
Recovering the Key from the Internal State of
Grain-128AEAD

Donghoon Chang and Meltem Sönmez Turan

National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Abstract. Grain-128AEAD is one of the second-round candidates of
the NIST lightweight cryptography standardization process. There is an
existing body of third-party analysis on the earlier versions of the Grain
family that provide insights on the security of Grain-128AEAD. Different
from the earlier versions, Grain-128AEAD reintroduces the key into the
internal state during the initialization. The designers claim that internal
state recovery no longer results in key recovery, due to this change. In
this paper, we analyze this claim under different scenarios.

Keywords: Grain-128AEAD; lightweight cryptography; key recovery

1 Introduction

Grain-128AEAD [1] is one of the second-round candidates of the National Insti-
tute of Standards and Technology (NIST) lightweight cryptography standard-
ization process. To avoid key recovery from the internal state, Grain-128AEAD
reintroduces the key into the internal state during the initialization.

In this paper, we analyze the effectiveness of the reintroduction of the key
to the state under three different scenarios. In the first scenario, we present
a practical method to recover the key from the knowledge of the full internal
state, including Nonlinear Feedback Shift Register (NFSR), Linear Feedback
Shift Register (LFSR), accumulator and the register, when the state is recovered
right after initialization. In the second scenario, we present a key-recovery attack
when the state is recovered during encryption, and the states of the accumulation
and the register are not available to the attacker. In the last sceneario, we provide
the attack in nonce-misuse setting.

2 Key and Nonce Initialization

According to [1], the internal state of Grain consists of two registers: a 128-bit
NFSR and a 128-bit LFSR. However, for tag generation, an additional 64-bit
accumulator and a 64-bit register are required as shown in Figure 1. We call
the combination of NFSR, LFSR, accumulator and the register states as the full
internal state of Grain-128AEAD.

2 Donghoon Chang and Meltem Sönmez Turan

Let (Bt, St, At, Rt) 1 be the full internal state of Grain-128AEAD at time t,
where

– Bt = [bt, bt+1, . . . , bt+127] is the NFSR state at time t ≥ 0,
– St = [st, st+1, . . . , st+127] is the LFSR state at time t ≥ 0,

t t t– At = [a0, a1, . . . , a63] is the accumulator state at time t > 383,
t t t– Rt = [r0, r1, . . . , r63] is the register state at time t > 383.

First, the key and the nonce (IV) are loaded to the state, i.e.,

B0 = [b0, b1, . . . , b127] ← [k0, k1, . . . , k127]

S0 = [s0, s1, . . . , s127] ← [IV0, . . . , IV95, 1, 1, . . . , 1, 0]

Next, the state is clocked 256 times, with feed-forwarding the output of the cipher
to the NFSR and the LFSR. The nonlinear Boolean functions used during the
initialization are defined as:

h(x0, . . . , x8) =x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8

g(x0, . . . , x28) =x0 + x1 + x2 + x3 + x4 + x5x6 + x7x8 + x9x10 + x11x12

+ x13x14 + x15x16 + x17x18 + x19x20x21 + x22x23x24

+ x25x26x27x28

Fig. 1. Overview of the Initialization of Grain-128AEAD

This part of the initialization is invertible. In the second part of the initial-
ization (i.e., 256 ≤ t ≤ 383), the accumulator and the register are initialized,
and the key is reintroduced back to the internal state. Algorithm 1 describes the
initialization of the cipher.
1 For our purposes, we use a slightly different notation from [1].

3 Recovering the Key from the Internal State of Grain-128AEAD

Algorithm 1 Initialization (K,IV)
1: [b0, b1, . . . , b127] ← [k0, k1, . . . , k127]
2: [s0, s1, . . . , s127] ← [IV0, . . . , IV95, 1, 1, . . . , 1, 0]
3: for t = 0, 1, . . . , 383 do
4: yt = h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94) + st+93 + bt+2 +

bt+15 + bt+36 + bt+45 + bt+64 + bt+73 + bt+89

5: bt+128 = st + bt + bt+26 + bt+56 + bt+91 + bt+96 + bt+3bt+67 + bt+11bt+13 +
bt+17bt+18 + bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84 + bt+22bt+24bt+25 +
bt+70bt+78bt+82 + bt+88bt+92bt+93bt+95 + yt

6: st+128 = st + st+7 + st+38 + st+70 + st+81 + st+96 + yt

7: if t > 255 then
8: st+128 = st+128 + yt + kt−256

9: bt+128 = bt+128 + yt

10: end if
11: end for
12: B384 ← [b384, . . . , b511]
13: S384 ← [s384, . . . , s511]
14: A384 ← [y256, y257, . . . , y319]
15: R384 ← [y320, y321, . . . , y383]

3 Recovering Key from the Internal State

Suppose that the attacker has access to message M and the corresponding ci-
phertext C and the tag T , encrypted under the secret key K. Let L be the length
of the padded message. First, in Section 3.1, we present a practical method to
recover the K, from the full internal state right after initialization. This method
does not require the knowledge of the message and the ciphertext. Next, in Sec-
tion 3.2. we present a method to recover the key only using the LFSR and NFSR
states.

