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Empirical Validation of Automated Vulnerability 
Curation and Characterization 

Ahmet Okutan, Peter Mell, Mehdi Mirakhorli, Igor Khokhlov, Joanna C. S. Santos, Danielle Gonzalez, and 
Steven Simmons 

Abstract—Prior research has shown that public vulnerability systems such as US National Vulnerability Database (NVD) rely on a 
manual, time-consuming, and error-prone process which has led to inconsistencies and delays in releasing fnal vulnerability results. 
This work provides an approach to curate vulnerability reports in real-time and map textual vulnerability reports to machine readable 
structured vulnerability attribute data. Designed to support the time consuming human analysis done by vulnerability databases, the 
system leverages the Common Vulnerabilities and Exposures (CVE) list of vulnerabilities and the vulnerability attributes described by 
the National Institute of Standards and Technology (NIST) Vulnerability Description Ontology (VDO) framework. Our work uses Natural 
Language Processing (NLP), Machine Learning (ML) and novel Information Theoretical (IT) methods to provide automated techniques 
for near real-time publishing, and characterization of vulnerabilities using 28 attributes in 5 domains. Experiment results indicate that 
vulnerabilities can be evaluated up to 95 hours earlier than using manual methods, they can be characterized with F-Measure values 
over 0.9, and the proposed automated approach could save up to 47% of the time spent for CVE characterization. 

Index Terms—Software Vulnerability, CVE, Vulnerability Characterization, NIST Vulnerability Description Ontology 
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1 INTRODUCTION 

Cybersecurity professionals and product vendors rely on nerabilities have to be gleaned from public advisories and 
vulnerability reports to make informed decisions about the security announcements. Ideally, all vulnerabilities would 
security of their products and reduce the number of related be reported by CNAs and those CNAs would report vul-
attack vectors [1]–[6]. Vulnerability databases analyze and nerability details in a structured machine-readable format. 
release reports about known vulnerabilities. They publish This would remove the human analysis bottleneck. Unfor-
information such as vulnerability description, fxes/patches, tunately, this is not the situation today, and the publication 
underlying software weaknesses, root causes, attack vectors, of new CVEs may take weeks or even months [19]. Even 
complexity of attack, privileges required, victim interactions in an ideal future where CNAs fll out structured forms 
required, scope of impact, and consequences [7]–[11]. to enter vulnerability attribute data, it is likely that only a 

Public vulnerability databases, such as the NIST Na- minority portion of the tens of thousands of CVEs published 
tional Vulnerability Database (NVD) [12] and those owned each year would be covered, since many vendors (especially 
by the private sector, rely on manual processes to analyze small ones) may never participate. For this reason, there 
vulnerabilities. They review free-form text based reports, is a great need for a system that can automate the analyst 
advisories, and patch information. While this often can task by reading free-form vulnerability description text and 
be done effciently for each vulnerability (i.e., consuming outputting structured vulnerability attribute data. 
several minutes of analyst time), given the tens of thou-
sands of vulnerabilities published every year this is a time-
consuming process taking considerable human effort. The 
analysis effort represents a bottleneck slowing down vul-
nerability publication. In addition, studies show that this is 
an error-prone process that has resulted in inconsistencies 
and delays in releasing fnal vulnerability results [13]–[18]. 

Many vulnerability databases leverage the Common 
Vulnerability and Exposure’s (CVE) listing of vulnerability 
records. To speed up maintenance of this list, software 
vendors can directly add vulnerabilities by becoming a 
CVE Numbering Authority (CNA). Non-CNA provided vul-
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Fig. 1: An overview of the proof of concept system that is 
designed to illustrate the applicability of automated CVE 
collection and characterization. 

In this work, we provide a solution that can currently 
assist human analysts and someday perform the work 
automatically under human supervision. It is designed to 
automatically curate vulnerability data and characterize 
them by populating the attributes in the draft National 
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Institute of Standards and Technology (NIST) Vulnerabil-
ity Description Ontology (VDO) [20]. VDO is designed 
to enable the characterization of vulnerabilities to support 
vulnerability databases (especially aspects of vulnerability 
scoring). Figure 1 shows a general overview of our proof of 
concept experimental environment that we use to examine 
the applicability of the proposed methodology. 

Our methodology relies on real-time data and web-
mining techniques to collect vulnerability information as 
soon as they are disclosed. It uses multiple sources, such 
as security bulletins, advisories, exploit databases, issue tracking 
systems, code repositories, blogs, and mailing lists. Furthermore, 
it makes a novel use of Natural Language Processing (NLP), 
Machine Learning (ML), and Information Theoretical (IT) 
techniques to process extracted vulnerability reports and 
characterizes them using VDO. Each CVE is characterized 
in fve domains to identify (1) where an attack may come 
from (Attack Theater), (2) the context of the vulnerability 
(Context), (3) potential impact methods used by exploits 
(Impact Method), (4) likely consequences (Logical Impact), and 
(5) applicable mitigation strategies (Mitigation). This auto-
mated characterization of vulnerabilities can assist security 
professionals in their manual review process and therefore 
reduce the time to disclose or report vulnerabilities. The 
contributions of this work are four-fold: 

• First, it demonstrates the feasibility of developing an 
automated technique to collect and characterize vulner-
abilities as soon as they are discovered. In addition to 
conventional ML-based text classifcation approaches, 
it introduces a novel entropy-based CVE characteriza-
tion method. To extract vectors of features from CVE 
reports, it uses a new context-aware feature extraction 
and CVE vectorization technique that takes into ac-
count the words and their context. Using an entropy-
based approach, extracted word vectors derived from 
CVE descriptions are used to create non-parameterized 
term histograms. Shannon’s entropy is used to estimate 
the stochastic nature of each histogram, and the Kull-
back–Leibler divergence (KLD) [21] and Cross-Entropy 
(CE) are used with entropy redistribution to measure 
the dissimilarities of different term histograms. The 
empirical evaluations successfully demonstrate the fea-
sibility of the entropy-based vulnerability characteriza-
tion method. 

• This paper’s second contribution is in providing an 
empirical study based on mixed-methods. It uses both 
quantitative (cross-validations) and qualitative studies 
(security subject-matter experts (SME) case study) to 
evaluate whether the process of vulnerability curation 
and characterization can be improved using ML and 
information retrieval. 

• This paper’s third practical contribution is in enhancing 
vulnerability communication by using the NIST VDO 
framework for automated CVE characterization. For 
each CVE, our system outputs the attack vector (e.g., re-
mote or local), the vulnerable component (e.g., hypervisor 
or application), the impact method (e.g., code execution 
or man in the middle), the consequences (e.g., service 
interruption or privilege escalation), and applicable 
mitigation approaches (e.g., multi-factor authentication or 

sandboxes). 
• Finally, as a case study we investigate how our system 

could directly support the NVD. For this, we partially 
map VDO attributes to the Common Vulnerability Scor-
ing System (CVSS) attributes used by NVD and then 
estimate CVSS scores. This is done only partially as a 
proof of concept because the current version of VDO 
does not yet fully support all needed CVSS attributes. 

Reproducibility of the Results. The training data sets used 
to characterize CVEs will be publicly released on GitHub 
to contribute to the research and development studies 
for vulnerability intelligence and characterization. All the 
scripts, algorithms and their confgurations will be released 
publicly. The entire software will be packaged and released 
as open source. 

The rest of the paper is organized as follows: Section 2 
describes the research methodology used to build ML and 
IT methods to characterize CVEs and explains designed 
experiments. Section 3 presents the results for different 
characterization methods. Section 4 discusses the validation 
of performance on real-life uses cases. Section 5 describes 
the use cases for our automated characterization approach. 
Section 6 reviews prior works about existing vulnerability 
platforms and characterization services. Section 7 discusses 
threats to the validity of the work, and Section 8 provides 
concluding remarks. 

2 METHODOLOGY: VULNERABILITY CHARACTER-
IZATION 

This work aims to minimize the manual effort needed to 
characterize and describe vulnerabilities based on the NIST 
VDO framework and therefore provide near real-time cura-
tion and disclosure of vulnerabilities. To do so, we develop 
a web-mining technique that crawls thousands of vulnera-
bility sources and then parses and records the attributes of 
the crawled CVEs. Apache Open NLP toolkit [22] is used to 
reconcile CVEs based on part-of-speech (PoS) diversity and 
novel AI/ML approaches are leveraged for just-in-time CVE 
characterization. The characterization methodology relies 
on using a context-aware feature extraction and vectoriza-
tion technique along with conventional supervised learning 
methods and novel information theoretical approaches. This 
section explains the research methodology, the training data 
collection process and the experiments used to evaluate the 
proposed CVE characterization approaches. 

2.1 Vulnerability Description Ontology (VDO) 

Figure 2 shows the essential pieces of the NIST framework 
used for CVE characterization, where each vulnerability 
attribute (i.e., noun group) is represented by a box. The 
mandatory, recommended, and optional noun groups are 
shown with black, white, and gray headers, respectively. 
Within each noun group, the set of applicable noun group 
values are listed. For example, the context of a vulnerability 
is represented by the mandatory noun group Context, whose 
noun group values are: Application, Hypervisor, Firmware, 
Host OS, and Guest OS. Similarly, the technique used by an 
attacker to execute an exploit is represented by the noun 
group Impact Method, while Trust Failure, Context Escape, 
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TABLE 1: VDO’s vulnerability attribute domains (noun groups) included in this study. From now on, we use the term noun 
group to refer to the core building blocks of the VDO framework. 

Remote A vulnerability is characterized as Remote if the cyberattack originates from locations outside of the target network.
Limited  Remote The exploit is executed from closer locations, using Cellular, Wireless, Bluetooth, Infrared, or Line-Of-Sight technologies.
Local The attacker has to have logical local access to a target computer or system to execute the exploit.
Physical The  attacker  is  required  to  have  physical  access  to  the target system to carry out the exploit
Application (App) CVE is related to a program that is designed to accomplish a specific task within an operating system or firmware.
Hypervisor  (Hyp) Allows  an attacker  to  get  access  or  manipulate  resources  that  are shared among controlled guest operating systems.
Firmware  (Fw) An  attacker  exploits  a  vulnerability  in the software that is built-in to a device.
Host OS (HOS) This is a vulnerability in the operating system and the Hypervisor is not applicable.
Guest OS (GOS) This is a vulnerability in the operating system that is controlled by a Hypervisor.
Channel  (Ch) A flaw  in the logical communication medium, such as the incorrect implementation of a cipher algorithm.
Physical  Hardware  (Hw) This represents a flaw in the actual  physical  hardware,  such  as  processors,  storage, memory cells, etc.
Trust Failure A vulnerability is exploited if an assumed trust relationship between two parties leads to unexpected impacts.
Context Escape Attackers exploit a trust mechanism by breaking out of a sandbox.
Authentication Bypass The exploit is related to a failure to identify the adversary properly.
Man  in  the  Middle 
(MitM)

The  attackers  access  acommunication  channel  that  might  lead  to  sensitive  data disclosures, impersonation, data 
modification or denial of communication.

