
1

Empirical Validation of Automated Vulnerability
Curation and Characterization

Ahmet Okutan, Peter Mell, Mehdi Mirakhorli, Igor Khokhlov, Joanna C. S. Santos, Danielle Gonzalez, and
Steven Simmons

Abstract—Prior research has shown that public vulnerability systems such as US National Vulnerability Database (NVD) rely on a
manual, time-consuming, and error-prone process which has led to inconsistencies and delays in releasing fnal vulnerability results.
This work provides an approach to curate vulnerability reports in real-time and map textual vulnerability reports to machine readable
structured vulnerability attribute data. Designed to support the time consuming human analysis done by vulnerability databases, the
system leverages the Common Vulnerabilities and Exposures (CVE) list of vulnerabilities and the vulnerability attributes described by
the National Institute of Standards and Technology (NIST) Vulnerability Description Ontology (VDO) framework. Our work uses Natural
Language Processing (NLP), Machine Learning (ML) and novel Information Theoretical (IT) methods to provide automated techniques
for near real-time publishing, and characterization of vulnerabilities using 28 attributes in 5 domains. Experiment results indicate that
vulnerabilities can be evaluated up to 95 hours earlier than using manual methods, they can be characterized with F-Measure values
over 0.9, and the proposed automated approach could save up to 47% of the time spent for CVE characterization.

Index Terms—Software Vulnerability, CVE, Vulnerability Characterization, NIST Vulnerability Description Ontology

F

1 INTRODUCTION

Cybersecurity professionals and product vendors rely on nerabilities have to be gleaned from public advisories and
vulnerability reports to make informed decisions about the security announcements. Ideally, all vulnerabilities would
security of their products and reduce the number of related be reported by CNAs and those CNAs would report vul-
attack vectors [1]–[6]. Vulnerability databases analyze and nerability details in a structured machine-readable format.
release reports about known vulnerabilities. They publish This would remove the human analysis bottleneck. Unfor-
information such as vulnerability description, fxes/patches, tunately, this is not the situation today, and the publication
underlying software weaknesses, root causes, attack vectors, of new CVEs may take weeks or even months [19]. Even
complexity of attack, privileges required, victim interactions in an ideal future where CNAs fll out structured forms
required, scope of impact, and consequences [7]–[11]. to enter vulnerability attribute data, it is likely that only a

Public vulnerability databases, such as the NIST Na- minority portion of the tens of thousands of CVEs published
tional Vulnerability Database (NVD) [12] and those owned each year would be covered, since many vendors (especially
by the private sector, rely on manual processes to analyze small ones) may never participate. For this reason, there
vulnerabilities. They review free-form text based reports, is a great need for a system that can automate the analyst
advisories, and patch information. While this often can task by reading free-form vulnerability description text and
be done effciently for each vulnerability (i.e., consuming outputting structured vulnerability attribute data.
several minutes of analyst time), given the tens of thou-
sands of vulnerabilities published every year this is a time-
consuming process taking considerable human effort. The
analysis effort represents a bottleneck slowing down vul-
nerability publication. In addition, studies show that this is
an error-prone process that has resulted in inconsistencies
and delays in releasing fnal vulnerability results [13]–[18].

Many vulnerability databases leverage the Common
Vulnerability and Exposure’s (CVE) listing of vulnerability
records. To speed up maintenance of this list, software
vendors can directly add vulnerabilities by becoming a
CVE Numbering Authority (CNA). Non-CNA provided vul-

• M. Mirakhorli, D. Gonzalez, S. Simmons were with the Department of
Software Engineering, Rochester Institute of Technology, Rochester, NY.
E-mail: mxmvse@rit.edu

• A. Okutan is with Leidos, Reston, VA, 20190.
• P. Mell is with the National Institute of Standards and Technology.
• I. Khokhlov is with the Sacred Heart University, Fairfeld, CT, 06825.
• J. C. S. Santos is with the Department of Computer Science and Engineer-

ing, University of Notre Dame, Notre Dame, IN, 46556.

Multi-thread
CVE Source

Crawler Database

Multi-thread
CVE Content

Crawler (AI/ML)-Based
CVE characterization

HTML Parsers
(Parser Factory)

CVE
Analysis

NLP Based
CVE Reconciling

Advisories
Exploits
Issue Tracking Systems
Security Bulletins

1

2

5

3

6

4

Fig. 1: An overview of the proof of concept system that is
designed to illustrate the applicability of automated CVE
collection and characterization.

In this work, we provide a solution that can currently
assist human analysts and someday perform the work
automatically under human supervision. It is designed to
automatically curate vulnerability data and characterize
them by populating the attributes in the draft National

mailto:mxmvse@rit.edu

2

Institute of Standards and Technology (NIST) Vulnerabil-
ity Description Ontology (VDO) [20]. VDO is designed
to enable the characterization of vulnerabilities to support
vulnerability databases (especially aspects of vulnerability
scoring). Figure 1 shows a general overview of our proof of
concept experimental environment that we use to examine
the applicability of the proposed methodology.

