5x1 
2 y2 = 6x1 + 4x1x2 

2 2 2 y3 = 6x1 + 3x1x2 + 5x2 + 3x1x3 + x3 
2 2 y4 = 5x1 + 5x1x2 + 6x1x3 + x2x3 + x1x4 + 6x2x4 + 6x3x4 + x4 

We then construct the parametric family of STS functions, Fe, by randomly 
multiplying monomials in F by random linear forms in the variables w1, w2: 

2 2 y1 = 3x1w1 + 3x1w2 

2 2 y1 = 2x1w1 + 4x1x2w1 + 5x1w2 

2 2 2 2 y1 = 6x1x2w1 + 5x2w1 + 5x1x3w1 + 5x3w1 + x1w2 + 6x1x2w2 + 6x2w2 + 3x1x3w2 

2 2 y1 = 2x1w1 + 6x1x3w1 + x2x3w1 + 6x1x4w1 + 5x2x4w1 + x3x4w1 + 2x1w2 

+ 6x1x2w2 + 5x1x3w2 + x2x3w2 + 5x1x4w2 + 2x2x4w2 + 5x 24w2 

Next, we do the final step of performing random replacements xiwj = zij and 
adding random summands of the forms axizjk − axj zik and azij zrs − aziszrj to 

https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography
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obtain Fb. In matrix form we have: 

F1 F2 

b 

b 

b 

b 

F3 F4 

⎤⎡⎤⎡ 
0 0 0 0 5 5 3 0 3 6 2 4 0 0 0 0 1 6 3 0 5 6 5 6 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 0 4 0 0 0 1 0 1 1 0 0 0 0 6 0 0 0 5 3 3 0 
0 0 0 0 4 1 6 0 0 0 6 1 0 0 0 0 2 1 2 4 0 0 2 4 
0 0 0 0 5 3 6 6 1 6 0 0 0 0 0 0 2 1 4 0 5 3 0 0 
5 4 4 5 0 0 0 6 0 2 0 4 1 6 2 2 0 0 0 2 0 0 0 6 
5 0 1 3 0 0 1 0 5 0 3 0 6 0 1 1 0 0 5 0 0 0 1 0 

= =, ,
3 0 6 6 0 1 0 0 0 4 0 3 3 0 2 4 0 5 0 0 0 0 0 1 
0 0 0 6 6 0 0 0 3 0 4 0 0 0 4 0 2 0 0 0 0 0 6 0 
3 1 0 1 0 5 0 3 0 0 0 6 5 5 0 5 0 0 0 0 0 0 0 2 
6 0 0 6 2 0 4 0 0 0 1 0 6 3 0 3 0 0 0 0 0 0 5 0 
2 1 6 0 0 3 0 4 0 1 0 0 5 3 2 0 0 1 0 6 0 5 0 0 
4 1 1 0 4 0 3 0 6 0 0 0 6 0 4 0 6 0 1 0 2 0 0 0 

⎤⎡⎤⎡ 
0 0 0 0 0 4 4 1 0 0 6 1 0 0 0 0 1 1 4 2 5 0 5 4 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

0 0 0 0 6 2 6 3 2 1 2 6 0 0 0 0 3 1 0 0 2 4 2 1 
0 0 0 0 6 5 5 6 6 0 2 1 0 0 0 0 5 6 2 0 0 0 3 3 
0 0 0 0 1 6 5 1 5 6 0 0 0 0 0 0 5 2 4 0 1 4 0 6 
0 6 6 1 0 0 0 5 0 4 0 1 1 3 5 5 0 0 0 0 0 1 0 3 
4 2 5 6 0 0 2 0 3 0 6 0 1 1 6 2 0 0 0 0 6 0 4 0 

= =,
4 6 5 5 0 2 0 0 0 2 0 0 4 0 2 4 0 0 0 0 0 0 0 4 
1 3 6 1 5 0 0 0 5 0 0 0 
0 2 6 5 0 3 0 5 0 0 0 3 
0 1 0 6 4 0 2 0 0 0 4 0 
6 2 2 0 0 6 0 0 0 4 0 0 

2 0 0 0 0 0 0 0 0 0 3 0 
5 2 0 1 0 6 0 0 0 0 0 4 
0 4 0 4 1 0 0 0 0 0 3 0 
5 2 3 0 0 4 0 3 0 3 0 0 

1 6 1 0 1 0 0 0 3 0 0 0 4 1 3 6 3 0 4 0 4 0 0 0 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
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⎤⎡ 

U = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 4 0 2 0 6 4 1 3 6 1 5 
2 4 1 5 2 2 2 3 5 1 1 5 
6 2 4 1 4 3 0 0 1 6 3 5 
5 1 1 1 0 4 0 0 0 3 0 5 
3 6 4 1 6 5 2 5 4 4 3 5 
1 6 3 5 1 1 5 3 6 3 1 6 
4 1 2 4 3 5 0 4 3 4 3 6 
1 6 5 4 0 0 2 4 3 3 1 2 
3 4 6 4 5 1 5 0 4 4 6 4 
4 1 5 6 3 6 4 6 4 1 0 1 
0 3 2 0 3 5 0 5 5 6 1 6 
3 1 0 4 0 3 4 3 5 5 3 5 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, and T = 

⎤⎡ 
3 5 6 4 ⎢⎢⎣ 
3 0 2 1 
1 5 0 0 

⎥⎥⎦ . 