Code  Execution A  vulnerability  exploit  allows  an  attacker to execute unauthorized code
Write A vulnerability is characterized with Write if an attacker can do unauthorized modifications on the data.
Read Indicate whether  the  attacker  is  able  to  gain  unauthorized  access to data.
Resource Removal Resource Removal is used to represent an unauthorized removal (deletion) of data.
Service  Interrupt An attacker causes a loss in the availability of a target system.

Indirect  Disclosure Attacker can learn information about the target, not through a direct read operation, but indirect methods like side-channel 
attacks or traffic analysis.

Privilege Escalation An  adversary  gains  a  level of privilege that is not intended for him/her.
Address Space Layout
Randomization (ASLR)

A vulnerability is characterized by ASLR mitigation, if ASLR is  an  applicable  protection  mechanism  to  guard  against 
buffer overflows.

HPKP/HSTS If  HTTP  Public  Key  Pinning  (HPKP)  or HTTP  Strict  Transport  Security  (HSTS)  is  applicable  as a mitigation strategy.
Multi-Factor  
Authentication  (MFA) It is used if MFA is a viable protection technique for a vulnerability.

Physical Security If ensuring physical security provides protection from the exploits that are caused by a vulnerability.
Sandboxed If deploying a software product in the sandbox provides protection.
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     Physical
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Type
+ vulnerability_type

Fig. 2: Partial View of the Vulnerability Description Ontol-
ogy (VDO) [20] 

Authentication Bypass, Man in the Middle, and Code Execution 
are listed as viable methods. For the scope of this paper, to 
characterize CVEs, fve noun groups were selected from the 
VDO framework based on the following criteria: 

• Some noun groups are ignored because they are as-
sumed to apply to a more limited scope of problems, 
e.g., Physical Impact or are not easy to interpret accu-
rately, compared to other groups, e.g., Scope. 

• Mandatory noun groups are applicable to all vulnera-
bilities. Therefore, mandatory groups that have more 

than one label and provide a higher value for the 
security community are considered frst while deter-
mining the set of noun groups that will be studied. The 
security community is usually more interested to know 
(1) the attack avenues from which cyberattacks occur, 
(2) vulnerable pieces in a target system, (3) attack meth-
ods utilized, (4) potential impacts when exploitation is 
successful, and (5) applicable mitigation techniques that 
can be used when a vulnerability is exploited [14]. To 
address these concerns, fve noun groups are studied: 
Attack Theater, Context, Impact Method, Logical Impact, 
and Mitigation. Figure 2 shows these noun groups as 
boxes with solid line borders. 

Attack Theater defnes the attack surface from which an at-
tack may come. The Context noun group defnes the entities 
where the impacts are observed when a vulnerability is 
exploited. The Impact Method noun group describes methods 
used to exploit a software vulnerability. The Logical Impact 
noun group describes the impacts that an exploit can create. 
The Mitigation noun group describes the techniques that can 
be used to limit the impact of a vulnerability, even if it is 
exploited. Table 1 provides a brief summary of the noun 
group values in the studied VDO domains. 

2.2 Data Collection & Labelling 

The preparation of the training data sets is a critical stage 
that may affect the performance of the designed system. 
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CVE ID Description MFA Physical 
Security

CVE-2020-12752

An issue was discovered on Samsung mobile devices with P(9.0) and Q(10.0)
(with TEEGRIS) software. Attackers can determine user credentials via a brute-
force attack against the Gatekeeper trustlet. The Samsung ID is SVE-2020-16908

(May 2020).

CVE-2020-9848
An authorization issue was addressed with improved state management. 
This issue is fixed in iOS 13.5 and iPadOS 13.5. A person with physical 
access to an iOS device may be able to view notification contents from 

the lockscreen.

CVE-2019-7311

A lack of encryption in how the user login cookie (admin-auth) is stored on a
victims computer results in the admin password being discoverable by a local

attacker and usable to gain administrative access to the victims router. The admin
password is stored in base64 cleartext in an admin-auth cookie. An attacker

sniffing the network at the time of login could acquire the routers admin
password. Alternatively gaining physical access to the victims computer soon

after an administrative login could result in compromise.

Fig. 3: Three example CVEs labeled for two values in the 
Mitigation noun group, i.e., Multi-Factor Authentication 
(MFA) and Physical Security. 

Therefore, we followed a systematic methodology to gener-
ate training data sets for noun groups in VDO. We collected 
a set of CVEs from NVD for each studied noun group, and 
the relationships between each CVE and the labels in each 
group were identifed. Each CVE, in each noun group, is 
labeled with one or more noun group values, as shown in 
Figure 3. 

In the next subsections, we explain how we collected the 
set of CVEs used for training and performed labelling. 

2.2.1 Data 

The most recent CVEs (before CVE-2020-14000) are 
queried from the NVD Vulnerability Search Engine 
(https://nvd.nist.gov/vuln/search) to derive near to equal 
number of CVEs that can be characterized with the noun 
group values within a studied group. CVEs after CVE-2020-
14000 are reserved for the case study to test the performance 
of the trained models with hands-on, real-world examples. 

2.2.2 Data Labeling Process 

Five security researchers with 2-15 years of experience spent 
3000+ person-hours to generate training data sets for the 
fve VDO noun groups. All reports were peer-reviewed and 
examined to avoid biases, and uncertainties were discussed 
collectively to ensure consistency. 

The main steps of the systematic approach we used to 
collect, label, and review CVE data for each noun group are: 

1) SMEs’ Understanding of the Noun Groups: Subject-
matter experts were all already familiar with VDO 
vulnerability attribute domain (noun group). How-
ever, each SME were requested to carefully study each 
noun group value (label) within a group. Then each 
noun group value was discussed among all SMEs to 
make sure that its distinctive attributes are understood 
clearly. 

2) Labeling and Annotation Sessions: Each SME re-
viewed and annotated the noun group dataset that 
they were assigned randomly (without considering any 
specifc preference). They had to provide three pieces 
of information, the labels, annotation of the text that 
implies the label, and a confdence score. Most of the 
time, a CVE is labeled with one label within a noun 
group, however it sometimes needs to be labeled with 
more than one label. For example, CVE-2019-7311 in 
Figure 3 is marked with both Multi Factor Authentication 

and Physical Security for the Mitigation group, because 
both provide a mitigation strategy for the vulnerability. 

3) Self-Reported Confdence: To minimize guessing and 
distinguish high-confdence responses from others, we 
collected the SME’s confdence score with a numerical 
score ranging from one to three, where a score of one 
indicated no-confdence in making a judgement; a score 
of 2 indicated a low-confdence in the generated label, 
and a score of 3 indicated high-confdence responses. 
High-confdence responses were reviewed by a second 
labeler. 

4) Peer-Discussion Sessions: CVEs tagged with no-
confdence or low-confdence were discussed by two 
SMEs. A confdence column is included in each data 
set to represent the confdence of the researcher while 
assigning each noun group label to a CVE. During Peer-
Discussion Sessions, reviewers went through additional 
sessions to double-check the labels that were assigned 
a low confdence (a confdence value of 1 or 2). 

5) Peer Review and Discussion Sessions: After the frst 
review sessions, a draft version of the data set for 
each studied noun group is recorded. The percentage of 
CVEs labeled with a high confdence for Attack Theater, 
Context, Impact Method, Logical Impact, and Mitigation 
noun groups were 94%, 58%, 87%, 80%, and 72%, 
respectively. A new annotator peer-reviewed all CVEs 
and confdence scores and highlighted the CVEs she/he 
wanted to discuss. Once all CVEs had a confdence 
value of 3, the fnal version of each data set was 
recorded for experiments. 

For each noun group, each CVE is labeled with one or 
more labels. As shown in Figure 3, the SMEs highlighted 
parts of the CVE’s description that were relevant in the 
labeling process, i.e., in assigning the CVE to a specifc noun-
group. For example, CVE-2019-7311 has text highlighted in 
green, which are related to MFA, and text highlighted in 
yellow, which are related to Physical Security. 

Generated training data sets include two felds, the CVE 
description and the corresponding label(s) for the noun 
group. The total number of CVEs for Attack Theater, Context, 
Impact Method, Logical Impact, and Mitigation noun groups 
are 293, 798, 465, 562, and 474, respectively. The distribution 
of the labels for each group is shown in Figure 4. The data 
sets generated for noun groups include between 70 and 120 
CVEs for each label (noun group value). 

2.3 CVE Pre-processing 

We perform a number of standard NLP pre-processing steps 
to ensure all CVE descriptions are cleaned, tokenized, and 
normalized before ML/IT models are trained. First, CVE 
descriptions are cleaned to make sure that any duplicate 
white spaces, punctuation, and numbers are removed, and 
the text is reduced to characters readable by humans. Then, 
all characters are converted to lower case, and all stop 
words are removed, i.e., commonly occurring words such 
as ‘this‘ and ‘shall‘ which are not helpful for classifcation 
purposes. Next, each word in the vulnerability descriptions 
is stemmed to its morphological root [23]. 

https://nvd.nist.gov/vuln/search 
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Attack TheaterRemoteLocal Limited RemotePhysical Sum
91 75 74 53 293

0
ContextApp Hyp Fw HOS GOS ChannelHw 0
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0

Impact MethodTrust FailureContext EscapeAuth. BypassMitM Code Exec. 0
86 68 111 79 121 465

0
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0
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Fig. 4: The distribution of noun group values in each studied VDO domain. 

2.4 Context-Aware Feature Extraction and Vectoriza- where 
i
jtion of CVEs x 

p ij = (3)PM i
jTo extract features from CVE descriptions, we converted j=1 x 

each description into a vector of terms using the Term and 
NFrequency-Inverse Document Frequency (TF-IDF) approach. 

We did not use word embedding (word2vec) as we did 
dij = log (4)

Dj + 1 
not have an extensive domain-specifc corpus to train a 

where N is the total number of CVEs, and Dj is the number word2vec model. Instead, we followed TF-IDF, a very well-
of CVE descriptions that include term j. A word vectorknown and rather simple approach, such that we can use the iw that is composed of the tf-idf scores of all n-grams isCVE descriptions only, without a need to create a domain-
created for each CVE where wi ii 

1, w2, ..., w 
ieach noun group G, generated word vectors w and their 

i
M For(w ).= specifc corpus. 

