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Abstract— A thriving manufacturing sector is the essential
heart of a vibrant and balanced economy in the United
States (U.S.). Small and medium-sized manufacturers (SMMs)
constitute an important sector in the U.S. manufacturing
but they are currently facing increasing competition due to
economic globalization. To survive and thrive in this highly
competitive environment, SMMs have to rely on automation and
robotics, which bring with them a whole series of techniques
to improve the quality and productivity of a manufacturing
process. However, robotic systems need to be agile for them
to be useful to SMMs so they can offer more automated
customization of high-mix/low-volume production. This paper
focuses mainly on the metrics used in the Agile Robotics for
Industrial Automation Competition (ARIAC). The goal of the
competition along with its associated metrics is to promote
advances in research by assessing the performance of industrial
robotic systems in manufacturing settings.

I. INTRODUCTION

Agility, in the context of this paper, refers to the ability
for robots to think, learn, and adapt in order to respond to
failures during production. Among small-and-medium sized
manufacturers, improving agility for the robots to perform
a variety of tasks and be re-tasked randomly would be
beneficial in a manufacturing process. To overcome agility
challenges, focus is needed on key areas such as failure
identification and recovery, automated planning, fixtureless
environment, and plug-and-play robots. The current state of
robotics shows that robots need to become more agile to
support quickly changing requirements in their environment.
Knowledge-enabled robots are needed that can execute their
tasks with minimal upfront programming. Instead of hav-
ing to reprogram robots when something changes, robots
should be able to identify and accommodate the change.
Robots need to have situational awareness, which involves
detecting, identifying, and tracking objects and humans in
their surroundings. Until robots can identify objects in the
environment, and characterize the objects (what these objects
are good for and how much they weigh), these robots cannot
really do much. Robots, based on their capabilities and
surroundings and a knowledge of what they are trying to
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accomplish, need to be able to plan how to assemble parts
and build kits. This is the type of knowledge that we would
like robots to have, so they can understand what they can
do.

To advance the agility performance of manufacturing
robotics assembly systems in unstructured and dynamic
environments, the Agile Robotics for Industrial Automation
Competition (ARIAC) was initiated in June 2017 by the
National Institute of Standards and Technology (NIST) in
collaboration with the Open Source Robotics Foundation
(OSRF). ARIAC is a simulation-based competition to allow
competitors around the world to utilize latest advances in
artificial intelligence and robot planning to address real-
world industrial challenges pertaining to kitting, assembly,
and order fulfillment applications. The latest iteration of
the competition was held between April and May 2020
and introduced a more challenging environment, a new
robot, new scenarios, and new agility challenges. The annual
occurrence of ARIAC is two-fold. First, NIST intends to use
the results and knowledge gained from ARIAC to further its
efforts to develop metrics and test methods to measure robot
agility as well as tools for manufacturers to assess the agility
of their robotic systems. Second, ARIAC aims to encourage
competitors to develop the most effective solutions to real
world industrial robot challenges, enabling the greater use
and productivity of robotic systems by industry.

Within ARIAC, the competitors are required to develop
a robot control system to perform either kitting, assembly,
or order fulfillment in a simulated environment. Gazebo[1],
which is an open source robotics simulation environment, is
used as the testing platform. The Robot Operating System
(ROS)[2], which is an open source set of software libraries
and tools, is used to define the interfaces to the simulation
system. Gazebo was chosen because it is commonly used in
academia. Additionally, it is free and, therefore, no manda-
tory monetary investment is required to compete.

The competition addresses the aspect of robot agility that
focuses on software, including knowledge representation,
planning, and decision making. While hardware aspects
(such as different types of grippers) can play a large role in
agility, they are not the focus of this competition. Perception
and grasping have played a minimal role in the competition
to date, but are expected to increase in importance in future
years.