5 3 1 6 

⎤⎡⎤⎡ 
4 5 3 3 6 2 3 2 4 4 3 0 3 3 1 6 3 6 5 2 2 0 1 6 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

5 2 0 1 5 5 4 1 0 1 2 6 
3 0 6 3 6 1 3 2 4 5 0 4 
3 1 3 3 2 3 0 1 5 1 2 6 
6 5 6 2 4 0 4 3 0 6 6 6 
2 5 1 3 0 3 1 2 4 5 3 4 
3 4 3 0 4 1 1 5 6 2 6 3 
2 1 2 1 3 2 5 4 1 2 0 1 
4 0 4 5 0 4 6 1 3 4 2 0 
4 1 5 1 6 5 2 2 4 5 3 0 
3 2 0 2 6 3 6 0 2 3 0 5 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, P2 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

3 3 3 6 1 2 4 0 0 0 6 3 
1 3 4 6 1 4 5 1 1 4 3 0 
6 6 6 0 1 2 1 3 2 6 6 3 
3 1 1 1 3 0 0 3 3 4 2 5 
6 2 4 2 0 2 1 1 0 1 0 4 
5 4 5 1 0 1 0 0 4 4 0 6 
2 0 1 3 3 1 0 3 1 4 1 5 
2 0 1 2 3 0 4 1 0 0 0 0 
0 0 4 6 4 1 4 4 0 5 5 2 
1 6 3 6 2 0 0 1 0 5 4 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

P1 = , 

0 6 4 6 6 4 3 1 0 0 5 6 6 3 0 3 5 4 6 5 0 2 1 3 ⎤⎡⎤⎡ 
4 0 3 1 2 4 5 2 4 0 1 2 5 2 4 3 4 6 5 6 4 1 0 0 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 3 1 6 5 0 1 3 0 3 1 4 
3 1 2 4 6 4 2 3 3 2 1 1 
1 6 4 6 1 4 3 3 3 6 5 1 
2 5 6 1 3 1 2 6 6 0 4 0 
4 0 4 4 1 6 5 6 0 0 0 1 
5 1 2 3 2 5 2 5 2 5 3 4 
2 3 3 3 6 6 5 1 0 2 1 6 
4 0 3 3 6 0 2 0 1 0 4 4 
0 3 2 6 0 0 5 2 0 1 5 6 
1 1 1 5 4 0 3 1 4 5 0 2 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

, P4 = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

2 5 5 5 3 4 3 5 0 4 5 2 
4 5 6 5 0 0 6 6 4 2 6 4 
3 5 5 5 4 6 2 3 6 2 4 4 
4 3 0 4 3 1 2 1 0 5 0 2 
6 4 0 6 1 2 3 0 5 2 2 3 
5 3 6 2 2 3 1 6 2 1 0 1 
6 5 6 3 1 0 6 2 3 6 1 0 
4 0 4 6 0 5 2 3 6 6 4 5 
1 4 2 2 5 2 1 6 6 5 5 1 
0 5 6 4 0 2 0 1 4 5 4 2 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

P3 = . 

2 4 1 1 0 1 4 6 4 6 2 2 0 2 4 4 2 3 1 0 5 1 2 3 

Finally, we choose input and output transformations U and T and derive the 
above public key. 

We now demonstrate the inversion process for the public key. Given the 
ciphertext � � 

y = 3 2 2 5 , 

we first randomly select the nonzero vector of auxiliary variables 

� � 
w = 6 3 . 
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Then evaluating Fe at w we obtain the STS central map Fe(·, w): 

2 y1 = 6x1, 
2 y2 = 6x1 + 3x1x2, 
2 2 2 y3 = 3x1 + 5x1x2 + 6x2 + 4x1x3 + 2x3, 
2 2 y4 = 4x1 + 4x1x2 + 2x1x3 + 2x2x3 + 2x1x4 + x2x4 + 6x3x4 + x4. � � 

We then compute yT−1 = 5 2 2 3 and find the preimage under the above 
STS map: � � 

u = 3 2 5 6 . 

Next, we append � � 
u ⊗ w = 4 2 5 6 2 1 1 4 

to u. Finally we compute the plaintext � � 
x = (u ⊕ (u ⊗ w)) U−1 = 1 5 4 2 0 3 2 1 5 6 1 4 . 

We check that indeed P (x) = y. 