Although TF-IDF can help identify the terms most rel-
evant to a specifc noun group, in the security domain, 

associated VDO labels yi are used to train binary and multi-
class classifcation models for CVE characterization. 

the context of the terms plays an important role for their 
meaning. For instance, “user authorization” and “control” 
may appear in any context in a vulnerability description, but 
knowing the context of the terms (e.g., “control” appearing 
right after “user”, i.e., “User-Controlled”) can provide richer 
information about the text which is otherwise lost in a 
bag of words approach. Therefore, to extract rich features 
describing the vulnerability reports, we augment the TF-IDF 
approach by using n-grams. This ensures that the order and 
the context of tokens in the CVE descriptions are taken into 
account by the trained models. 

For a VDO noun group G, let the data set DG be 
composed of N CVE instances where each CVE description 
is represented by 

2.5 CVE Characterization Methods 

After creating a context-aware vectorization of CVEs, this 
paper uses two main approaches for CVE characterization: 

1) Machine Learning (ML) Approach: Labeled CVE data 
sets are used to train supervised ML models with 
commonly used classifers listed in Section 2.5.1. 

2) Information-Theoretical (IT) Approach: IT methods 
are widely used in Statistics and Computer Science 
for various tasks, including Inference and Natural Lan-
guage Processing. In the Information Theory, ”Entropy” 
is a key metric used to measure the amount of un-
certainty for the value of a random variable. This 
work uses a novel entropy-based approach to character-

x i = (x ii 
1, x2, ..., x iM ) (1) ize CVEs, by deriving n-gram frequencies from CVE 

descriptions and using them as non-parameterized
i is a term frequency vector generated from a pre- histograms. Individual CVE histograms P i with the 

same noun group value are unifed to generate a non-

x 
i
jprocessed CVE description i where each x 

number of a uni, bi or 3-gram j in the description. The 
represents the 

parameterized histogram Qi for the noun group value. 
ifeature vector x of each CVE description in DG is asso- While calculating the divergence between P i and Qi ,

ciated with one or more VDO noun group values yi where the entropy of Qi is evenly distributed to all n-grams in 
Qi (including the unseen ones), not to completely rule 
out the possibility of the existence of unseen n-grams 

i ∈ {y1, y2, ..., yK } and K represents the number of labels 
in G. 
y 

The n-grams that have higher frequencies within a CVE in Qi . The novel IT approach that is based on entropy 
description should have higher importance for that CVE. distribution is explained in Section 2.5.2. 
However, we should penalize the frequencies of such terms, 
if they frequently appear in all other descriptions within 2.5.1 Classifers 
the CVE corpus of a noun group, to make sure that the Once all vulnerability descriptions in each noun group G are 
n-grams that are distinctive are emphasized more. The tf- converted to feature vectors (wi) as described in Section 2.4,
idf approach ensures that the scores of the terms that have a set of classifers are trained using CVE feature vectors w 
a high frequency in all documents are penalized properly ias features, and VDO noun group labels y as classes. There 
using an inverse document frequency (idf) term. Given a are between 80-100 CVE instances marked positive for each 
CVE i and a term j, if the term frequency of j (in i) and label in the training data sets used for each noun group G.
its inverse document frequency are represented by pij and Since the amount of labeled data is limited, a set of com-

monly used supervised algorithms from different domainsdij , respectively, the tf-idf score wi
j of the term j in CVE i is 

calculated by are used to characterize CVEs, rather than following a Deep 
w ij = p ij 

i
j (2) Learning approach: ∗ d 

i 
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1) Support Vector Machines (SVM): SVM is a supervised 
learning algorithm that maximizes the margin between 
the training patterns and the decision boundaries [24]. 
We use the SVM algorithm with a sequential minimal 
optimization approach and a polynomial kernel to char-
acterize CVEs [25]. 

2) Naı̈ve Bayes (NB): Given a set of features and a target 
label, the algorithm assumes feature independence and 
uses the Bayes rule while predicting the target label. 
NB classifers have proven to be successful in solving 
various text classifcation problems, including author-
ship attribution, spam email detection, and sentiment 
analysis [26]. This paper uses the NB classifer [27] to 

ipredict the noun group value y of a CVE description 
irepresented by feature vector w . 

3) C4.5 Decision Tree (DT) and Random Forest (RF): We 
use the C4.5 DT algorithm [28] with pruning to predict 
VDO labels for CVEs. As an alternative method, the 
Random Forest algorithm [29] that uses an ensemble 
learning approach is used. To characterize a CVE, we 
construct a forest of random trees and use the VDO 
label that is agreed on by the majority of the constructed 
trees. 

4) Ensemble Learning (Voting): Majority voting is one 
of the widely used ensemble methods to boost the 
performance of the ML classifers [30]. This paper uses 
a voting based ensemble approach which combines the 
results of SVM, NB, DT, and RF classifers. 

The ML classifers described above are used to predict 
the VDO noun group values for each CVE with binary and 
multi-class classifcation approaches. The experiment pro-
cess is automated using the Weka Workbench API [31]. To 
keep the training and experimentation process simple and 
easy to reproduce, each algorithm is used with its default 
parameter set in Weka 3.8.0. 

2.5.2 Information Theory based CVE Characterization 
This work uses a novel entropy-based approach to character-
ize CVE descriptions. Each feature vector xi that is created 
from a CVE description i is composed of the frequencies of 
n-grams where n >= 1 and n <= 3. The probability of each 

in-gram j within a CVE description i (pj ) is calculated by 
Equation 3 and a feature histogram P i is generated where PM
P i i i i i= (p1, p2, ..., p ) and p = 1.M j j 

Assuming that there are n feature histograms generated 
ifrom n CVEs labeled with the same VDO label y , they 

iare unifed to generate a new feature histogram z = 
i i i i(z1, z2, ..., zM ), where the frequency of each n-gram zj is 

calculated by 
nX 

i i zj = xj (5) 
i 

iThe unifed feature histogram z is considered as a new 
distribution Qi , where the probability of each n-gram in Qi 

is calculated by 
iz 

qj
i = PM

j (6)
i 

j=1 zj 

in-grams that have higher qj values within a distribution 
Qi better represent the semantic attributes of the associated 

CVE descriptions, compared to other n-grams. However, 
CVE feature distributions are usually sparse, and the prob-
ability values for many n-grams are zero. Although setting 
the probabilities of the n-grams that do not appear in Qi 

to zero is mathematically correct, it may not accurately 
represent the uncertainties in real life. A key novelty of 
this work is the use of the Shannon‘s entropy to estimate 
the stochastic nature of a feature distribution and then 
distribute its entropy to all n-grams in the distribution 
(including the unseen ones) to refect the possibility of 
having an unobserved n-gram. Given a feature distribution 
Qi i , where qj represents the probability of an n-gram j, its 
entropy is calculated by 

MX 
i iH(Qi) = − qj log(qj ) (7) 

j 

where M is the total number of n-grams in the distribution. 
This entropy is normalized and then evenly distributed to 

iall n-grams in the distribution, by defning rj as 

H(Qi)i i r = qj (1 − H(Qi)) + (8)j M 
where 0 ≤ H(Qi) ≤ 1. The IT approach uses the smoothed 

in-gram probabilities rj calculated by Equation 8 while mea-
suring the dissimilarity between a CVE represented by P i 

and a distribution Qi . For example, for a distribution Qi 

the probabilities of n-grams before and after the entropy 
iis distributed are shown in Figure 5. The probabilities qj 

that are shown with a dashed black line are smoothed to 
ithe probabilities shown with a solid red line (rj ) after the 

entropy is distributed. 

Fig. 5: The probabilities of n-grams in a feature distribution 
derived from CVEs that are marked positive for Trust Failure 
(Impact Method), before and after the entropy is distributed 
to all n-grams. 

Given a feature distribution P i that represents a CVE 
description i, and a distribution Qi that represents the CVEs 
with the same VDO label yi, the KLD or relative entropy [21] 
from P i to Qi is calculated by 

M� 
P i Qi

� X pi 
KL = p ij log j (9)

iqjj 

The cross-entropy measures the relative entropy between 
two probability distributions. The cross-entropy of the dis-
tribution Qi relative to the distribution P i is defned as � � 

H(P i, Qi) = H(P i) + KL P i Qi (10) 

Substituting Equations 7 and 9 into Equation 10, we get 
MX 

i iH(P i, Qi) = − pj log(qj ) (11) 
j 
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2.6 Experiment Design 

For each ML and IT-based CVE characterization method, 
two sets of experiments are designed to evaluate the perfor-
mance. This section briefy explains the details of the binary 
and multi-class characterization experiments designed for 
the ML and IT methods. 

2.6.1 Binary CVE Characterization 
In a use-case scenario where the security analyst wants to 
see if certain noun group values are applicable or not (, e.g., 
check if the multi-factor authentication (MFA) mitigation 
technique is applicable), the binary characterization could 
be helpful. A binary model is built for each noun group 

ivalue yi in each VDO domain G. For each y , CVEs that are 
labeled with yi are marked positive, and the remaining ones 
in G are marked negative to generate a binary classifcation 

idata set for y . Proposed ML and IT methods are used to 
ibuild a binary classifer for each y . Given a CVE and a 

inoun group value y , each ML and IT model uses a binary 
iclassifcation approach to identify whether y is applicable 

to the CVE or not. 
In the ML approach, commonly used classifers from 

different domains and an ensemble of them are used for 
CVE characterization. In the IT approach, KL divergence 
(KLD) [21] and Cross-Entropy (CE) are used as divergence 
metrics to calculate the dissimilarity between two CVE term 
distributions. Two n-gram distributions (Qi and Ri) are 

icreated for each noun group value y , based on the CVEs 
ithat are marked positive and negative for y , respectively. 

The KLD (or CE) between a CVE represented by P i and 
these two probability distributions is calculated, and the 
label of the distribution that has the lowest divergence from 
P i is assigned to the CVE. 

2.6.2 Multi-class CVE Characterization 
For the ML approach, algorithms described in Section 2.5.1 
are used to build multi-class classifers for CVE charac-
terization. In the IT approach, one term distribution (Qi) 

iis created for each noun group value y . Given a CVE i 
that is represented by distribution P i and a set of distribu-
tions (unifed histograms, one for each noun group value) 
{Q1, Q2, ..., QK }, where K ≥ 2, the dissimilarity of P i from 
each Qi is calculated, and the label of the Qi that has the 
lowest divergence from P i is used to assign the label of 
CVE i. 

