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Abstract. Grain-128AEAD is one of the second-round candidates of 
the NIST lightweight cryptography standardization process. There is an 
existing body of third-party analysis on the earlier versions of the Grain 
family that provide insights on the security of Grain-128AEAD. Different 
from the earlier versions, Grain-128AEAD reintroduces the key into the 
internal state during the initialization. The designers claim that internal 
state recovery no longer results in key recovery, due to this change. In 
this paper, we analyze this claim under different scenarios. 
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1 Introduction 

Grain-128AEAD [1] is one of the second-round candidates of the National Insti-
tute of Standards and Technology (NIST) lightweight cryptography standard-
ization process. To avoid key recovery from the internal state, Grain-128AEAD 
reintroduces the key into the internal state during the initialization. 

In this paper, we analyze the effectiveness of the reintroduction of the key 
to the state under three different scenarios. In the first scenario, we present 
a practical method to recover the key from the knowledge of the full internal 
state, including Nonlinear Feedback Shift Register (NFSR), Linear Feedback 
Shift Register (LFSR), accumulator and the register, when the state is recovered 
right after initialization. In the second scenario, we present a key-recovery attack 
when the state is recovered during encryption, and the states of the accumulation 
and the register are not available to the attacker. In the last sceneario, we provide 
the attack in nonce-misuse setting. 

2 Key and Nonce Initialization 

According to [1], the internal state of Grain consists of two registers: a 128-bit 
NFSR and a 128-bit LFSR. However, for tag generation, an additional 64-bit 
accumulator and a 64-bit register are required as shown in Figure 1. We call 
the combination of NFSR, LFSR, accumulator and the register states as the full 
internal state of Grain-128AEAD. 
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Let (Bt, St, At, Rt) 1 be the full internal state of Grain-128AEAD at time t, 
where 

– Bt = [bt, bt+1, . . . , bt+127] is the NFSR state at time t ≥ 0, 
– St = [st, st+1, . . . , st+127] is the LFSR state at time t ≥ 0, 

t t t– At = [a0, a1, . . . , a63] is the accumulator state at time t > 383, 
t t t– Rt = [r0, r1, . . . , r63] is the register state at time t > 383. 

First, the key and the nonce (IV) are loaded to the state, i.e., 

B0 = [b0, b1, . . . , b127] ← [k0, k1, . . . , k127] 

S0 = [s0, s1, . . . , s127] ← [IV0, . . . , IV95, 1, 1, . . . , 1, 0] 

Next, the state is clocked 256 times, with feed-forwarding the output of the cipher 
to the NFSR and the LFSR. The nonlinear Boolean functions used during the 
initialization are defined as: 

h(x0, . . . , x8) =x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8 

g(x0, . . . , x28) =x0 + x1 + x2 + x3 + x4 + x5x6 + x7x8 + x9x10 + x11x12 

+ x13x14 + x15x16 + x17x18 + x19x20x21 + x22x23x24 

+ x25x26x27x28 

Fig. 1. Overview of the Initialization of Grain-128AEAD 

This part of the initialization is invertible. In the second part of the initial-
ization (i.e., 256 ≤ t ≤ 383), the accumulator and the register are initialized, 
and the key is reintroduced back to the internal state. Algorithm 1 describes the 
initialization of the cipher. 
1 For our purposes, we use a slightly different notation from [1]. 
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Algorithm 1 Initialization (K,IV ) 
1: [b0, b1, . . . , b127] ← [k0, k1, . . . , k127] 
2: [s0, s1, . . . , s127] ← [IV0, . . . , IV95, 1, 1, . . . , 1, 0] 
3: for t = 0, 1, . . . , 383 do 
4: yt = h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94) + st+93 + bt+2 + 

bt+15 + bt+36 + bt+45 + bt+64 + bt+73 + bt+89 

5: bt+128 = st + bt + bt+26 + bt+56 + bt+91 + bt+96 + bt+3bt+67 + bt+11bt+13 + 
bt+17bt+18 + bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84 + bt+22bt+24bt+25 + 
bt+70bt+78bt+82 + bt+88bt+92bt+93bt+95 + yt 

6: st+128 = st + st+7 + st+38 + st+70 + st+81 + st+96 + yt 

7: if t > 255 then 
8: st+128 = st+128 + yt + kt−256 

9: bt+128 = bt+128 + yt 

10: end if 
11: end for 
12: B384 ← [b384, . . . , b511] 
13: S384 ← [s384, . . . , s511] 
14: A384 ← [y256, y257, . . . , y319] 
15: R384 ← [y320, y321, . . . , y383] 

3 Recovering Key from the Internal State 

Suppose that the attacker has access to message M and the corresponding ci-
phertext C and the tag T , encrypted under the secret key K. Let L be the length 
of the padded message. First, in Section 3.1, we present a practical method to 
recover the K, from the full internal state right after initialization. This method 
does not require the knowledge of the message and the ciphertext. Next, in Sec-
tion 3.2. we present a method to recover the key only using the LFSR and NFSR 
states. 