Competitors were faced with challenges such as forced
dropped parts and in-process order changes [3]. Each com-
petitor’s system had to address these challenges and attempt
to finish the goal autonomously in real-time. The scoring
metrics used in the competition were partially based on the
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robot agility metrics developed by NIST [4]. Competition
scoring took into account whether the goal was completed
(both quantitative and qualitative metrics), how fast the goal
was completed, and the cost of their sensor configuration.
Each competitor’s system was given a cost based on the
number and type of sensors used. Typically, sensors that
gave more information were priced higher than sensors that
gave less. The total cost of each competitor’s configuration
factored into their score; cheaper configurations resulted in
higher scores for the that element of the overall score.

The rest of the paper is organized as follows. Section II
describes different robotic competitions along with some of
the metrics involved in those competitions. Section III details
the metrics that were used in ARIAC and the evolution of
those metrics over the years of the competition. Section IV
describes how those metrics were implemented in the ARIAC
environment. Section V describes the future of ARIAC and
how we foresee the metrics and the competition evolving.

II. PERFORMANCE METRICS IN ROBOTIC COMPETITIONS

With the emergence of advanced technologies, agile man-
ufacturing techniques have gained considerable popularity to
boost productivity, effectiveness, responsiveness, and product
quality. Agile manufacturing is regarded as a new concept to
respond to the dynamic and fast-changing environment [5]
and is described as a crucial characteristic for manufacturing
companies to maintain their competitiveness [6]. Therefore,
there is a need for performance measures to characterize
and compare robots and robotic systems to help determine
which features are most suited to a particular application [7].
Robotic systems are complex and involve a wide range of
features and performance characteristics whose importance
differ depending on the application domain.

Performance metrics are usually difficult to define because
the requirements on which the domain is based can be
changed according to the user’s needs. One of the partic-
ulars of the metrics is that they should be practical and
constructed to expand the community interest. Performance
metrics should also be independent of the software and
hardware. For instance, metrics used in simulation to assess
the performance of a gantry robot should be applicable to a
real robot mounted on a linear rail, as long as the scenarios
are otherwise the same.

Many robotics competitions have been held over the
past decade. These competitions have often had the goal
of comparing different robotic systems and their research
approaches. Comparing robotic systems is one way to en-
sure that the correct robotic system is used for the correct
application. When designing the rules for a competition,
there are several ways to compare the performance of robotic
systems [8].

While many competitions involving students fall in the cat-
egories of subjectively-ranked and non-ranked competitions,
competitions that promote advances in research and seek the
most efficient systems are classified in the objectively scored
competitions category. Some of these objectively scored
competitions and their metrics are described below.

The Amazon Picking Challenge [9] was a yearly competi-
tion from 2015-2017, focusing on “picking”. In the compe-
tition, teams had to develop robotics hardware and software
that can recognize objects, grasp them, and move them from
place to place. The goal was to use this competition to assess
if robots would be able to do some of the menial pick and
place operations that are currently performed by humans. The
scoring rubric was mainly related to picking a target from
bins with bonus points awarded for items that were difficult
to grasp. Points were lost for damaging any item, picking the
wrong item (and not putting it back), or dropping the target
item anywhere but into the destination tote.

In the Virtual Defense Advanced Research Projects
Agency (DARPA) Robotics Challenge, which ran from June
17-21, 2013, teams competed in a simulated suburban obsta-
cle course. Twenty-six teams from eight countries qualified.
Competing teams applied software of their own design to
a simulated robot in an attempt to complete a series of
tasks that were prerequisites for the next stages of the grand
challenge [10]. The overall DARPA Robotics Challenge,
which included both the virtual and physical challenges, was
launched in response to a humanitarian need that became
glaringly clear during the nuclear disaster at Fukushima,
Japan, in 2011. The challenge organizers leveraged the
work done by NIST on ASTM Committee E54.08.01 rescue
robotics metrics [11]. Instead of scoring the functions that
describe robot performance (e.g., visual acuity, dexterity,
maneuverability), the organizers looked at holistic solutions
that reflect a robot’s ability to complete a mission.