A multi-class classifer is built for each VDO domain 
to predict the noun group values as labels. In multi-class 
classifcation, we keep track of the confdences predicted 
for each VDO label yi within each noun group G. The 
goal is to see the confdence of the second or even third 
best predictions. If the confdence of the frst prediction is 
below a defned threshold ρ (p(yi) < ρ), we predict multiple Pki i i ilabels y1, y2, ..., y where ) >= ρ. Providing the k j=1 p(yj 
confdence values of the second or third best predictions 
could aid security practitioners to focus on the most likely 
labels frst, which can help to decrease the amount of 
manual work during the CVE characterization. Therefore, 
this work defnes an alternative multi-class classifcation 
approach, where each classier is given a second prediction 
chance. In summary, each ML/IT model reports two sets of 
results for multi-class characterization: 

• Single-chance: This is the conventional multi-class clas-
sifcation approach where the performance of a model is 
measured based on its predicted labels. 

• Double-chance: To decrease the manual effort needed for 
CVE characterization and limit the set of noun group 
values that are potentially applicable, two labels are pre-
dicted for each CVE. Each model is given a second chance 
to predict a second VDO label for each noun group, which 
corresponds to the label with the second-best confdence. 
The prediction of the multi-class classifcation is assumed 
to be correct if either the frst or second prediction is cor-
rect. The goal of the double chance prediction is to support 
the decision-making process of the security analyst who 
is doing the manual characterization. Both predictions are 
provided to the analyst in an ordered list. If the frst 
prediction seems to be unrelated, the analyst can look at 
the second prediction without needing to analyze the CVE 
description further. 

We use single (top-1) and double chance (top-2) while 
evaluating our approach for two reasons. First, we want 
to evaluate the practicality of the approach in a real sce-
nario for an end-user (analyst) that may use these results. 
Therefore, analyzing results for more than top-2, would 
require more effort from the analysts. Second, the double 
chance prediction emulates a real scenario to support the 
decision-making process of the security analyst who is 
doing the manual characterization. Our approach provides 
both predictions to the analyst in an ordered list. If the frst 
prediction seems to be unrelated, the analyst can look at 
the second prediction without needing to analyze the CVE 
description and do research about the related CVE. 

2.6.3 Evaluation Setup 
For both ML and IT methods, each experiment is run 
with classical 10-folds cross-validation, and the average 
F-Measure values are reported to evaluate results. The 
main reason for using cross-validation instead of the con-
ventional train/test split approach was the availability of 
limited data for training. Considering the fact that each 
noun group value (label) has limited number of instances 
in the underlying dataset (Figure 4), it would be hard to 
maintain a balanced label distribution between the training 
sets and their corresponding tiny test sets if the train/test 
split approach was used. To assign confdence scores to 
the predictions of IT methods, divergence measures are 
converted to normalized proximity scores favoring lower 
divergences. Assuming the divergences of K distributions 
from a CVE P i are {δ1, δ2, ..., δK }, and the minimum and 
maximum divergence values are δmn and δmx, we defne 
� = δmn/100 and derive a proximity score λi for each 
Qi , where λi = (δmx + � − δi). While classifying P i , the 
normalized λi scores are used to assign a confdence score 
to each VDO label represented by each Qi . 

2.6.4 Performance Metrics 
Depending on the outcome of a classifcation, there are four 

ipossible cases for a label y that represents the noun group k 
value k for CVE i: 
• True Positive (TP): If a CVE had true VDO label y and it k 

iis correctly classifed to yk. 

i 
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i
l• False Positive (FP): If a CVE had true VDO label y , but it 3.1.3 Impact Method 

is incorrectly classifed to yik where yik <> yil . The Impact Method noun group describes methods used to 
exploit a software vulnerability and includes fve labels:

i
l• True Negative (TN): If a CVE had true VDO label y and 

it is correctly classifed to yil where yil <> yik. Trust Failure, Context Escape, Authentication Bypass, Man in the 
i
k• False Negative (FN): If a CVE had true VDO label y , Middle (MitM), and Code Execution. The F-Measure values 

but it is incorrectly classifed to another label yil where for the Impact Method noun group for different ML and 
yik <> yil . IT methods are shown in Table 4. The top three methods 

For a given label, the Precision metric represents the fraction 
of the true positives within all positive predictions. 

TP 
P recision = (12)

TP + FP 
The Recall metric represents the fraction of the true positives 
among the instances that are actually positive. 

TP 
Recall = (13)

TP + FN 
We calculate the harmonic mean of the Precision and Recall 
to derive F-Measure and use it as a performance metric to 
compare different characterization methods. F-Measure pro-
vides a more realistic performance measure across different 
class distributions and characterization methods. 

P recision × Recall 
F − Measure = 2 × (14)

P recision + Recall 

3 VULNERABILITY CHARACTEIZATION RESULTS 

This section presents the empirical evaluation of our ap-
proach and provides a detailed comparison of different 
characterization techniques. 

3.1 Binary CVE Characterization 

For binary characterization, the average F-Measure values 
for the positive class are used to evaluate the performance 
of different methods. Sections 3.1.1, 3.1.2, 3.1.3, 3.1.4, and 
3.1.5 provide the binary characterization results for Attack 
Theater, Context, Impact Method, Logical Impact, and Mitiga-
tion, respectively. 

3.1.1 Attack Theater 
The mandatory noun group Attack Theater defnes the attack 
avenue from which an attack may come. Each vulnerability 
is characterized by four noun group labels: Remote, Local, 
Pyhsical, and Limited Remote. The F-Measure values for the 
Attack Theater group for different ML and IT methods are 
shown in Table 2. Depending on the underlying method 
used, the models achieve F-Measure values up to 0.98. The 
top three methods to predict Attack Theater are KLD, Vote, 
and CE with an average F-Measure value of 0.92, 0.91, and 
0.91, respectively. 

3.1.2 Context 
The Context noun group defnes the entities where the 
impacts are observed, when a vulnerability is exploited. It 
includes seven noun group labels: Application, Hypervisor, 
Firmware, Host OS, Guest OS, Channel, and Hardware. The F-
Measure values of Context group for ML and IT methods 
are shown in Table 3. The models achieve F-Measure values 
up to 0.95 while predicting noun group labels. The top three 
methods to predict Context are Vote, SVM, and DT, with an 
average F-Measure value of 0.90, 0.87, and 0.85, respectively. 

to predict Impact Method are Vote, DT, and KLD with an 
average F-Measure value of 0.95, 0.95, and 0.93, respectively. 

3.1.4 Logical Impact 

The Logical Impact domain describes the impacts that an 
exploit can create. One vulnerability may incorporate mul-
tiple logical impacts simultaneously, because the applicable 
noun group values are not mutually exclusive. The domain 
contains six labels: Service Interrupt, Read, Write, Resource 
Removal, Indirect Disclosure, and Privilege Escalation. The F-
Measure values obtained for the Logical Impact noun group 
are shown in Table 5 for ML and IT approaches. The top 
three methods while predicting Logical Impact are Vote, DT, 
and SVM with an average F-Measure value of 0.91, 0.91, and 
0.89, respectively. 

3.1.5 Mitigation 

The Mitigation noun group describes the techniques that 
can be used to limit the impact of a vulnerability, even if 
it is exploited. Five mitigation techniques from the VDO 
model are included: ASLR, MFA, Sandboxed, HPKP/HSTS, 
and Physical Security. The F-Measure values while predicting 
different mitigation strategies are shown in Table 6 for ML 
and IT approaches. The top three methods are Vote, DT, and 
SVM, with an average F-Measure value of 0.94, 0.94, and 
0.89, respectively. 

3.2 Multi-class CVE Characterization 

The Attack Theater, Context, and Impact Method VDO 
domains have mutually exclusive noun group values in 
the training data sets. Therefore, the multi-class classif-
cation, described in Section 2.6.2, is used for them as an 
alternative CVE characterization approach. The results of 
the multi-class classifcation method for the Attack Theater 
noun group are shown in Figure 6. In the single-chance 
approach, average F-Measure values while predicting the 
Attack Theater noun group values range between 0.8 and 
0.97. The double-chance evaluation approach increases the 
average F-measure between 2% and 5%, except NB. 5% 
increased F-Measure values for KLD (KLD-M) and CE (CE-
M) are shown with a dashed line and scattered square points 
in Figure 6. 

The results of the multi-class classifcation for the Context 
noun group are shown in Figure 7. In the single-chance 
evaluation approach, average F-Measure values are between 
0.74 and 0.96 for all noun group values, with all char-
acterization methods except NB, which achieved 0.73 on 
average. The double-chance evaluation approach increases 
the average F-measure between 6% and 8%, except NB and 
DT. 8% increased F-Measure values for RF (RF-M), and CE 
(CE-M) are shown with the dashed line and scattered square 
points in Figure 7. 
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TABLE 2: F-Measure values for Attack Theater. TABLE 3: F-Measure values for Context. 

Remote Local Physical Limited Remote App Hyp Fw HOS GOS Ch Hw 
KLD 0.94 0.92 0.9 0.91 KLD 0.8 0.76 0.85 0.88 0.76 0.76 0.73 
CE 0.94 0.89 0.91 0.91 CE 0.79 0.77 0.85 0.88 0.76 0.78 0.73 

SVM 0.92 0.77 0.96 0.79 SVM 0.84 0.95 0.89 0.84 0.93 0.82 0.82 
NB 0.89 0.8 0.85 0.75 NB 0.74 0.57 0.73 0.76 0.7 0.69 0.68 
DT 0.97 0.8 0.98 0.87 DT 0.7 0.95 0.95 0.76 0.95 0.82 0.8 
RF 0.9 0.75 0.9 0.67 RF 0.68 0.76 0.82 0.81 0.88 0.7 0.73 

Vote 0.94 0.82 0.98 0.88 Vote 0.87 0.95 0.94 0.84 0.94 0.9 0.85 

TABLE 4: F-Measure values for Impact Method. TABLE 5: F-Measure values for Logical Impact. 

Trust Context Auth. MitM Code Service Read Write Resource Indirect Privilege 
Failure Escape Bypass Exec. Int. Rem. Disc. Esc. 