Our methodology relies on real-time data and web-
mining techniques to collect vulnerability information as
soon as they are disclosed. It uses multiple sources, such
as security bulletins, advisories, exploit databases, issue tracking
systems, code repositories, blogs, and mailing lists. Furthermore,
it makes a novel use of Natural Language Processing (NLP),
Machine Learning (ML), and Information Theoretical (IT)
techniques to process extracted vulnerability reports and
characterizes them using VDO. Each CVE is characterized
in fve domains to identify (1) where an attack may come
from (Attack Theater), (2) the context of the vulnerability
(Context), (3) potential impact methods used by exploits
(Impact Method), (4) likely consequences (Logical Impact), and
(5) applicable mitigation strategies (Mitigation). This auto-
mated characterization of vulnerabilities can assist security
professionals in their manual review process and therefore
reduce the time to disclose or report vulnerabilities. The
contributions of this work are four-fold:

• First, it demonstrates the feasibility of developing an
automated technique to collect and characterize vulner-
abilities as soon as they are discovered. In addition to
conventional ML-based text classifcation approaches,
it introduces a novel entropy-based CVE characteriza-
tion method. To extract vectors of features from CVE
reports, it uses a new context-aware feature extraction
and CVE vectorization technique that takes into ac-
count the words and their context. Using an entropy-
based approach, extracted word vectors derived from
CVE descriptions are used to create non-parameterized
term histograms. Shannon’s entropy is used to estimate
the stochastic nature of each histogram, and the Kull-
back–Leibler divergence (KLD) [21] and Cross-Entropy
(CE) are used with entropy redistribution to measure
the dissimilarities of different term histograms. The
empirical evaluations successfully demonstrate the fea-
sibility of the entropy-based vulnerability characteriza-
tion method.

• This paper’s second contribution is in providing an
empirical study based on mixed-methods. It uses both
quantitative (cross-validations) and qualitative studies
(security subject-matter experts (SME) case study) to
evaluate whether the process of vulnerability curation
and characterization can be improved using ML and
information retrieval.

• This paper’s third practical contribution is in enhancing
vulnerability communication by using the NIST VDO
framework for automated CVE characterization. For
each CVE, our system outputs the attack vector (e.g., re-
mote or local), the vulnerable component (e.g., hypervisor
or application), the impact method (e.g., code execution
or man in the middle), the consequences (e.g., service
interruption or privilege escalation), and applicable
mitigation approaches (e.g., multi-factor authentication or

sandboxes).
• Finally, as a case study we investigate how our system

could directly support the NVD. For this, we partially
map VDO attributes to the Common Vulnerability Scor-
ing System (CVSS) attributes used by NVD and then
estimate CVSS scores. This is done only partially as a
proof of concept because the current version of VDO
does not yet fully support all needed CVSS attributes.

Reproducibility of the Results. The training data sets used
to characterize CVEs will be publicly released on GitHub
to contribute to the research and development studies
for vulnerability intelligence and characterization. All the
scripts, algorithms and their confgurations will be released
publicly. The entire software will be packaged and released
as open source.

The rest of the paper is organized as follows: Section 2
describes the research methodology used to build ML and
IT methods to characterize CVEs and explains designed
experiments. Section 3 presents the results for different
characterization methods. Section 4 discusses the validation
of performance on real-life uses cases. Section 5 describes
the use cases for our automated characterization approach.
Section 6 reviews prior works about existing vulnerability
platforms and characterization services. Section 7 discusses
threats to the validity of the work, and Section 8 provides
concluding remarks.

2 METHODOLOGY: VULNERABILITY CHARACTER-
IZATION

This work aims to minimize the manual effort needed to
characterize and describe vulnerabilities based on the NIST
VDO framework and therefore provide near real-time cura-
tion and disclosure of vulnerabilities. To do so, we develop
a web-mining technique that crawls thousands of vulnera-
bility sources and then parses and records the attributes of
the crawled CVEs. Apache Open NLP toolkit [22] is used to
reconcile CVEs based on part-of-speech (PoS) diversity and
novel AI/ML approaches are leveraged for just-in-time CVE
characterization. The characterization methodology relies
on using a context-aware feature extraction and vectoriza-
tion technique along with conventional supervised learning
methods and novel information theoretical approaches. This
section explains the research methodology, the training data
collection process and the experiments used to evaluate the
proposed CVE characterization approaches.

2.1 Vulnerability Description Ontology (VDO)

Figure 2 shows the essential pieces of the NIST framework
used for CVE characterization, where each vulnerability
attribute (i.e., noun group) is represented by a box. The
mandatory, recommended, and optional noun groups are
shown with black, white, and gray headers, respectively.
Within each noun group, the set of applicable noun group
values are listed. For example, the context of a vulnerability
is represented by the mandatory noun group Context, whose
noun group values are: Application, Hypervisor, Firmware,
Host OS, and Guest OS. Similarly, the technique used by an
attacker to execute an exploit is represented by the noun
group Impact Method, while Trust Failure, Context Escape,

3

TABLE 1: VDO’s vulnerability attribute domains (noun groups) included in this study. From now on, we use the term noun
group to refer to the core building blocks of the VDO framework.