3.1 Using full internal state at t=384

Let’s assume that the attacker recovers the state of the NFSR, LFSR, accumu-
lator and the register, right after initialization at time t = 384. Here, the aim is
to recover the key from (B384, S384, A384, R384). As shown in Figure 2, there are
two unknown bits represented by ?, namely b383 and s383 and the last bit of the
register is undefined and represented by ∗, when the cipher is clocked backwards
from t = 384 to t = 383.

4 Donghoon Chang and Meltem Sönmez Turan

t=384 t=383
B384 = (b384, . . . , b511) → B383 = (?, b384, . . . , b510)
S384 = (s384, . . . , s511) → S383 = (?, s384, . . . , s510)
A384 = (y256, . . . , y319) → A383 = (y256, . . . , y319)
R384 = (y320, . . . , y383) → R383 = (∗, y320, . . . , y382)

Fig. 2. Inverting the internal state from t=384 to t=383

Using the following equations that compute y381 and b511, it is possible to
recover the two missing state bits b383 and s383.

y381 =h(b393, s389, s394, s401, b476, s423, s441, s460, s475) + s474 + b383 + b396

+ b417 + b426 + b445 + b454 + b470

b511 =s383 + b383 + b409 + b439 + b474 + b479 + b386b450 + b394b396 + b400b401

+ b410b442 + b423b431 + b444b448 + b451b467 + b405b407b408

+ b453b461b465 + b471b475b476b478

Next, the key bit k127 is calculated as using the following equation (obtained
from the equation on line (6) of Algorithm 1, evaluated at t=383:

k127 =s383 + s390 + s421 + s453 + s464 + s479 + s511.

After recovering the internal state at time t = 383, the attacker repeats a
similar procedure and recovers ki using bi+384, si+384, and yi+254, for 2 ≤ i ≤ 127.
The attacker guesses the remaining key bits k0 and k1, and inverts the cipher to
t = 0 using the guess, and checks the correctness of the guess by comparing it
to b0 and b1.

3.2 Using LFSR and NFSR states at t = 384 + Δ

In this case, we assume that the attacker recovers the LFSR and NFSR states at
time t = 384+Δ. Since LFSR and NFSR states are invertible during encryption,
the attacker can recover the LFSR and NFSR states at time t = 384 (right after
initialization). However, the attacker still needs the states of the accumulator
and the register to apply the method presented in Section 3.1. In this case, the
attacker uses a known message M , and the corresponding ciphertext C and the
tag T pair. Let m0,m1, . . . ,mL−1 be the padded message.

First, the attacker guesses the state of the 64-bit register at time t = 384,
namely [y320, y321, . . . , y383]. Given the LFSR, NFSR and the register states at
t = 384, the attacker can now clock the cipher forward and obtain the LFSR,
NFSR and register states at any time 384 < t ≤ 384 + 2L − 1. Since the tag T
provides the state of the accumulator at time t = 384+2L−1 (after the message

5 Recovering the Key from the Internal State of Grain-128AEAD

processing), it is possible to recover the state of the accumulator at time t = 384,
using the following equation:

L−1X
A384 = T + mi · R2i+384. (1)

i=0

For each guess of the register state, the attacker can recover a key candidate
(using the methods from Section 3.1), and check the correctness of the key by
comparing it to the initial state of the NFSR. The time complexity of this step
is 264 .

In this note, we did not attempt to optimize the complexity of guessing the
register state [y320, y321, . . . , y383], however, it can be improved. For example, the
attacker can determine the following two bits of the register y383 and y382, by
using the available LFSR and the NFSR bits, i.e.,

y383 =h(b395, s391, s396, s403, b478, s425, s443, s462, s477)

+ s476 + b385 + b398 + b419 + b428 + b447 + b456 + b472,

y382 =h(b394, s390, s395, s402, b477, s424, s442, s461, s476)

+ s475 + b384 + b397 + b418 + b427 + b446 + b455 + b471.

Hence, the time complexity of guessing the register state is limited by 262 .

3.3 Using LFSR and NFSR states at t = 384 + Δ in Nonce-misuse

In this section, we present an efficient key recovery attack from the internal state
in a nonce-misuse setting. The attack requires two queries and has negligible time
complexity.