KLD 0.91 0.94 0.88 0.96 0.94 KLD 0.86 0.86 0.83 0.88 0.94 0.78 
CE 0.9 0.93 0.86 0.96 0.94 CE 0.86 0.85 0.82 0.87 0.94 0.78 
SVM 0.67 0.79 0.84 0.96 0.9 SVM 0.89 0.94 0.95 0.78 0.88 0.88 
NB 0.84 0.84 0.85 0.82 0.88 NB 0.84 0.71 0.76 0.83 0.83 0.71 
DT 0.92 0.98 0.97 0.99 0.93 DT 0.97 0.92 0.94 0.84 0.94 0.88 
RF 0.39 0.76 0.62 0.78 0.81 RF 0.74 0.87 0.88 0.64 0.82 0.82 
Vote 0.93 0.94 0.92 1 0.94 Vote 0.95 0.95 0.96 0.84 0.91 0.87 

TABLE 6: F-Measure values for Mitigation. values are higher than 0.90 for all noun group values, 
with all characterization methods except NB and RF. With 

ASLR MFA Sandboxed HPKP Physical 
HSTS Security the double-chance evaluation approach, increases ranging 

KLD 0.91 0.78 0.73 0.77 0.89 between 4% to 7% are observed in the average F-Measure 
CE 0.92 0.76 0.73 0.77 0.88 values of different prediction models, except NB and DT, 
SVM 0.94 0.85 0.88 0.84 0.92 
NB 0.74 0.76 0.78 0.71 0.78 which stay at 0.84 and 0.96, respectively. 7% and 5% in-
DT 0.96 0.92 0.93 0.97 0.96 creased F-Measure values for RF (RF-M) and KLD (KLD-M) 
RF 0.83 0.71 0.72 0.79 0.85 
Vote 0.96 0.92 0.92 0.92 0.96 are shown with the dashed line and scattered square points 

in Figure 8. 

Fig. 6: F-Measure values of the IT and ML approaches while 
predicting Attack Theater with multi-class classifcation ap-
proach. 

Fig. 8: F-Measure values of the IT and ML approaches while 
detecting the Impact Method with multi-class classifcation 
approach. 

Fig. 7: F-Measure values of the IT and ML approaches while 
detecting Context with multi-class classifcation approach. 

The results of the Impact Method noun group using a 
multi-class classifcation method are shown in Figure 8. 
With a single chance prediction, the average F-Measure 

3.3 Overall Evaluation 

The proposed methodology uses a context-based feature 
extraction and a set of ML and IT methods to characterize 
vulnerabilities based on the NIST VDO framework. Five 
VDO noun groups are used to characterize vulnerabilities 
for Attack Theater, Context, Impact Method, Logical Impact, 
and Mitigation. The overall average of the F-Measure values 
obtained in cross-validation in the binary characterization 
for the ML and IT methods are both 0.85. For multi-class 
characterization, the F-Measure values increase to 0.88 for 
both ML and IT methods. During binary characterization, 
the IT methods appear to be more consistent than the ML 
methods. The lowest F-Measure value observed with an 
IT method is 0.73. However, the performance of some ML 
techniques varies depending on the VDO noun group or 
label. The box plot of the F-Measure values observed for 
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each ML and IT method is shown in Figure 9 for binary 
characterization. Figure 10 shows the box plot of the F-
Measure values for multi-class characterization for each ML 
and IT method. The average F-Measure values obtained 
for noun group values are between 0.87 and 0.91 for all 
ML and IT methods, except NB, which has an average F-
Measure value of 0.79. A paired t-test with α = 0.05 is 

Fig. 9: The box plot of the F-Measure values of ML and IT 
methods for binary characterization. 

Fig. 10: The box plot of the F-Measure values of ML and IT 
methods for multi-class characterization. 

Fig. 11: T-test results to compare F-Measure values in bi-
nary (A) and multi-class (B) characterization where each 
cell shows the difference when the method in the row is 
compared with the one in the column. 

used to run statistical signifcance tests on the F-Measure 
values obtained with different ML and IT methods during 
binary and multi-class characterization. Figure 11 shows the 
results of the t-tests obtained for binary (A) and multi-class 
(B) characterization. In Figure 11, when a method in a row 

is compared with another method in a column, statistically 
signifcant positive and negative differences are represented 
with up and down arrows, respectively. The right arrow 
shows that the F-Measure values of the two methods (in 
the corresponding row and column) are comparable. During 
binary characterization, the F-Measure values obtained with 
Vote are statistically better than other methods except DT 
and all methods perform better than NB, except RF. The 
overall performances of the KLD, CE and SVM are compa-
rable. In multi-class characterization, the F-Measure values 
of all methods are comparable, except NB and RF. 

Model Performance in Cross Validation: During bi-
nary characterization, the performance of the IT meth-
ods is consistent. However, the performance of ML 
techniques varies depending on the VDO noun group 
or label (noun group value). 

In multi-class characterization, the IT methods are 
more consistent than the ML methods. The average 
F-Measure values obtained for noun group values are 
between 0.87 and 0.91 for all ML and IT methods, except 
NB, with an average F-Measure value of 0.79. 

4 INSTRUMENTATION: REAL-TIME MINING AND 

CHARACTERIZATION OF RAW VULNERABILITY DATA 

To examine our automated vulnerability characterization in 
the context of vulnerability management workfow, we have 
instrumented a platform to curate vulnerability data in real-
time, and used our characterization approach to describe 
them using NIST VDO and share vulnerabilities publicly. 
This platform aims to automate the manual vulnerability 
curation activities currently in place in NIST’s NVD. 

Through instrumentation we investigate two main re-
search questions (1) whether this automated instrumenta-
tion would help curate and disseminate CVEs faster than 
current systems (e.g. NVD and MITRE CVE programs), and 
(2) can ML techniques reduce the manual effort for review 
and characterization of CVEs. In particular we will carry out 
a set of qualitative and quantitative studies to answer these 
two overall questions. 

The reminder of this instrumentation section is orga-
nized as follows: sub-section 4.1 describes the instrumen-
tation platform; sub-section 4.2 reports an empirical study 
of CVE disclosure timing analysis, therefore demonstrating 
that our proposed instrumentation outperforms NVD in 
terms of timely disclosure of vulnerabilities; sub-section 4.3 
further evaluates the accuracy of our approach in a scenario 
simulating if it was deployed publicly for the use in the 
wild; sub-section 4.4 reports a qualitative study demonstrat-
ing the practical-significance of our approach in supporting 
the analysts in their daily job and reducing their effort in 
terms of time spent to review and characterize CVEs; lastly 
sub-section 4.5 demonstrate how the automated charac-
terization can further assist the analysts by automatically 
generating CVE’s severity scores–a labor-intensive activity 
that is performed manually today. 
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Fig. 12: The process fow of the NVIP Source URL Crawler. 

4.1 Automated Web-Mining to Curate Raw Vulnerability 
Data (CVEs) 

The instrumented platform includes several different com-
ponents as illustrated in Figure 1. 
CVE Source Crawler: The frst component is the CVE 
Source Crawler responsible for continuously identifying and 
maintaining an updated list of potential CVE sources, i.e., 
web sources that actively disclose software vulnerabilities. 
To curate vulnerability data as soon as they are disclosed, 
we compiled an extensive seed list of web-sources that dis-
close vulnerabilities. These seed lists contain CNAs1, security 
advisories, and other public sources that disclose software 
vulnerabilities. To extend these web-sources, we developed 
multi-thread CVE source crawler module to help maintain an 
updated list of potential CVE sources. It takes a list of seed 
URLs as input and spawns multiple processes to scrape 
all these pages and all outgoing links from each page to 
reach additional potential sources. Source URL Crawler is 
a confgurable software component that has a crawl depth 
parameter. It can continue to crawl all the links in each page 
until the confgured depth is reached. Each page content is 
checked with regular expressions to test if a valid CVE ID 
is included or not. Only the pages that include a valid CVE 
ID are included in the fnal source list, and all other pages 
are ignored. Detected CVE sources are checked against the 
existing sources of the NVIP, and newly detected sources 
are added to the database. Meanwhile, CVE Source Crawler 
keeps track of the status of each source URL and removes it 
from the database if it cannot be reached anymore due to a 
variety of HTTP errors. Source Crawler can be scheduled to 
run as a service, to ensure all CVE sources are updated in a 

1. CVE Numbering Authorities 

timely manner. The process fow of the Source URL Crawler 
is shown in Figure 12. 
CVE Content Crawler The second component leverages 
various parsers to extract CVE descriptions from each web-
source. These CVEs are then processed by NLP-Based Rec-
onciling methods to analyze CVEs with the same identi-
fcation number (CVE ID) and make sure the correct and 
most updated version of each CVE description is kept. Each 
source might be disclosing new CVEs, or updating existing 
ones multiple times in a week, day or even hour. CVE 
Content Crawler keeps track of the CVE contents at each 
source, to make sure that curated CVEs are up-to-date. It 
fetches CVE sources from the database and spawns multiple 
CVE crawlers to look at each source in parallel. The list 
of CVEs returned by different content crawler processes 
might have similar CVE instances (with the same CVE 
ID). Therefore, the outputs of these processes need to be 
reconciled to ensure that only the most recently updated 
instance of each CVE is included. Crawled CVEs are recon-
ciled using the CVE reconciliation process. All crawled and 
reconciled CVEs are checked against the CVEs that exist in 
the database, to go through another reconciliation process 
and identify the ones that are new since the most recent run 
or have updated content. 
CVE Reconciling: The most challenging problem for the 
CVE reconciliation algorithm is to decide whether an exist-
ing CVE description has to be updated or not. To address 
this challenge, a rule-based reconciliation method is devel-
oped which uses NLP to extract informative metrics from 
CVE descriptions. The method uses four characteristics, i.e., 
the length of the CVE description, the number of sentences 
in the description, part-of-speech (PoS) diversity, and the 
number of unidentifed PoS. Based on these characteristics, 
four metrics are developed to identify if the new CVE 
description is longer (“Longer”), it has less unidentifed 
PoS (“Less Unknown”), it has more sentences (“More Sen-
tences”), and it has more diverse PoS (“More Diverse”). 
Using these four metrics we decide if a CVE description 
needs to be updated as shown in Table 7. 

TABLE 7: Truth table used for CVE description update rule 
set. 

Less Unknown Longer More Sentences More Diverse Update 
False False True True True 
True False False True True 
True False True False True 
True False True True True 
True True False True True 
True True True False True 
True True True True True 

The last components of the system, leverage VDO at-
tributes and historical vulnerability data to automatically 
characterize CVEs, calculate a severity score for each CVE. 
and carry out the CVE analysis described in Section 4.2. 

4.2 Timing Analysis of CVE Curation 

This section performs a CVE disclosure timing analysis 
to compare the CVE disclosure times of our instrumented 
approach with the NVD. We use automated and scheduled 
crawlers to fnd software vulnerabilities as soon as they are 
disclosed. Then, we use the characterization techniques to 
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identify the attributes of the vulnerabilities. In an experi-
ment, we measured the gaps between the time CVEs are 
found and characterized by our system and the time they 
frst appear in the NVD. Between 5/23/2020 and 7/31/2020, 
our approach has detected 575 vulnerabilities earlier than 
NVD, with time gaps ranging from 7 to 95 hours. The 
distribution of the time gaps for these 525 vulnerabilities 
is shown in Figure 13. 