Remote A vulnerability is characterized as Remote if the cyberattack originates from locations outside of the target network.
Limited Remote The exploit is executed from closer locations, using Cellular, Wireless, Bluetooth, Infrared, or Line-Of-Sight technologies.
Local The attacker has to have logical local access to a target computer or system to execute the exploit.
Physical The attacker is required to have physical access to the target system to carry out the exploit
Application (App) CVE is related to a program that is designed to accomplish a specific task within an operating system or firmware.
Hypervisor (Hyp) Allows an attacker to get access or manipulate resources that are shared among controlled guest operating systems.
Firmware (Fw) An attacker exploits a vulnerability in the software that is built-in to a device.
Host OS (HOS) This is a vulnerability in the operating system and the Hypervisor is not applicable.
Guest OS (GOS) This is a vulnerability in the operating system that is controlled by a Hypervisor.
Channel (Ch) A flaw in the logical communication medium, such as the incorrect implementation of a cipher algorithm.
Physical Hardware (Hw) This represents a flaw in the actual physical hardware, such as processors, storage, memory cells, etc.
Trust Failure A vulnerability is exploited if an assumed trust relationship between two parties leads to unexpected impacts.
Context Escape Attackers exploit a trust mechanism by breaking out of a sandbox.
Authentication Bypass The exploit is related to a failure to identify the adversary properly.
Man in the Middle
(MitM)

The attackers access acommunication channel that might lead to sensitive data disclosures, impersonation, data
modification or denial of communication.

Code Execution A vulnerability exploit allows an attacker to execute unauthorized code
Write A vulnerability is characterized with Write if an attacker can do unauthorized modifications on the data.
Read Indicate whether the attacker is able to gain unauthorized access to data.
Resource Removal Resource Removal is used to represent an unauthorized removal (deletion) of data.
Service Interrupt An attacker causes a loss in the availability of a target system.

Indirect Disclosure Attacker can learn information about the target, not through a direct read operation, but indirect methods like side-channel
attacks or traffic analysis.

Privilege Escalation An adversary gains a level of privilege that is not intended for him/her.
Address Space Layout
Randomization (ASLR)

A vulnerability is characterized by ASLR mitigation, if ASLR is an applicable protection mechanism to guard against
buffer overflows.

HPKP/HSTS If HTTP Public Key Pinning (HPKP) or HTTP Strict Transport Security (HSTS) is applicable as a mitigation strategy.
Multi-Factor
Authentication (MFA) It is used if MFA is a viable protection technique for a vulnerability.

Physical Security If ensuring physical security provides protection from the exploits that are caused by a vulnerability.
Sandboxed If deploying a software product in the sandbox provides protection.

At
ta

ck
Th

ea
te

r
Co

nt
ex

t
 Im

pa
ct

 M
et

ho
d

Lo
gi

ca
l I

m
pa

ct
M

iti
ga

tio
n

1..*
1

0..*

1

0..*
1

0..*

1

0..*

1 0..*

1

0..*

1
1

1
1..*

1

Legend:

Mandatory

Recommended

Optional

1

0..*

1..*

1

PhysicalImpact
+ {
 Physical Res. Consumption
 Property Damage
 Human Injury
}

LogicalImpact
+ {
 Service Interrupt
 Read
 Write
 Resource Removal
 Indirect Disclosure
 Privilege Escalation
}

ImpactMethod
+ {
 Trust Failure
 Context Escape
 Auth. Bypass
 Man-in-the-Middle
 Code Execution
}

Mitigation
+ {
 ASLR
 Multi-Factor Auth.
 Sandboxed
 HPKP/HSTS
 Physical Security
}

Location
+ {
 Memory
 File System
 Network Traffic
}

1..*

1

0..*

1

0..*1
1

1

1

1

1..*

1

Vulnerability
+ vulnerability identifier

SectorOfInterest
+ {

 Industrial Control System
 Health Care
 Financial

}

KnownChain
+ vulnerability identifier

Provenance
+ source

Barrier
+ {

 Social Engineering
 Race Condition
 Specialized Condition
 Environment Condition
 Precondition Required
 Privilege Required
}

Product
+ product_configuration

Scope
+ {
 Limited
 Unlimited
}

Scenario
+ number

Context
+ {

 Application
 Hypervisor
 Firmware
 Host OS
 Guest OS
 Channel
 Physical Hardware
}

EntityRole
+ {

 Vulnerable
 Primary Auth.
 Secondary Auth.
}

AttackTheater
+ {

 Remote
 Local
 Limited Remote
 Physical
}

Type
+ vulnerability_type

Fig. 2: Partial View of the Vulnerability Description Ontol-
ogy (VDO) [20]

Authentication Bypass, Man in the Middle, and Code Execution
are listed as viable methods. For the scope of this paper, to
characterize CVEs, fve noun groups were selected from the
VDO framework based on the following criteria:

• Some noun groups are ignored because they are as-
sumed to apply to a more limited scope of problems,
e.g., Physical Impact or are not easy to interpret accu-
rately, compared to other groups, e.g., Scope.