Robot Competitions Kick Innovation In Cognitive Sys-
tems and Robotics (RoCKIn) is a European Union funded
project aiming to foster scientific progress and innovation
in cognitive systems and robotics through the design and
implementation of competitions. RoCKIn@Work [12] [13],
a subset of this competition, looked for innovative industrial
robots that could help businesses meet increasing demand
from their customers. The competition proposed different
benchmarks to assess a robot in three categories: Object
perception, object manipulation, and control.

III. PERFORMANCE METRICS IN ARIAC

When the initial version of ARIAC was being developed
between NIST and OSRF, the NIST organizers searched
through the literature to find applicable metrics for measuring
the agility of industrial robots. These metrics needed to be
able to both compare different systems as well as different
configurations of systems where alternative choices were
made to improve the robot system’s agility. To better un-
derstand the descriptions provided in the following sections,
the reader may refer to the following terms in the context of
the competition: A trial in this context is a single run of the
simulation in which at least one order is described. An order
is a goal state and consists of information on parts to build
kits. The order also specifies where to build kits, which is
usually on one of the two automated guided vehicles (AGVs)
present in the environment. An order consists of at least one
shipment, where a shipment is an instance of an order. A kit
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is the result of a process which groups separate but related
items (parts in ARIAC) as one unit. Kits are built in kit trays
located on AGVs. A shipment is an instance of an order. If
an order must be built and delivered multiple times, then the
order consists of multiple shipments.

Current Metrics for ARIAC
The most recent form of the competition (ARIAC

2020) [3] has three generalized metrics that were developed
to measure the agility performance of the robotic systems.
These three metrics are Cost Factor, Completion Score, and
Efficiency Factor. Each of these individual metrics can be
used for a standalone comparison of the systems on that
individual scale, but they are also combined for the purposes
of ARIAC with a set of constant factors to provide a single
score for ranking the competitors overall.

A. Cost Factor

The Cost Factor is based roughly on the cost of the overall
system components. As a general metric this would include
everything from the robot to the mountings to the sensors
that allow the system to observe the environment around it.

Within ARIAC, the competitors are limited in their choice
of robot or robots depending on the theme of the year, and the
mounting choices are also set by the competition organizers.
So the Cost Factor in these cases gets limited to the choice
of sensors placed and used in the environment by each
competitor. Each of these sensors is given a nominal cost
by the organizers in order to encourage different modes of
agility. The Total Cost (TC) representing the sensors chosen
by the competitors is represented by Equation 1 where the
total number of sensors is n.

TC = Σn
i=1Costi (1)

The organizers set a Baseline Cost (BC) as a represen-
tative set of sensors for comparison purposes, such that the
expected costs from the competitors will have some above
the baseline and some below. The Cost Factor (CF ) is then
calculated using Equation 2.

CF =

(
BC

TC

)
(2)

B. Completion Score

The Completion Score is a metric measuring how well
the competitors are able to complete the kits required for
the particular order, with the goal of rewarding a fully
assembled kit being submitted over a partial or wrong kit.
For a given order for submission, Sj , which contains i parts,
the following points would be available:

• 1 point (up to i points) for each part of the correct type
placed in the kit tray.

• 1 point (up to i points) for each part placed in the correct
position (±3 cm) and orientation (±0.1 rad).

• 1 point (up to i points) for each part of the correct color
placed in the kit tray

• an additional bonus of i points if all three categories
above received the maximum score.

C. Efficiency Factor

The Efficiency Factor, EF , measures the efficiency of the
system by comparing the time to complete a task for a system
(from one competitor) with the average of all systems (all
competitors) performing the task. When an order is sent to
the competitors, a timer is started that will end when the
order is declared complete and delivered or when a time
limit is reached. For a trial j, each competitor has their time
Tj , which gets averaged together as ATj = avg(Tj). Note
that if a competitor’s system times out (taking longer than
500 simulation seconds), the efficiency factor is set to 0 and
the trial’s time is not included in the average. The Efficiency
Factor is then calculated as shown in Equation 3.