For example, CVE-2020-13753 is a vulnerability that al-
lows access outside the sandbox of WebKitGTK and WPE 
WebKit (https://webkitgtk.org/), prior to version 2.28.3 
and was found at 7/11/2020 08:18:00. The same vulnera-
bility was published on NVD at 07/14/2020 and included 
in the NVD Data Feeds (https://nvd.nist.gov/vuln/data-
feeds) approximately 95 hours after the vulnerability was 
found by our system. 

While NVD publishes a received CVE, still many at-
tributes of the CVE may be incomplete. For instance, as 
of September 3rd 2020, the status of CVE-2020-24717 was 
‘Undergoing Analysis’ and CVE details were missing. The 
vulnerability characterization is aimed to convert this pure 
manual process to a semi-automated process. Furthermore, 
characterization of CVEs can automate the generation of 
vulnerability severity score (CVSS) and other metrics [20]. 
Additional analysis showed that the developed proof-of-
concept tool was able to identify 100% of CVEs in NVD 
in a signifcantly shorter amount of time. Furthermore, it 
was able to fnd additional CVEs that did not exist in 
NVD at all, because either they were reserved by a CVE 
Naming Authority or going through an analysis process 
before getting published. 

Fig. 13: The distribution of the time gaps (hours) for CVEs 
that were detected earlier than NVD between 5/23/2020 
and 7/31/2020. 

Rapid CVE Curation: Our initial results indicate that 
the proposed approach can detect and characterize 
vulnerabilities up to 95 hours earlier than NVD. It can 
signifcantly reduce the manual effort in the analysis 
process and reduce the time gap between the disclosure 
of CVEs and their publication. 

4.3 Case Study: Model Performance on 2020 CVEs 

The goal of this case study is to examine how our solution 
performs if it was deployed publicly and used on unseen 
data. We created a case study by pulling a set of recent CVEs 
from NVD (with CVE-ID > 2020-14000) to measure the 
performance of the trained models using real-world CVE 
examples. The models were trained on the data collected 
earlier and tested on this new data-set. CVEs included in 
the case study were not used while training the models. 

First, each CVE was labeled with the applicable noun 
group values in each of the fve VDO domains. Then, 50 
CVEs were selected from the labeled CVEs, with the com-
mon criteria of maintaining a balanced label distribution 
in each test set. Except some rarely observed noun group 
values like Physical and Local in Attack Theater, Guest OS 
in Context and Resource Removal in Logical Impact, all noun 
group values are represented with at least 15% of the test 
instances. Using each method, all CVEs in the case study 
were characterized by the binary or multi-class characteriza-
tion methods described in Section 2.6. Attack Theater, Context 
and Impact Method noun groups were used to test multi-
class characterization (Section 3.2). Therefore, the multi-
class characterization with the single-chance and double-
chance approaches were used to characterize CVEs for these 
groups. For the Logical Impact and Mitigation noun groups, 
the binary classifcation approach was used. 

Fig. 14: The accuracy of different methods in the case study 
with binary characterization (80% levels are marked with a 
dashed red line). 

Figure 14 shows the accuracy metrics of the ML and IT 
methods with binary characterization. Based on the overall 
average accuracy metrics across all noun group values, KLD 
and Vote achieve the best average accuracy of 0.88. Figure 
15 shows the accuracy metrics of the ML and IT methods for 
multi-class characterization with single-chance and double-
chance approaches. In the single-chance approach, KLD, CE 
and SVM methods achieve accuracy between 78% and 90%, 
and these accuracies increase up to 96% with the double-
chance approach. With the single-chance approach, SVM, 
KLD, and CE achieve an average accuracy of 0.85, 0.81, 
and 0.81, respectively, across the three VDO noun groups. 
With the double-chance approach, these accuracies increase 
to 0.90, 0.92, and 0.92 for SVM, KLD, and CE, respectively. 

https://webkitgtk.org/
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds
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Fig. 15: The accuracy of different methods in the case study 
with multi-class characterization (80% and 90% levels are 
marked with a dashed red line). 

Fig. 16: The box plot of the F-Measure values of binary 
characterization in the case study. 

Fig. 17: The box plot of the F-Measure values of multi-class 
characterization in the case study. 

To compare different characterization methods in the 
case study, we use the F-Measure values of the noun group 
values obtained during binary and multi-class characteriza-
tion. Figure 16 and 17 show the box plots of the F-Measure 
values obtained for binary and multi-class characterizations, 
respectively. Figure 18 shows the statistically signifcant 
differences between the F-Measure values of each method 

Fig. 18: T-test results to compare F-Measure values for 
binary (A) and multi-class (B) characterization in the case 
study, where each cell shows the difference when the 
method in the row is compared with the one in the column. 

during the case study. During binary characterization, for 
Logical Impact and Mitigation, DT models had a better per-
formance with 10 folds cross-validation, however, they did 
not perform that well in the case study. The change in 
the performance of the DT model led to a loss in the 
performance of the ensemble voting classifer as well. The 
average F-Measure values of DT and Vote decreased from 
0.93 and 0.92 to 0.80 and 0.75, respectively. The performance 
decrease of the DT models could be explained by the slight 
change in their underlying training data sets (due to using 
100% of the data for training this time, instead of cross 
validation). In spite of pruning, changes in the training data 
of a decision tree model can cause a signifcant difference 
in the tree structure, which might lead to a performance 
variation [32], [33]. 

We observe a more consistent prediction performance 
with the IT methods during the case study. Figure 18 shows 
that both KLD and CE achieve comparable results with NB, 
DT, and Vote and perform better than SVM and RF during 
binary characterization. Similarly, they achieve comparable 
F-Measure values with SVM and DT and do signifcantly 
better than NB, RF, and Vote during multi-class (single 
chance) characterization. We confrm the same observation 
with the multi-class double-chance approach as well. 

Model Performance on 2020 CVEs: The results of the 
Model Performance case study indicate that the trained 
models are able to characterize CVEs in the wild with 
high accuracy, and these models can be leveraged to 
decrease the manual CVE characterization efforts in the 
community signifcantly. 

4.4 Qualitative Study: Effort Reduction in Manual CVE 
Review and Characterization 

We conduct a human-subject study to investigate whether 
the automated CVE characterization approach can enhance 
the analysts productivity in CVE reviews and characteriza-
tion. In particular, we will measure the amount of time spent 
to characterize CVEs for fve studied VDO noun groups 
Attack Theater, Context, Impact Method, Logical Impact, and 
Mitigation. Six researchers (from the authors of the paper) 
who had up to 10 years of experience with CVE analysis 
and were familiar with the NIST Vulnerability Description 
Ontology used the descriptions of the 20 most recent CVEs 
pulled by automated crawlers of the developed tool to char-
acterize them for fve VDO noun groups. Included CVEs 
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had varying sizes between 651 and 5752 characters (includ-
ing spaces) and all characterizations were done using the 
CVE descriptions only, without searching for any additional 
information about them. 

We conducted a one factor with two-treatment controlled 
experiment and followed a crossover design or within-
group where each subject receives the two treatments, and 
we get repeated measures [34]. Another option was a par-
allel or between-group design where each subject receives 
only one treatment and we obtain independent measures. 
There are advantages and disadvantages to each design. 
For instance, the benefts of a crossover design are the 
elimination of the effects of confounding variables, such as 
experience, as each subject serves as his/her own matched 
control, and a higher statistical power with fewer subjects. 
On the other hand the parallel design minimizes the learn-
ing effects, a known challenge in controlled experiments on 
program comprehension [35]. In our study, there also be a 
third challenge related to treatment shift that may impact 
the mental model and productivity of participants. We chose 
crossover design for this qualitative case study. 

We use various blocking techniques to control sources of 
variation that will reduce error variance. This include source 
such as participants experience, or learning biases because 
of the order of tasks or exposure to other vulnerability data. 

To block the co-founding impact of software and cyber-
security experiences researchers were scored according to 
the amount of time they worked on (1) secure software 
development, (2) software vulnerabilities, (3) vulnerability 
characterization, and (4) the Vulnerability Description On-
tology. Researchers were sorted according to their experi-
ence, where the average of the number of months spent on 
each of the aforementioned four areas is used to measure the 
experience of each subject. The case study was composed 
of two stages and two subject groups were created by 
including the frst, third, and ffth subjects in the frst user 
group U1 and the second, fourth and sixth subjects in the 
second user group U2, to make sure the average experience 
of each group is close. 

To block the impact of learning biases due to the order of 
exposure to the vulnerability data and treatment, we reverse 
the order of treatment from one group to the other group. 
In such setting, the software security experience across two 
groups is balanced, while we do not believe the order of 
treatment will have an impact, we take a further action to 
minimize the impact of learning biased due to the order of 
treatment. Half of participants receive the treatment in one 
order and other half in another order. 

Twenty CVEs derived from the developed tool were 
divided into two groups C1 and C2, and on each stage 
of the case study each user group worked on one CVE 
group using either a pure manual characterization or semi-
automated characterization approach leveraging the trained 
AI/ML models. For the semi-automated characterization, the 
system was confgured to use the multi-class characteriza-
tion with Vote. 

During Stage 1, researchers in U1 were given the de-
scriptions of the CVEs in C1 and went through a pure 
manual characterization process where they recorded the 
time spent to read, understand and characterize each CVE 
for each of the fve VDO noun groups. For each CVE and 

VDO noun group, researchers read the description of each 
CVE carefully, used their best judgment to select one or 
more relevant noun group values (labels) and recorded the 
amount of time elapsed while reading the CVE description 
and characterizing it for the noun group. Similarly, in ad-
dition to the descriptions of the CVEs in C2, subjects in U2 

were provided with the set of labels that were predicted 
for each CVE in C2. Each researcher reviewed the CVE 
descriptions in C2 to verify the automatically assigned la-
bels, and recorded the amount of time spent to fnalize the 
characterization process for each CVE noun group pair. Re-
searchers evaluated the automatically assigned labels based 
on their subjective judgment, therefore the amount of time 
spent varied depending on the subjects’ judgment and the 
match between their labels and the automatically assigned 
ones. For example, if automatically assigned labels included 
a noun group value that the subject did not expected to see, 
then the verifcation process took a longer period of time to 
clarify if the assigned label was wrong or the subject was 
missing or ignoring a fact. During the second stage of the 
case study, this time subjects in U1 used the semi-automated 
characterization approach to characterize CVEs in C2 and 
subjects in U2 used the manual characterization to characterize 
CVEs in C1. 