• Mandatory noun groups are applicable to all vulnera-
bilities. Therefore, mandatory groups that have more

than one label and provide a higher value for the
security community are considered frst while deter-
mining the set of noun groups that will be studied. The
security community is usually more interested to know
(1) the attack avenues from which cyberattacks occur,
(2) vulnerable pieces in a target system, (3) attack meth-
ods utilized, (4) potential impacts when exploitation is
successful, and (5) applicable mitigation techniques that
can be used when a vulnerability is exploited [14]. To
address these concerns, fve noun groups are studied:
Attack Theater, Context, Impact Method, Logical Impact,
and Mitigation. Figure 2 shows these noun groups as
boxes with solid line borders.

Attack Theater defnes the attack surface from which an at-
tack may come. The Context noun group defnes the entities
where the impacts are observed when a vulnerability is
exploited. The Impact Method noun group describes methods
used to exploit a software vulnerability. The Logical Impact
noun group describes the impacts that an exploit can create.
The Mitigation noun group describes the techniques that can
be used to limit the impact of a vulnerability, even if it is
exploited. Table 1 provides a brief summary of the noun
group values in the studied VDO domains.

2.2 Data Collection & Labelling

The preparation of the training data sets is a critical stage
that may affect the performance of the designed system.

4

CVE ID Description MFA Physical
Security

CVE-2020-12752

An issue was discovered on Samsung mobile devices with P(9.0) and Q(10.0)
(with TEEGRIS) software. Attackers can determine user credentials via a brute-
force attack against the Gatekeeper trustlet. The Samsung ID is SVE-2020-16908

(May 2020).

CVE-2020-9848
An authorization issue was addressed with improved state management.
This issue is fixed in iOS 13.5 and iPadOS 13.5. A person with physical
access to an iOS device may be able to view notification contents from

the lockscreen.

CVE-2019-7311

A lack of encryption in how the user login cookie (admin-auth) is stored on a
victims computer results in the admin password being discoverable by a local

attacker and usable to gain administrative access to the victims router. The admin
password is stored in base64 cleartext in an admin-auth cookie. An attacker

sniffing the network at the time of login could acquire the routers admin
password. Alternatively gaining physical access to the victims computer soon

after an administrative login could result in compromise.

Fig. 3: Three example CVEs labeled for two values in the
Mitigation noun group, i.e., Multi-Factor Authentication
(MFA) and Physical Security.

Therefore, we followed a systematic methodology to gener-
ate training data sets for noun groups in VDO. We collected
a set of CVEs from NVD for each studied noun group, and
the relationships between each CVE and the labels in each
group were identifed. Each CVE, in each noun group, is
labeled with one or more noun group values, as shown in
Figure 3.

In the next subsections, we explain how we collected the
set of CVEs used for training and performed labelling.

2.2.1 Data

The most recent CVEs (before CVE-2020-14000) are
queried from the NVD Vulnerability Search Engine
(https://nvd.nist.gov/vuln/search) to derive near to equal
number of CVEs that can be characterized with the noun
group values within a studied group. CVEs after CVE-2020-
14000 are reserved for the case study to test the performance
of the trained models with hands-on, real-world examples.

2.2.2 Data Labeling Process

Five security researchers with 2-15 years of experience spent
3000+ person-hours to generate training data sets for the
fve VDO noun groups. All reports were peer-reviewed and
examined to avoid biases, and uncertainties were discussed
collectively to ensure consistency.

The main steps of the systematic approach we used to
collect, label, and review CVE data for each noun group are:

1) SMEs’ Understanding of the Noun Groups: Subject-
matter experts were all already familiar with VDO
vulnerability attribute domain (noun group). How-
ever, each SME were requested to carefully study each
noun group value (label) within a group. Then each
noun group value was discussed among all SMEs to
make sure that its distinctive attributes are understood
clearly.

2) Labeling and Annotation Sessions: Each SME re-
viewed and annotated the noun group dataset that
they were assigned randomly (without considering any
specifc preference). They had to provide three pieces
of information, the labels, annotation of the text that
implies the label, and a confdence score. Most of the
time, a CVE is labeled with one label within a noun
group, however it sometimes needs to be labeled with
more than one label. For example, CVE-2019-7311 in
Figure 3 is marked with both Multi Factor Authentication

and Physical Security for the Mitigation group, because
both provide a mitigation strategy for the vulnerability.