In Grain-128AEAD, the associated data ad and message M is padded as

pad(ad, M) = Encode(adlen)||ad||M ||0x80,

where Encode() = y is defined as follows if the first byte in y starts with a 0,
the remaining 7 bits is an encoding of the number of bytes in the associated
data (up to 127 bytes). If the first byte in y starts with a 1, the remaining 7
bits are instead an encoding of the number of forthcoming bytes that are used
to describe the length (in bytes) of the associated data.

Let x := be the bitwise complement of x, x[i] be the i-th byte of x, and
x[i − j] := x[i]|| . . . ||x[j], and x[i−] := x[i]|| . . . ||last byte of x.

Firstly, the attacker chooses the two pairs of associate data and message,
(ad, M) and (ad0,M 0), where

– ad = ad1||ad2, where ad1 is any 6-byte string and ad2 is any 122-byte string,
– M is any byte string,
– ad0 = ad0 1||ad2

0 , where ad0 is 7-byte string and ad0 is 119-byte string such 1 2
that the first byte of ad0 1, i.e. ad1

0 [1], is ‘01111111’ and ad0 1[2 − 7] = ad1,
ad0 2 = ad2[1 − 119].

6 Donghoon Chang and Meltem Sönmez Turan

– M 0 = M1
0 ||M2

0 , where M 0 = ad2[120 − 122] and M 0 = M .1 2

Note that the padded inputs satisfy the following relation:

pad(ad, M)[1 − 8] = pad(ad0,M 0)[1 − 8]
pad(ad, M)[9−] = pad(ad0,M 0)[9−].

Let us assume that the attacker obtains the corresponding ciphertext-tag
pairs (C, T) and (C 0, T 0) with a same nonce IV in the nonce-misuse setting and
recovers LFSR and NFSR states at time t = 384 + Δ. Note that A384 and R384

are the same for both cases when the nonce is repeated.
The attacker constructs the following two equations (2) and (3), where L is

the bit-length of pad(ad, M) and pad(ad0,M 0). Let pad(ad, M) = (m0,m1, . . . ,mL−1)
0 0 0and pad(ad0,M 0) = (m0,m1, . . . ,m).L−1

L−1

T = A384 + mi · R2i+384. (2)
X

i=0 XL−1

T 0 = A384 + mi
0 · R2i+384. (3)

i=0

Due to the relations on the two padded inputs, by adding the equations (2)
and (3), the attacker can obtain the following equation (4):

X63

T + T 0 = R2i+384. (4)
i=0

Since ⎤⎡⎤⎡⎤⎡
y320 y321 y383

R384 =

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦
, R386 =

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦
, . . . , R510 =

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

y321

y322
. .

y322
. . .

y383

y385

y387
. .

(5),

. .
y383 y385 y509

we have ⎡ ⎡⎤ ⎤ ⎡ ⎤
1 1 1 . . . 1 y320 0 ⎢⎢⎢⎢⎢⎣

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎦

0 1 1 . . . 1
0 0 1 . . . 1
.

y385

y385 + y387
. .

y321

y322
. .

= T + T 0 + (6).

P62
.

i=0 y385+2i

.
0 0 0 . . . 1 y383

It is easy to check that the first matrix of the left side is invertible. Since the
attacker is assumed to recover LFSR and NFSR states at time t = 384 + Δ, as
explained in Section 3.2, the attacker can also recover the LFSR and NFSR states

7 Recovering the Key from the Internal State of Grain-128AEAD

at time t = 384. Then (y385, y387, . . . , y509) is determined. Therefore, R384 =
[y320, y321, . . . , y383] is recovered from the equation (6). Then, from the equation
(2), A384 = [y256, y257, . . . , y319] is also recovered. Finally, the attacker performs
the key recovery attack described in Section 3.1.

4 Conclusion

In this paper, we analyzed the effectiveness of reintroducing the key to the in-
ternal state to avoid key recovery from the knowledge of the state. We observed
that the secrecy of the key is not fully protected by reintroducing the key in the
three different scenarios considered in this paper. In these scenarios, adding more
rounds before or after reintroducing the key does not invalidate the presented
techniques, as these parts are invertible. In general, updating the state by insert-
ing a single key bit in each clock may not be a successful strategy. Alternatively,
the 128-bit key can be added back to the NFSR state right after initialization
to avoid key recovery when the state is disclosed.

Note that this paper assumes the knowledge of the internal state, and state
recovery techniques are not within the scope of the paper.

Acknowledgments

The authors thank the Grain-128AEAD designers for comments and suggestions;
and Kerry McKay and Jeffrey Marron from NIST for editorial comments.

References

1. M. Hell, T. Johansson, W. Meier, J. Sönnerup, and H. Yoshida. Grain-128AEAD -
a lightweight AEAD stream cipher. Submission to the NIST Lightweight Cryptog-
raphy Standardization Process, 2019. https://csrc.nist.gov/Projects/lightweight-
cryptography/round-2-candidates.

https://csrc.nist.gov/Projects/lightweight