3.1 Using full internal state at t=384 

Let’s assume that the attacker recovers the state of the NFSR, LFSR, accumu-
lator and the register, right after initialization at time t = 384. Here, the aim is 
to recover the key from (B384, S384, A384, R384). As shown in Figure 2, there are 
two unknown bits represented by ?, namely b383 and s383 and the last bit of the 
register is undefined and represented by ∗, when the cipher is clocked backwards 
from t = 384 to t = 383. 
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t=384 t=383 
B384 = (b384, . . . , b511) → B383 = (?, b384, . . . , b510) 
S384 = (s384, . . . , s511) → S383 = (?, s384, . . . , s510) 
A384 = (y256, . . . , y319) → A383 = (y256, . . . , y319) 
R384 = (y320, . . . , y383) → R383 = (∗, y320, . . . , y382) 

Fig. 2. Inverting the internal state from t=384 to t=383 

Using the following equations that compute y381 and b511, it is possible to 
recover the two missing state bits b383 and s383. 

y381 =h(b393, s389, s394, s401, b476, s423, s441, s460, s475) + s474 + b383 + b396 

+ b417 + b426 + b445 + b454 + b470 

b511 =s383 + b383 + b409 + b439 + b474 + b479 + b386b450 + b394b396 + b400b401 

+ b410b442 + b423b431 + b444b448 + b451b467 + b405b407b408 

+ b453b461b465 + b471b475b476b478 

Next, the key bit k127 is calculated as using the following equation (obtained 
from the equation on line (6) of Algorithm 1, evaluated at t=383: 

k127 =s383 + s390 + s421 + s453 + s464 + s479 + s511. 

After recovering the internal state at time t = 383, the attacker repeats a 
similar procedure and recovers ki using bi+384, si+384, and yi+254, for 2 ≤ i ≤ 127. 
The attacker guesses the remaining key bits k0 and k1, and inverts the cipher to 
t = 0 using the guess, and checks the correctness of the guess by comparing it 
to b0 and b1. 

3.2 Using LFSR and NFSR states at t = 384 + Δ 

In this case, we assume that the attacker recovers the LFSR and NFSR states at 
time t = 384+Δ. Since LFSR and NFSR states are invertible during encryption, 
the attacker can recover the LFSR and NFSR states at time t = 384 (right after 
initialization). However, the attacker still needs the states of the accumulator 
and the register to apply the method presented in Section 3.1. In this case, the 
attacker uses a known message M , and the corresponding ciphertext C and the 
tag T pair. Let m0,m1, . . . ,mL−1 be the padded message. 

First, the attacker guesses the state of the 64-bit register at time t = 384, 
namely [y320, y321, . . . , y383]. Given the LFSR, NFSR and the register states at 
t = 384, the attacker can now clock the cipher forward and obtain the LFSR, 
NFSR and register states at any time 384 < t ≤ 384 + 2L − 1. Since the tag T 
provides the state of the accumulator at time t = 384+2L−1 (after the message 
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processing), it is possible to recover the state of the accumulator at time t = 384, 
using the following equation: 

L−1X 
A384 = T + mi · R2i+384. (1) 

i=0 

For each guess of the register state, the attacker can recover a key candidate 
(using the methods from Section 3.1), and check the correctness of the key by 
comparing it to the initial state of the NFSR. The time complexity of this step 
is 264 . 

In this note, we did not attempt to optimize the complexity of guessing the 
register state [y320, y321, . . . , y383], however, it can be improved. For example, the 
attacker can determine the following two bits of the register y383 and y382, by 
using the available LFSR and the NFSR bits, i.e., 

y383 =h(b395, s391, s396, s403, b478, s425, s443, s462, s477) 

+ s476 + b385 + b398 + b419 + b428 + b447 + b456 + b472, 

y382 =h(b394, s390, s395, s402, b477, s424, s442, s461, s476) 

+ s475 + b384 + b397 + b418 + b427 + b446 + b455 + b471. 

Hence, the time complexity of guessing the register state is limited by 262 . 

3.3 Using LFSR and NFSR states at t = 384 + Δ in Nonce-misuse 

In this section, we present an efficient key recovery attack from the internal state 
in a nonce-misuse setting. The attack requires two queries and has negligible time 
complexity. 