3) Self-Reported Confdence: To minimize guessing and
distinguish high-confdence responses from others, we
collected the SME’s confdence score with a numerical
score ranging from one to three, where a score of one
indicated no-confdence in making a judgement; a score
of 2 indicated a low-confdence in the generated label,
and a score of 3 indicated high-confdence responses.
High-confdence responses were reviewed by a second
labeler.

4) Peer-Discussion Sessions: CVEs tagged with no-
confdence or low-confdence were discussed by two
SMEs. A confdence column is included in each data
set to represent the confdence of the researcher while
assigning each noun group label to a CVE. During Peer-
Discussion Sessions, reviewers went through additional
sessions to double-check the labels that were assigned
a low confdence (a confdence value of 1 or 2).

5) Peer Review and Discussion Sessions: After the frst
review sessions, a draft version of the data set for
each studied noun group is recorded. The percentage of
CVEs labeled with a high confdence for Attack Theater,
Context, Impact Method, Logical Impact, and Mitigation
noun groups were 94%, 58%, 87%, 80%, and 72%,
respectively. A new annotator peer-reviewed all CVEs
and confdence scores and highlighted the CVEs she/he
wanted to discuss. Once all CVEs had a confdence
value of 3, the fnal version of each data set was
recorded for experiments.

For each noun group, each CVE is labeled with one or
more labels. As shown in Figure 3, the SMEs highlighted
parts of the CVE’s description that were relevant in the
labeling process, i.e., in assigning the CVE to a specifc noun-
group. For example, CVE-2019-7311 has text highlighted in
green, which are related to MFA, and text highlighted in
yellow, which are related to Physical Security.

Generated training data sets include two felds, the CVE
description and the corresponding label(s) for the noun
group. The total number of CVEs for Attack Theater, Context,
Impact Method, Logical Impact, and Mitigation noun groups
are 293, 798, 465, 562, and 474, respectively. The distribution
of the labels for each group is shown in Figure 4. The data
sets generated for noun groups include between 70 and 120
CVEs for each label (noun group value).

2.3 CVE Pre-processing

We perform a number of standard NLP pre-processing steps
to ensure all CVE descriptions are cleaned, tokenized, and
normalized before ML/IT models are trained. First, CVE
descriptions are cleaned to make sure that any duplicate
white spaces, punctuation, and numbers are removed, and
the text is reduced to characters readable by humans. Then,
all characters are converted to lower case, and all stop
words are removed, i.e., commonly occurring words such
as ‘this‘ and ‘shall‘ which are not helpful for classifcation
purposes. Next, each word in the vulnerability descriptions
is stemmed to its morphological root [23].

https://nvd.nist.gov/vuln/search

5

Attack TheaterRemoteLocal Limited RemotePhysical Sum
91 75 74 53 293

0
ContextApp Hyp Fw HOS GOS ChannelHw 0

156 102 103 102 103 103 129 798
0

Impact MethodTrust FailureContext EscapeAuth. BypassMitM Code Exec. 0
86 68 111 79 121 465

0
Logical ImpactService InterruptRead Write Resource RemovalIndirect DisclosurePrivilege Escalation 0

77 116 134 95 70 70 562
0

MitigationASLR MFA SandboxedHPKP/HSTSPhysical Security 0
96 99 88 92 99 474

2592

96

99

88

92

99

Mitigation
ASLR
MFA
Sandboxed
HPKP/HSTS
Physical Security

77

116

13495

70

70

Logical Impact
Service Interrupt
Read
Write
Resource Removal
Indirect Disclosure

86

68

111
79

121

Impact Method
Trust Failure
Context Escape
Auth. Bypass
MitM
Code Exec.

156

102

103102
103

103

129

Context
App
Hyp
Fw
HOS
GOS

91

75
74

53

Attack Theater

Remote
Local
Limited Remote
Physical

Fig. 4: The distribution of noun group values in each studied VDO domain.

2.4 Context-Aware Feature Extraction and Vectoriza- where
i
jtion of CVEs x

p ij = (3)PM i
jTo extract features from CVE descriptions, we converted j=1 x

each description into a vector of terms using the Term and
NFrequency-Inverse Document Frequency (TF-IDF) approach.

We did not use word embedding (word2vec) as we did
dij = log (4)

Dj + 1
not have an extensive domain-specifc corpus to train a

where N is the total number of CVEs, and Dj is the number word2vec model. Instead, we followed TF-IDF, a very well-
of CVE descriptions that include term j. A word vectorknown and rather simple approach, such that we can use the iw that is composed of the tf-idf scores of all n-grams isCVE descriptions only, without a need to create a domain-
created for each CVE where wi ii

1, w2, ..., w
ieach noun group G, generated word vectors w and their

i
M For(w).= specifc corpus.