To have an overall insight about the value of the pro-
posed automated approach in terms of characterization 
timing, the average of the time values recorded by each 
subject for each noun group are calculated for manual 
and semi-automated characterization. Figure 19 shows the 
comparison of the average times for the manual charac-
terization process and the semi-automated one using the 
trained AI/ML models. Based on the average of the time 
values recorded by six subjects, we observe that a signifcant 
amount of time is saved when the proposed automated 
approach is used for CVE characterization. The percentage 
of time saved for the Attack Theater, Context, Impact Method, 
Logical Impact, and Mitigation noun groups are observed to 
be 48.4%, 44.7%, 51.5%, 37.0%, and 39.1%, respectively. 

Fig. 19: Average characterization time of fve noun groups 
for the manual CVE characterization process and the semi-
automated one leveraging the trained AI/ML models. 

To evaluate the performance of the manual and semi-
automated characterization processes, we calculate the true 
positive and false negative counts for the noun group values 
assigned by each subject during the case study. Figure 20 
shows the recall values of the two approaches for each noun 
group. We observe higher recall values for each noun group 
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during the semi-automated characterization, where the subjects 
are provided with labels that are automatically assigned by 
the AI/ML models. The percentage of improvement in the 
recall values of the Attack Theater, Context, Impact Method, 
Logical Impact, and Mitigation noun groups are observed 
to be 5.1%, 12.6%, 8.8%, 15.8%, and 5.0%, respectively. A 
paired t-test with α = 0.05 is used to run a statistical 
signifcance test on the recall values obtained for the noun 
group values during the manual and semi-automated char-
acterization processes. The paired t-test result indicates that 
the difference between the recall values of the two processes 
is signifcant with a p value of 0.0009. 

Fig. 20: Recall values for each noun group during the man-
ual CVE characterization process and the semi-automated 
one leveraging the trained AI/ML models. 

Manual Effort Reduction: The results of the qualitative 
study with security subject matter experts (SME) shows 
that when the proposed automated approach is used 
by security SMEs, up to 51.5% of the time spent for 
CVE characterization could be saved in comparison to a 
full manual process. Furthermore, the recall value of the 
characterization process increases up to 15.8%, making 
the effort more accurate. 

4.5 Automated CVSS Scoring using the NIST Vulnera-
bility Description Ontology 

To further support the analysts in the manual review of 
CVEs to generate severity scores, we investigate whether 
our predicted VDO labels can be further used to score 
the severity of published CVEs automatically. This scoring 
capability is currently limited because the draft version of 
the VDO is not expressive enough to provide a thorough 
mapping from VDO to CVSS. However, a goal of VDO is to 
support such mappings and thus the fnalized version to be 
developed by NIST may remedy the weaknesses revealed 
by this work. 

Our high level approach is to identify available map-
pings from the VDO labels to CVSS attributes. Then, for 
a set of CVEs for which we’ve identifed VDO labels, we 
create partial CVSS vectors (where wildcards are used for 
some attributes and some attribute value sets). We then use 
historical CVE data from the NVD to fnd all CVEs that 
match the partially specifed vectors. Lastly, we estimate a 

CVSS score for each partial vector by taking the median 
CVSS score from all matching CVEs. 

More specifcally, we frst defne a set of rules to map 
the fve VDO noun groups [20] studied in this paper to the 
CVSS version 3.1 [36] base metrics. For each of the entries in 
the CVSS base metric group, the following set of rules are 
used to establish the mapping: 

• Attack Vector (AV): The VDO labels under the Attack 
Theater noun group are Remote, Limited Remote, Local, 
and Physical). These four map respectively to the four 
CVSS Attack Vector metric values: Network (AV:N), 
Adjacent (AV:A), Local (AV:L), and Physical (AV:P). 

• Attack Complexity (AC): According to the CVSS spec-
ifcation, the complexity of an attack can either be Low 
(AC:L) or High (AC:H). The default value of the Attack 
Complexity is assumed to be AC:L, however when a Man 
in the Middle attack is identifed the attack complexity 
is set to AC:H. This is the only VDO value that appears 
to affect AC. 

• Scope (S): The scope of an attack is assumed to be 
Unchanged (S:U) by default. A scope value of Changed 
(S:C) is assigned when a Context Escape impact method 
or Sandboxed mitigation tactic is detected. 

• Confdentiality (C), Integrity (I), Availability (A): The 
CVSS impact metrics of Confdentiality, Integrity and 
Availability (CIA) are each allowed to have one of three 
values: None (N), Low (L), and High (H). For our work, 
we add a value of Unknown (U) which indicates that 
the metric is not N but that the VDO does not enable 
us to distinguish between L and H. Each CIA metric is 
assumed to be N unless there is evidence otherwise. 
We map each CIA metric to a distinct metric specifc 
set of logical impacts: Read and Indirect Disclosure for C, 
Write and Resource Removal for I, and Service Interrupt 
for A. U is tentatively assigned for a CIA metric if at 
least one of the metric specifc set of logical impacts 
applies. A U value is upgraded to an H if the VDO 
logical impact Privilege Escalation also applies. A logical 
impact of Privilege Escalation (with no other logical 
impacts specifed) upgrades a N or U value to H as 
the VDO specifcation states that Privilege Escalation by 
itself implies all other logical impacts. 

• Privileges Required (PR) and User Interaction (UI): 
For the PR and UI base metrics of the CVSS specifca-
tion, no mapping is defned. This is because the studied 
VDO noun groups do not convey the level of required 
privileges and the requirement of user interaction. The 
values of the CVSS metrics that had no mapping were 
set to ‘X’ to indicate no value was assigned. 

During the case study, the system was confgured to 
use the multi-class characterization with ensemble voting, 
and all CVEs published during 2020 and 2021 were char-
acterized automatically to predict VDO noun group values 
for each CVE. CVEs published before CVE-2020-14000 were 
excluded from the case study, because they were included 
in the training data sets. Given a CVE description, the labels 
for the fve studied noun groups were predicted using the 
trained AI/ML models and the aforementioned mapping 
rules were used to generate a partial CVSS feature vector for 
each CVE. For example, if Remote, Man in the Middle, Write 
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and Mitigation labels are predicted for the Attack Theater, 
Impact Method, Logical Impact, and Mitigation noun groups, 
then the CVSS vector [N, H, X, X, C, N, U, N ] is created 
based on the defned rules, where each entry in the vector 
represents the Attack Vector, Attack Complexity, Privileges 
Required, User Interaction, Scope, Confdentiality, Integrity, and 
Availability component, respectively. Please note that the PR 
and UI metrics are set to X , because no mapping is defned, 
and the value of the Integrity is set to U to indicate the 
ambiguity of the level of integrity violation. Once a partial 
CVSS vector is generated from the VDO labels derived from 
a CVE description, it was matched against the CVSS vectors 
of the previously published CVEs between 2015 and 2019 
that match the partial vector and that had a score assigned 
by NVD. The median CVSS score of the matching CVEs is 
used to assign the severity score of the CVE. Median was 
used instead of mean to minimize the sum of the distances 
between the chosen value and all applicable CVSS values. 

Our analysis showed that out of the 6777 CVEs pub-
lished in 2020 (after CVE-2020-14000) and 2021 (up until 
2/25/2021), 317 did not have a base CVSS score assigned 
by NVD. For each of the remaining 6460 CVEs, the partial 
CVSS vector generated from VDO is matched with the CVSS 
vectors of CVEs published between 2015 and 2019. Figure 21 
shows the distribution of the 6460 CVSS scores assigned by 
the proposed automated approach and the NVD. The mean 
of the CVSS scores assigned by our method and NVD are 
6.8 and 7.2, respectively. Furthermore, the mean absolute 
error of the scores assigned by our approach is found to 
be 1.6 when compared to the scores assigned by NVD. 
This proof of concept case study provides promising results 
and shows that automated CVSS score calculation could be 
possible. Please note that the performance of this case study 
could be improved further if additional VDO noun group 
values enabled more thorough coverage of the CVSS metrics 
(especially for the impact of an attack) in the next releases 
of VDO. 

Fig. 21: The box plot showing the distribution of the me-
dian CVSS scores calculated by the described automated 
approach and the scores assigned by NVD. 

VDO-based Automated CVSS Calculation: The results 
of the CVE scoring case study shows that predicted 
VDO labels can be used to score the severity of CVEs 
automatically. For 6460 CVEs analyzed during the case 
study, the mean values of the CVSS scores assigned 

by the proposed automated scoring approach and the 
NVD are found to be 6.8 and 7.2, respectively. 

In summary, Section 4 frst briefy described an auto-
mated system developed to mine the web and curate raw 
vulnerability data and then provided a set of quantitative 
and qualitative studies to showcase its contributions by: 

1) Testing the system for 68 continuous days to perform a 
timing analysis for CVE curation and show that CVEs 
could be found and curated earlier than NVD that heav-
ily rely on manual processes. 

2) Monitoring the system’s performance on real-life CVEs 
to simulate its use by security analysts and show that 
CVEs with free-form vulnerability descriptions can be 
characterized automatically with high accuracy. 

3) Demonstrating the effort reduction brought by the de-
veloped system. A human-subject study was performed 
to show that a significant portion of the time that is 
currently spent on manual CVE curation could in fact 
be saved. 

4) Conducting a quantitative study to show the developed 
system can be used for automated CVSS severity scor-
ing. 

5 USE CASES 

Semi-Automated Analysis of Vulnerability Reports: Vul-
nerability reports, bug reports, and issue tracking tickets 
exist in a free text format. Automated characterization meth-
ods can extract valuable information from textual reports 
to easily interpret them and draw conclusions from them. 
While in this work we only applied the characterization 
techniques to CVE data, our approach can also be applied 
to other sources of information such as bug reports, vulner-
ability reports, developer discussions forums, and any other 
textual artifact. 
Enable automated analysis using metrics such as the Com-
mon Vulnerability Scoring System (CVSS): Conversion of 
CVE description into VDO ontology will enable developers 
to obtain an estimated value for vulnerability CVSS scores 
on demand. NIST provides a method that describes how to 
map VDO noun-groups to CVSS scores and provides the 
reasoning for the mapping [20]. Using the automated vul-
nerability characterization with this mapping, it is possible 
to build a just-in-time CVSS score generation method. 
Support CNAs: NVD relies on voluntary submissions by 
various CNAs, however some of the CNAs do not have 
adequate resources, guidelines, or tools to establish a sus-
tainable submission method. A semi-automated approach 
will reduce the cost of describing and reporting software 
vulnerabilities for these CNAs. 
Help Developers Characterize and Reason about Security 
Bugs: The proof of concept system developed during this 
work will provide the minimum information needed to 
properly inform all the stake-holders and facilitate the shar-
ing of vulnerability information across language barriers. 
Rapid Access to Vulnerability Data: The system developed 
for this work discovers and characterizes vulnerabilities as 
soon as they are disclosed. The real-time nature of this 
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process can help many organizations access the newest 
vulnerabilities and make informed decisions in-time. 