EFj =

(
ATj

Tj

)
(3)

Trials with a changeover, i.e., when there is a higher
priority order sent to the competitors during execution, have
separate timers for each order that is sent to the competitors.

D. Constant Factors and the Trial Score

The three metrics described above are combined with
constants, which are set by the organizers, to calculate the
Trial Score, TS. The cost factor is combined with the average
of the completion scores across however many kit orders
are in the trial. The efficiency factor for each kit order is
combined with the completion score for that order, and in
the trials where there was a higher priority order sent, a high
priority constant factor (h = 3) applies a higher bonus for
completing that high priority order faster. The Trial Score
for a single trial is calculated using Equation 4.

TS = (CF ×AV G(CS))

+ (EF1) × (CSS1
)

+ h× (EF2) × (CSS2
)

(4)

The Trial Score for each trial is added for each competitor
and then points are awarded to competitors based on their
rank. The team with the highest total TS is awarded 80
points, while the second highest gets 70, followed by 60,
and so on. If there are more than 8 teams that complete the
finals, the remaining teams are awarded 0 points and get a
score solely based on the judging panel as described below.

E. Judging Panel

Starting in the 2nd year of ARIAC (ARIAC 2018), in
order to provide a human judgement component to the
competition scoring, as well as to satisfy a requirement of
the prize contest portion, a panel of three human judges was
chosen from representatives from industry in order to be the
subjective judgement making up the last 20 points possible
for the overall score. Each judge is tasked with evaluating
the competitors’ performance individually in terms of both
innovativeness and feasibility of the approach. The judges
are able to watch video playback of the competitors’ per-
formance via a series of highlight videos provided by the
competition organizers. For innovativeness, the panel starts

242

Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on January 14,2022 at 13:56:22 UTC from IEEE Xplore.  Restrictions apply. 



with a default score of 0 and awards points for how the
competitors show that they have an innovative approach to
the scenarios, up to a maximum of 10 points. For feasibility,
the panel starts out at 10 points possible and deducts points
based on the individual judge’s subjective evaluation of how
feasible the solutions would be to implement in an actual
manufacturing plant. The judging panel’s innovativeness and
feasibility scores are added together and then averaged across
the judges to get the final possible points for the overall
score.

IV. IMPLEMENTATION

As described in the previous section, the current version
of ARIAC consists of three main metrics, namely Cost
Factor, Completion Score, and Efficiency Factor. The Cost
Factor and the Efficiency Factor are not computed during
competition runs (or trials) but rather after the trials end.
This section describes the approach used to compute each
one of these metrics either during or after trials.

A. Trial Infrastructure

All ARIAC events are run through GEAR (Gazebo Envi-
ronment for Agile Robotics), a software originally developed
by OSRF and now maintained by NIST. The GEAR interface
allows for a controlled standardized means of communication
between competitors and the simulation environment. To
maximize flexibility, GEAR was implemented to be a ROS-
based interface. While new features were added to GEAR
for each iteration of ARIAC, its structure has remained
consistent across competitions. With GEAR, competitors im-
plement their system in a variety of supported programming
languages. Additionally, this approach was chosen to isolate
the use of a simulated environment as an implementation
detail. Competitors’ systems never communicated directly
with the Gazebo simulator, but instead, with GEAR which
in turn communicated with the simulator via a Gazebo-
ROS integration layer. Correctly-designed kitting systems
developed to work in a simulated environment should be
usable on a physical robot with minimal software modifica-
tions due to the use of an abstract ROS interface. Similarly,
kitting systems developed to control a particular manipulator
can be used to control another manipulator with minimal
modifications if designed appropriately.

Through the GEAR interface, the NIST organizers can
control the type, the color, the quantity, and the location of
parts to be used in a trial. Other components, such as the
kits to build and the agility challenges to use during a trial,
are controlled by GEAR.