Although TF-IDF can help identify the terms most rel-
evant to a specifc noun group, in the security domain,

associated VDO labels yi are used to train binary and multi-
class classifcation models for CVE characterization.

the context of the terms plays an important role for their
meaning. For instance, “user authorization” and “control”
may appear in any context in a vulnerability description, but
knowing the context of the terms (e.g., “control” appearing
right after “user”, i.e., “User-Controlled”) can provide richer
information about the text which is otherwise lost in a
bag of words approach. Therefore, to extract rich features
describing the vulnerability reports, we augment the TF-IDF
approach by using n-grams. This ensures that the order and
the context of tokens in the CVE descriptions are taken into
account by the trained models.

For a VDO noun group G, let the data set DG be
composed of N CVE instances where each CVE description
is represented by

2.5 CVE Characterization Methods

After creating a context-aware vectorization of CVEs, this
paper uses two main approaches for CVE characterization:

1) Machine Learning (ML) Approach: Labeled CVE data
sets are used to train supervised ML models with
commonly used classifers listed in Section 2.5.1.

2) Information-Theoretical (IT) Approach: IT methods
are widely used in Statistics and Computer Science
for various tasks, including Inference and Natural Lan-
guage Processing. In the Information Theory, ”Entropy”
is a key metric used to measure the amount of un-
certainty for the value of a random variable. This
work uses a novel entropy-based approach to character-

x i = (x ii
1, x2, ..., x iM) (1) ize CVEs, by deriving n-gram frequencies from CVE

descriptions and using them as non-parameterized
i is a term frequency vector generated from a pre- histograms. Individual CVE histograms P i with the

same noun group value are unifed to generate a non-

x
i
jprocessed CVE description i where each x

number of a uni, bi or 3-gram j in the description. The
represents the

parameterized histogram Qi for the noun group value.
ifeature vector x of each CVE description in DG is asso- While calculating the divergence between P i and Qi ,

ciated with one or more VDO noun group values yi where the entropy of Qi is evenly distributed to all n-grams in
Qi (including the unseen ones), not to completely rule
out the possibility of the existence of unseen n-grams

i ∈ {y1, y2, ..., yK } and K represents the number of labels
in G.
y

The n-grams that have higher frequencies within a CVE in Qi . The novel IT approach that is based on entropy
description should have higher importance for that CVE. distribution is explained in Section 2.5.2.
However, we should penalize the frequencies of such terms,
if they frequently appear in all other descriptions within 2.5.1 Classifers
the CVE corpus of a noun group, to make sure that the Once all vulnerability descriptions in each noun group G are
n-grams that are distinctive are emphasized more. The tf- converted to feature vectors (wi) as described in Section 2.4,
idf approach ensures that the scores of the terms that have a set of classifers are trained using CVE feature vectors w
a high frequency in all documents are penalized properly ias features, and VDO noun group labels y as classes. There
using an inverse document frequency (idf) term. Given a are between 80-100 CVE instances marked positive for each
CVE i and a term j, if the term frequency of j (in i) and label in the training data sets used for each noun group G.
its inverse document frequency are represented by pij and Since the amount of labeled data is limited, a set of com-

monly used supervised algorithms from different domainsdij , respectively, the tf-idf score wi
j of the term j in CVE i is

calculated by are used to characterize CVEs, rather than following a Deep
w ij = p ij

i
j (2) Learning approach: ∗ d

i

6

1) Support Vector Machines (SVM): SVM is a supervised
learning algorithm that maximizes the margin between
the training patterns and the decision boundaries [24].
We use the SVM algorithm with a sequential minimal
optimization approach and a polynomial kernel to char-
acterize CVEs [25].

2) Naı̈ve Bayes (NB): Given a set of features and a target
label, the algorithm assumes feature independence and
uses the Bayes rule while predicting the target label.
NB classifers have proven to be successful in solving
various text classifcation problems, including author-
ship attribution, spam email detection, and sentiment
analysis [26]. This paper uses the NB classifer [27] to

ipredict the noun group value y of a CVE description
irepresented by feature vector w .

3) C4.5 Decision Tree (DT) and Random Forest (RF): We
use the C4.5 DT algorithm [28] with pruning to predict
VDO labels for CVEs. As an alternative method, the
Random Forest algorithm [29] that uses an ensemble
learning approach is used. To characterize a CVE, we
construct a forest of random trees and use the VDO
label that is agreed on by the majority of the constructed
trees.

4) Ensemble Learning (Voting): Majority voting is one
of the widely used ensemble methods to boost the
performance of the ML classifers [30]. This paper uses
a voting based ensemble approach which combines the
results of SVM, NB, DT, and RF classifers.

The ML classifers described above are used to predict
the VDO noun group values for each CVE with binary and
multi-class classifcation approaches. The experiment pro-
cess is automated using the Weka Workbench API [31]. To
keep the training and experimentation process simple and
easy to reproduce, each algorithm is used with its default
parameter set in Weka 3.8.0.