6 RELATED WORK 

Accurate vulnerability information is crucial for 
program repair [5], [37], vulnerability model-
ing/prediction/detection [38]–[40], exploit generation [41], 
and conducting empirical studies [1], [2], [14], [42], [43]. 
Security practitioners need vulnerability information in 
a timely manner to patch their systems properly [1]–[5], 
[44], [45]. Prior works have studied and enumerated the 
challenges of aggregating vulnerability information in an 
automated fashion, to allow reasoning [44]–[47] as well 
as create a common vocabulary for sharing vulnerability 
data [48], [49]. Currently, there are many security-related 
databases that contain information about vulnerabilities, i.e., 
descriptions, related vendor advisories, patches, exploits, 
root causes, and consequences. Examples of these databases 
are Exploit DB [11], Security Focus [10], VulnDB [9], IBM 
X-Force [50], VulnCode-DB [8] and NVD [7]. However, 
vulnerability data in these systems may not always provide 
all information needed to conduct empirical studies. For 
instance, ExploitDB is focused on providing code snippets 
for breach exploits, whereas NVD lacks such information 
built-in. Therefore, security researchers often create their 
own datasets, but these datasets are not always reusable by 
other researchers [51], [52]. 

NVD is widely used as the main source of vulnerabil-
ity information in previous research, motivating empirical 
studies on the accuracy and consistency of information 
available in NVD [13], [16], [17], [53], [54]. Dong et al. 
[17] described VIEM, an approach to detect vulnerable 
software names and their versions from free text and used 
it to examine NVD’s vulnerability information consistency. 
They found that NVD contains incorrect information about 
vulnerable software versions. Similarly, Nguyen and Mas-
saci [53] studied CVEs associated with Google Chrome, and 
found non-negligible errors in NVD’s vulnerable software 
versions data that could affect conclusions drawn in em-
pirical studies that rely on it. Zhang et al. [16] explored the 
use of NVD’s data to perform vulnerability prediction. They 
found diffculty in building prediction models that perform 
well based on NVD data. Among the reasons identifed in 
this work are data quality problems regarding affected vul-
nerable software versions in NVD and missing information 
for CVE instances. Dongliang et al. [13] scrutinized 368 
vulnerability reports to quantify their reproducibility. They 
found that one single source of vulnerability information is 
not enough for reproducibility, because it is often incom-
plete and forces security professionals to manually debug 
and guess, to infer missing information. 

Because of the data quality problems in the existing vul-
nerability databases, some prior works focused on creating 
vulnerability datasets that researchers could reuse in their 
work. Ponta et al. [55] described a dataset of vulnerability 
fxes, curated by extracting CVEs from NVD and performing 
a manual analysis of these reports in order to identify the 
commit(s) that fx the CVEs. Similarly, Fan et al. [56] released 
a dataset of commit fxes for C/C++ programs. Gkortzis 
et al. [57] described VulinOSS, a dataset of vulnerabilities 

that correlates software metrics from 8,694 open-source 
software with their particular vulnerabilities. Namrud et 
al. [58] presented AndroVul, a dataset of vulnerabilities 
in Android apps to be used as a benchmark for security 
research. Although these datasets are useful for researchers 
and practitioners, they are limited in terms of the underlying 
programming language/domain of the sample programs 
(e.g., C/C++, Android apps) as well as the vulnerability 
information types they cover (e.g., commit fxes, software 
metrics). 

Other prior works focused on investigating some of the 
problems observed in the current vulnerability management 
systems, attempting to automatically characterize vulner-
abilities [59]–[65]. Some works investigated approaches to 
characterize specifc attributes related to the life-cycle of 
a vulnerability (i.e., time of introduction, disclosure, and 
patch) [66]–[68] as well as their severity [18], [69], [70]. Joshi 
et al. [60] attempt to partially solve the problem of vulner-
ability characterization by proposing the use of techniques 
that automatically extract a limited set of security entities 
from free-text. However, an automated end-to-end approach 
is needed to characterize vulnerabilities and reduce the 
manual effort needed for CVE management. Some prior re-
search studies attempt to automate the process of accurately 
identifying all software product versions that are affected 
by a vulnerability [62], [63]. However, these automated 
processes of tracing vulnerable software releases suffered 
from weaknesses that result in a high number of false 
positives. In a relatively recent study [61], CVEs derived 
from a vulnerability report platform are used to categorize 
vulnerabilities, predict their risk level, and identify solutions 
required to address them. However, vulnerabilities were 
derived from a single source, and the generated data set was 
very limited, i.e., only 39,417 vulnerability entries in 16 cat-
egories were considered. A more comprehensive approach 
is needed to design and develop a continuously running 
automated platform that considers multiple vulnerability 
sources. Furthermore, it should provide intelligent analysis 
and characterization services to the software community, 
identifying the vulnerability context, impacted target assets, 
attack methods, and potential mitigation techniques based 
on a well-known vulnerability ontology. 

7 THREATS TO VALIDITY 

In this section, we briefy summarize the internal, external, 
and construct validity threats and the measures taken to 
mitigate each threat [71]. 

An internal validity threat occurs when the cause-effect 
relationship between the dependent and independent vari-
ables are not trustworthy. To help mitigate internal validity 
threats, frst we selected a set of real-life CVEs and used 
CVE descriptions as the sole source of context-aware feature 
extraction and vectorization. We used a variety of machine 
learning and information theoretical methods to cross-check 
our fndings, and applied cross validation to report empiri-
cal fndings. 

External validity determines how well the results of a 
study can be generalized, and it is threatened when the 
results observed on one data set are not applicable to oth-
ers. To mitigate external validity threats, frst we collected 
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data from a diverse set of real-life CVEs which report real 
vulnerabilities from a variety of domains. While evaluating 
whether the process of vulnerability curation and characteri-
zation can be improved using ML and information retrieval, 
we used cross-validation during quantitative analysis and 
a cross-over design approach during qualitative studies to 
minimize potential biases. However, one of the limitations 
of our study is the size of the datasets used during the 
quantitative and qualitative analyses. Since manual CVE 
characterization is a time-consuming and expensive pro-
cess, we used a small set of CVEs during these analyses 
to demonstrate the practical contribution of the proposed 
approach. More experiments with larger sets of more diver-
sifed CVEs might be needed to cross-check our fndings. 

Construct validity defnes how well an experiment can 
measure its claims and can be threatened by a variety of 
factors, including errors in the experiment pipeline and bi-
ases in the experiment design. To mitigate the construct va-
lidity threats, we automated all experiment steps including 
CVE pre-processing, feature extraction, vectorization, model 
training and testing. To mitigate any potential biases, we fol-
lowed a cross-over design approach during the qualitative 
analyses. However, it should be noted that predicted CVE 
noun group values are dependent on the natural language 
description of the underlying CVE, and the wording of the 
vulnerabilities matters. To ensure repeatability, we used the 
CVE descriptions from the NVD, but an AI/ML model may 
predict different noun group values for the same CVE if its 
description is pulled from a different vulnerability database. 
Therefore, it could be good to perform the same set of 
experiments on the same set of CVEs pulled from different 
CNAs. Furthermore, we used the default parameter set in 
Weka to carry out the ML experiments. Conducting pa-
rameter tuning may improve the performance of some ML 
algorithms (e.g., SVM) and that may boost the performance 
of the voting algorithm as well. Therefore, the comparison 
between the ML and IT methods may produce slightly 
different results when model parameters are tuned. And f-
nally, we used a threshold value of ρ = 0.7 (and not 0.5, like 
classifers do by default) during our experiments for multi-
class CVE characterization. This was chosen heuristically to 
increase the probability of seeing the second or even the 
third predictions. Using a different threshold might affect 
the performance of multi-class characterization. The script 
used to run the experiments will be shared in the GitHub 
repository and different ρ values could be tested by future 
works. 

8 CONCLUSION 

This paper uses novel Natural Language Processing (NLP), 
Machine Learning (ML), and Information Theoretical (IT) 
methods to show the feasibility of automated CVE collection 
and characterization. It develops a confgurable, scalable, 
and portable proof of concept experimental system which 
crawls CVEs from security bulletins, advisories, exploit 
databases, issue tracking systems, and provides automated 
vulnerability characterization services. 

It uses the public NIST’s VDO framework to characterize 
CVEs and help unify vulnerability communication in the 
security community. For each CVE, it identifes where an 

attack comes from, the vulnerability context, impact meth-
ods used in the exploits, potential consequences (logical im-
pacts) and mitigation strategies. Five researchers followed 
a systematic methodology and spent 3000+ person-hours 
to generate labeled CVE data sets for fve domains (noun 
groups) in the VDO framework. Using conventional ML 
classifers and novel IT methods, binary and multi-class 
prediction models are built to characterize CVEs in fve 
domains and provide automated vulnerability intelligence 
capabilities. 

The performance of a set of conventional ML methods 
and novel IT approaches are compared for binary and multi-
class characterization. First, a ten folds cross-validation ap-
proach is used to test each method, and then a case study 
is created to evaluate the performance of each method on 
real-life CVE examples. Experiment results indicate that 
CVEs can be characterized instantly, with relatively high 
F-Measure values. Our analysis reveals that the proposed 
entropy-based IT technique achieves similar or even better 
performance compared to the conventional ML classifers. 
A second case study is created to measure the value of the 
proposed approach in terms of the amount of time spent in 
the characterization process. The case study results indicate 
that the proposed methodology could save up to 47% of 
the time spent for vulnerability characterization and could 
signifcantly speed up the CVE publication process. 

Our vectorization method combines TF-IDF with n-gram 
to be able to capture contextual information about each 
term. In particular, as we described earlier, this is impor-
tant for the security domain that often context plays an 
important role in reasoning. This paper demonstrates the 
possibility of automating a task that today is done manu-
ally. Given the current analysis pipeline and the promising 
results, we demonstrate the practical signifcance of the 
approach. Future research could improve the performance 
of the algorithms further by leveraging word2vec models 
trained on a domain-specifc corpus and using tuned pa-
rameters for ML methods. 
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