A typical trial consists of the chain of events depicted
in Figure 1. Through a ROS Service, competitors first need
to start the competition, which in turn activates different
components of the GEAR interface, such as starting the
conveyor belt or moving the robot to its home position.
Starting a competition also allows GEAR to evaluate each
shipment submitted during a trial. Once the competition has
started, competitors will start receiving orders through a ROS
Topic. Kitting is then performed to reach the goal state as

Start 
competition

Receive order

Kitting

Submit order

End 
competition

Low-level 
challenges

High-level 
challenges

Fig. 1: Flow diagram showing the chain of events that are
performed by a competitor’s system during a trial. Note that
there is a possibility that low-level and high-level challenges
may not occur at all during a trial.

described by the order. During kitting, low-level or/and high-
level challenges may be triggered. Competitors’ systems
must handle these agility challenges to receive the maximum
points allocated for the current trial. In this context, low-level
and high-level agility challenges are defined as follows:

• Low-level agility challenges require immediate interac-
tions between the robot and the parts. For instance, one
of the low-level agility challenges consists of the robot
placing faulty parts in a kit tray. A camera above the
kit try notifies the robot about faulty parts. The robot
has to discard these faulty parts.

• High-level agility challenges consist of challenges
which require planning and scheduling. For instance,
some challenges require the robot to do path planning
and use forward kinematics to avoid moving obstacles
to reach a certain location in the workcell.

When shipments are ready, competitors’ systems need to sub-
mit these shipments for evaluation. When all the orders have
been fulfilled, the competition must be ended by competitors’
systems through another ROS Service call.

B. In-trial Evaluation

The Completion Score is computed via ROS plugins
within the Gazebo simulation environment after each ship-
ment is submitted, as shown in Figure 2. Note that the
Completion Score for each shipment is summed up to get
the Completion Score for the order. First, GEAR performs
an analysis of the submitted shipment and validates this ship-
ment against the expected shipment. There are two situations
in ARIAC which automatically nullify the Completion Score
for the shipment: 1) If there is any robot-robot collision
(i.e., robot arms colliding with each other) or any robot-
human collision and 2) if the shipment is submitted using the
wrong AGV. If none of these two situations is encountered,
GEAR proceeds with computing the Completion Score for
the shipment. For each product (part) in the shipment, GEAR
awards 1 point for correct product type, 1 point for correct
product color, and 1 point for correct product pose. Only if
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TABLE I: Cost Factor computed in the finals of ARIAC 2020.

Teams Sensor Types and Numbers Total Cost (TC) Cost Factor (CF)
Logical RGBD Depth Break-beam Laser Profiler Proximity Sensor

Team1 16 0 0 4 0 0 8400 1.19047619
Team2 17 0 0 8 0 0 9300 1.075268817
Team3 15 0 0 8 0 0 8300 1.204819277
Team4 9 0 0 8 0 0 4600 2.173913043

all these three situations are true then the all product bonus (1
point) is awarded for the product. Once each product within
the shipment has been processed, the Completion Score is
computed for the shipment. If more shipments are expected
for the current order then GEAR waits until either the other
shipments are submitted or the trial has reached the time
limit (500 simulation seconds). At the end of the trial a score
breakdown is provided for the current order.

Receive 
shipment

Wait for 
shipment

Expect more 
shipments?

Order 
complete

Arm 
collisions?

Correct AGV?NO

YES

End trial

NO

YES

NO

Correct 
product type?

Correct 
product 
color?

Correct 
product 
pose?

NO

NO

+1 ptYES

YES

YES

Compute
all product 

bonus

NO

+1 pt

+1 pt

For each product in 
shipment

Compute
CS

CS = 0

Fig. 2: Flow diagram showing the different steps used to
compute the Completion Score for one shipment.