2.5.2 Information Theory based CVE Characterization
This work uses a novel entropy-based approach to character-
ize CVE descriptions. Each feature vector xi that is created
from a CVE description i is composed of the frequencies of
n-grams where n >= 1 and n <= 3. The probability of each

in-gram j within a CVE description i (pj) is calculated by
Equation 3 and a feature histogram P i is generated where PM
P i i i i i= (p1, p2, ..., p) and p = 1.M j j

Assuming that there are n feature histograms generated
ifrom n CVEs labeled with the same VDO label y , they

iare unifed to generate a new feature histogram z =
i i i i(z1, z2, ..., zM), where the frequency of each n-gram zj is

calculated by
nX

i i zj = xj (5)
i

iThe unifed feature histogram z is considered as a new
distribution Qi , where the probability of each n-gram in Qi

is calculated by
iz

qj
i = PM

j (6)
i

j=1 zj

in-grams that have higher qj values within a distribution
Qi better represent the semantic attributes of the associated

CVE descriptions, compared to other n-grams. However,
CVE feature distributions are usually sparse, and the prob-
ability values for many n-grams are zero. Although setting
the probabilities of the n-grams that do not appear in Qi

to zero is mathematically correct, it may not accurately
represent the uncertainties in real life. A key novelty of
this work is the use of the Shannon‘s entropy to estimate
the stochastic nature of a feature distribution and then
distribute its entropy to all n-grams in the distribution
(including the unseen ones) to refect the possibility of
having an unobserved n-gram. Given a feature distribution
Qi i , where qj represents the probability of an n-gram j, its
entropy is calculated by

MX
i iH(Qi) = − qj log(qj) (7)

j

where M is the total number of n-grams in the distribution.
This entropy is normalized and then evenly distributed to

iall n-grams in the distribution, by defning rj as

H(Qi)i i r = qj (1 − H(Qi)) + (8)j M
where 0 ≤ H(Qi) ≤ 1. The IT approach uses the smoothed

in-gram probabilities rj calculated by Equation 8 while mea-
suring the dissimilarity between a CVE represented by P i

and a distribution Qi . For example, for a distribution Qi

the probabilities of n-grams before and after the entropy
iis distributed are shown in Figure 5. The probabilities qj

that are shown with a dashed black line are smoothed to
ithe probabilities shown with a solid red line (rj) after the

entropy is distributed.

Fig. 5: The probabilities of n-grams in a feature distribution
derived from CVEs that are marked positive for Trust Failure
(Impact Method), before and after the entropy is distributed
to all n-grams.

Given a feature distribution P i that represents a CVE
description i, and a distribution Qi that represents the CVEs
with the same VDO label yi, the KLD or relative entropy [21]
from P i to Qi is calculated by

M�
P i Qi

� X pi
KL = p ij log j (9)

iqjj

The cross-entropy measures the relative entropy between
two probability distributions. The cross-entropy of the dis-
tribution Qi relative to the distribution P i is defned as � �

H(P i, Qi) = H(P i) + KL P i Qi (10)

Substituting Equations 7 and 9 into Equation 10, we get
MX

i iH(P i, Qi) = − pj log(qj) (11)
j

7

2.6 Experiment Design

For each ML and IT-based CVE characterization method,
two sets of experiments are designed to evaluate the perfor-
mance. This section briefy explains the details of the binary
and multi-class characterization experiments designed for
the ML and IT methods.

2.6.1 Binary CVE Characterization
In a use-case scenario where the security analyst wants to
see if certain noun group values are applicable or not (, e.g.,
check if the multi-factor authentication (MFA) mitigation
technique is applicable), the binary characterization could
be helpful. A binary model is built for each noun group

ivalue yi in each VDO domain G. For each y , CVEs that are
labeled with yi are marked positive, and the remaining ones
in G are marked negative to generate a binary classifcation

idata set for y . Proposed ML and IT methods are used to
ibuild a binary classifer for each y . Given a CVE and a

inoun group value y , each ML and IT model uses a binary
iclassifcation approach to identify whether y is applicable

to the CVE or not.
In the ML approach, commonly used classifers from

different domains and an ensemble of them are used for
CVE characterization. In the IT approach, KL divergence
(KLD) [21] and Cross-Entropy (CE) are used as divergence
metrics to calculate the dissimilarity between two CVE term
distributions. Two n-gram distributions (Qi and Ri) are

icreated for each noun group value y , based on the CVEs
ithat are marked positive and negative for y , respectively.

The KLD (or CE) between a CVE represented by P i and
these two probability distributions is calculated, and the
label of the distribution that has the lowest divergence from
P i is assigned to the CVE.

2.6.2 Multi-class CVE Characterization
For the ML approach, algorithms described in Section 2.5.1
are used to build multi-class classifers for CVE charac-
terization. In the IT approach, one term distribution (Qi)

iis created for each noun group value y . Given a CVE i
that is represented by distribution P i and a set of distribu-
tions (unifed histograms, one for each noun group value)
{Q1, Q2, ..., QK }, where K ≥ 2, the dissimilarity of P i from
each Qi is calculated, and the label of the Qi that has the
lowest divergence from P i is used to assign the label of
CVE i.