In Grain-128AEAD, the associated data ad and message M is padded as 

pad(ad, M) = Encode(adlen)||ad||M ||0x80, 

where Encode() = y is defined as follows if the first byte in y starts with a 0, 
the remaining 7 bits is an encoding of the number of bytes in the associated 
data (up to 127 bytes). If the first byte in y starts with a 1, the remaining 7 
bits are instead an encoding of the number of forthcoming bytes that are used 
to describe the length (in bytes) of the associated data. 

Let x := be the bitwise complement of x, x[i] be the i-th byte of x, and 
x[i − j] := x[i]|| . . . ||x[j], and x[i−] := x[i]|| . . . ||last byte of x. 

Firstly, the attacker chooses the two pairs of associate data and message, 
(ad, M) and (ad0,M 0), where 

– ad = ad1||ad2, where ad1 is any 6-byte string and ad2 is any 122-byte string, 
– M is any byte string, 
– ad0 = ad0 1||ad2 

0 , where ad0 is 7-byte string and ad0 is 119-byte string such 1 2 
that the first byte of ad0 1, i.e. ad1 

0 [1], is ‘01111111’ and ad0 1[2 − 7] = ad1, 
ad0 2 = ad2[1 − 119]. 
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– M 0 = M1 
0 ||M2 

0 , where M 0 = ad2[120 − 122] and M 0 = M .1 2 

Note that the padded inputs satisfy the following relation: 

pad(ad, M)[1 − 8] = pad(ad0,M 0)[1 − 8] 
pad(ad, M)[9−] = pad(ad0,M 0)[9−]. 

Let us assume that the attacker obtains the corresponding ciphertext-tag 
pairs (C, T ) and (C 0, T 0) with a same nonce IV in the nonce-misuse setting and 
recovers LFSR and NFSR states at time t = 384 + Δ. Note that A384 and R384 

are the same for both cases when the nonce is repeated. 
The attacker constructs the following two equations (2) and (3), where L is 

the bit-length of pad(ad, M) and pad(ad0,M 0). Let pad(ad, M) = (m0,m1, . . . ,mL−1) 
0 0 0and pad(ad0,M 0) = (m0,m1, . . . ,m ).L−1 

L−1 

T = A384 + mi · R2i+384. (2) 
X 

i=0 XL−1 

T 0 = A384 + mi 
0 · R2i+384. (3) 

i=0 

Due to the relations on the two padded inputs, by adding the equations (2) 
and (3), the attacker can obtain the following equation (4): 

X63 

T + T 0 = R2i+384. (4) 
i=0 

Since ⎤⎡⎤⎡⎤⎡ 
y320 y321 y383 

R384 = 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
, R386 = 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 
, . . . , R510 = 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 

y321 

y322 
. . 

y322 
. . . 

y383 

y385 

y387 
. . 

(5), 

. . 
y383 y385 y509 

we have ⎡ ⎡⎤ ⎤ ⎡ ⎤ 
1 1 1 . . . 1 y320 0 ⎢⎢⎢⎢⎢⎣ 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 

⎥⎥⎥⎥⎥⎦ 

⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎦ 

0 1 1 . . . 1 
0 0 1 . . . 1 
. . . .. . . . . . . . . . . 

y385 

y385 + y387 
. . 

y321 

y322 
. . 

= T + T 0 + (6). 

P62 
. 

i=0 y385+2i 

. 
0 0 0 . . . 1 y383 

It is easy to check that the first matrix of the left side is invertible. Since the 
attacker is assumed to recover LFSR and NFSR states at time t = 384 + Δ, as 
explained in Section 3.2, the attacker can also recover the LFSR and NFSR states 
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at time t = 384. Then (y385, y387, . . . , y509) is determined. Therefore, R384 = 
[y320, y321, . . . , y383] is recovered from the equation (6). Then, from the equation 
(2), A384 = [y256, y257, . . . , y319] is also recovered. Finally, the attacker performs 
the key recovery attack described in Section 3.1. 

4 Conclusion 

In this paper, we analyzed the effectiveness of reintroducing the key to the in-
ternal state to avoid key recovery from the knowledge of the state. We observed 
that the secrecy of the key is not fully protected by reintroducing the key in the 
three different scenarios considered in this paper. In these scenarios, adding more 
rounds before or after reintroducing the key does not invalidate the presented 
techniques, as these parts are invertible. In general, updating the state by insert-
ing a single key bit in each clock may not be a successful strategy. Alternatively, 
the 128-bit key can be added back to the NFSR state right after initialization 
to avoid key recovery when the state is disclosed. 

Note that this paper assumes the knowledge of the internal state, and state 
recovery techniques are not within the scope of the paper. 
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