C. Post-trial Evaluation

While the Completion Score is calculated after each ship-
ment during a trial, the Cost Factor is computed offline,
i.e., outside trial runs. To compute the Cost Factor, the
organizers first gather the type and the number of each
sensor used for each competitor and store this information
in a spreadsheet. As competitors have to use the same set
of sensors for all the trials, gathering sensor information is
performed only once for each competitor. The Cost Factor
is then computed using Equation 2. Table I shows the Cost
Factor for the finalists in ARIAC 2020. For privacy reasons,
real competitors’ names have been replaced with a team
number (e.g., Team1). While most competitors mainly used
logical sensors, not all the competitors used the same number

of logical sensors. This is due to competitors’ ability and
flexibility to mount sensors anywhere in the environment and
each competitor has their personal choice and strategy. From
Table I, for example, Team4 used a very small number of
logical cameras compared to the other competitors. This is
translated into Team4 having the largest Cost Factor among
the finalists. In contrast, Team2 has the lowest Cost Factor
since the Total Cost for Team2 is the largest among the
finalists.

The Efficiency Factor (see Equation 3) and the Trial Score
(see Equation 4) are both computed offline. After a trial has
completed, the organizers inspect ROS log files to gather
information on the competitor’s system for a given trial. The
chart presented in Figure 3 displays the Trial Score for each
competitor for each one of the 15 trials used in the finals. For
each competitor, their Trial Scores are added, which resulted
in a final score of 201.10 for Team1, 690.65 for Team2,
546.92 for Team3, and 410 for Team4. From these results,
each competitor is then awarded a number of points based
on the ranking, as described at the end of Section III-D.

V. THE FUTURE OF ARIAC

To date, the competition and its metrics have mostly been
developed and determined by the NIST organizers. However,
there are plans underway, described in this section that will
broaden the pool of the development of these metrics.

As the competition evolves over the years to adapt to
different scenarios and themes, the details of the metrics get
adapted to meet the needs of that year’s competition. For ex-
ample, the completion score metrics for the 2021 competition
have been modified slightly to account for adding assembly
into the mix. There will also be new metrics that are being
developed through the Measuring Robot Agility Working
Group. Starting in September 2020, the Measuring Robot
Agility working group (under IEEE Standards Association
(IEEE-SA), Robotics and Automation Society) [14] has been
meeting every two weeks to develop a set of standard
test methods and metrics for measuring robot agility. The
working group is aiming to develop metrics for testing each
of the following aspects of agility: hardware and software re-
configurability, communications, task representation, sensing
& perception, reasoning, planning, tasking, and execution. As
draft metrics become available from this working group, the
ARIAC competition will be one of the venues for testing
out these metrics to see how effectively they differentiate
between robotic systems. Through this collaboration, the
working group and ARIAC will each benefit from one
another as the development continues. For more information
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Fig. 3: Trial Score computed for each competitor’s system in the finals for 15 trials.

on the working group or to get involved, please contact the
authors.

The competition has gone through many changes through
the years, transitioning from being co-developed by NIST
and OSRF to being developed and maintained by NIST these
past two years. It has also gone from a non-prize competition
in 2017, to a prize competition beginning in 2018. The theme
and scenarios of the tasks being given to the competitors
have also changed through the years, from kitting and order
fulfillment to a combination of kitting and assembly.

There are early plans in process to try aligning a future
year’s competition more closely with an industry partner.
The plan is to have the winning solution(s) be more directly
applicable to the partner in order to promote a closer tie
between the research being done and the industry that will
be using the solution(s).

VI. CONCLUSIONS

Throughout the five years of the Agile Robotics for
Industrial Automation Competition (ARIAC), NIST has been
able to use an online simulation competition structure to
advance the agility performance of manufacturing robotics
systems to promote the ability for robots to be able to
sense, evaluate, and adapt to changing conditions in the
environment. These changes will allow more (and smaller)
manufacturers to start utilizing robots more often, freeing up
their people to contribute directly to social efforts, and enable
companies to differentiate on what social efforts they choose
to contribute to. The metrics that were initially developed by
NIST have served as the basis for measuring, ranking, and
comparing the competitors performance in the competition.
These metrics will be expanded upon in the near future with
work from the IEEE-SA Measuring Robot Agility Working
Group to further the development of standard metrics and
test methods. The solutions and metrics that come out of the
competition will shape the future of manufacturing robotics
assembly systems.
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