A multi-class classifer is built for each VDO domain
to predict the noun group values as labels. In multi-class
classifcation, we keep track of the confdences predicted
for each VDO label yi within each noun group G. The
goal is to see the confdence of the second or even third
best predictions. If the confdence of the frst prediction is
below a defned threshold ρ (p(yi) < ρ), we predict multiple Pki i i ilabels y1, y2, ..., y where) >= ρ. Providing the k j=1 p(yj
confdence values of the second or third best predictions
could aid security practitioners to focus on the most likely
labels frst, which can help to decrease the amount of
manual work during the CVE characterization. Therefore,
this work defnes an alternative multi-class classifcation
approach, where each classier is given a second prediction
chance. In summary, each ML/IT model reports two sets of
results for multi-class characterization:

• Single-chance: This is the conventional multi-class clas-
sifcation approach where the performance of a model is
measured based on its predicted labels.

• Double-chance: To decrease the manual effort needed for
CVE characterization and limit the set of noun group
values that are potentially applicable, two labels are pre-
dicted for each CVE. Each model is given a second chance
to predict a second VDO label for each noun group, which
corresponds to the label with the second-best confdence.
The prediction of the multi-class classifcation is assumed
to be correct if either the frst or second prediction is cor-
rect. The goal of the double chance prediction is to support
the decision-making process of the security analyst who
is doing the manual characterization. Both predictions are
provided to the analyst in an ordered list. If the frst
prediction seems to be unrelated, the analyst can look at
the second prediction without needing to analyze the CVE
description further.

We use single (top-1) and double chance (top-2) while
evaluating our approach for two reasons. First, we want
to evaluate the practicality of the approach in a real sce-
nario for an end-user (analyst) that may use these results.
Therefore, analyzing results for more than top-2, would
require more effort from the analysts. Second, the double
chance prediction emulates a real scenario to support the
decision-making process of the security analyst who is
doing the manual characterization. Our approach provides
both predictions to the analyst in an ordered list. If the frst
prediction seems to be unrelated, the analyst can look at
the second prediction without needing to analyze the CVE
description and do research about the related CVE.

2.6.3 Evaluation Setup
For both ML and IT methods, each experiment is run
with classical 10-folds cross-validation, and the average
F-Measure values are reported to evaluate results. The
main reason for using cross-validation instead of the con-
ventional train/test split approach was the availability of
limited data for training. Considering the fact that each
noun group value (label) has limited number of instances
in the underlying dataset (Figure 4), it would be hard to
maintain a balanced label distribution between the training
sets and their corresponding tiny test sets if the train/test
split approach was used. To assign confdence scores to
the predictions of IT methods, divergence measures are
converted to normalized proximity scores favoring lower
divergences. Assuming the divergences of K distributions
from a CVE P i are {δ1, δ2, ..., δK }, and the minimum and
maximum divergence values are δmn and δmx, we defne
� = δmn/100 and derive a proximity score λi for each
Qi , where λi = (δmx + � − δi). While classifying P i , the
normalized λi scores are used to assign a confdence score
to each VDO label represented by each Qi .

2.6.4 Performance Metrics
Depending on the outcome of a classifcation, there are four

ipossible cases for a label y that represents the noun group k
value k for CVE i:
• True Positive (TP): If a CVE had true VDO label y and it k

iis correctly classifed to yk.

i

8

i
l• False Positive (FP): If a CVE had true VDO label y , but it 3.1.3 Impact Method

is incorrectly classifed to yik where yik <> yil . The Impact Method noun group describes methods used to
exploit a software vulnerability and includes fve labels:

i
l• True Negative (TN): If a CVE had true VDO label y and

it is correctly classifed to yil where yil <> yik. Trust Failure, Context Escape, Authentication Bypass, Man in the
i
k• False Negative (FN): If a CVE had true VDO label y , Middle (MitM), and Code Execution. The F-Measure values

but it is incorrectly classifed to another label yil where for the Impact Method noun group for different ML and
yik <> yil . IT methods are shown in Table 4. The top three methods

For a given label, the Precision metric represents the fraction
of the true positives within all positive predictions.

TP
P recision = (12)

TP + FP
The Recall metric represents the fraction of the true positives
among the instances that are actually positive.

TP
Recall = (13)

TP + FN
We calculate the harmonic mean of the Precision and Recall
to derive F-Measure and use it as a performance metric to
compare different characterization methods. F-Measure pro-
vides a more realistic performance measure across different
class distributions and characterization methods.

P recision × Recall
F − Measure = 2 × (14)

P recision + Recall

3 VULNERABILITY CHARACTEIZATION RESULTS

This section presents the empirical evaluation of our ap-
proach and provides a detailed comparison of different
characterization techniques.

3.1 Binary CVE Characterization

For binary characterization, the average F-Measure values
for the positive class are used to evaluate the performance
of different methods. Sections 3.1.1, 3.1.2, 3.1.3, 3.1.4, and
3.1.5 provide the binary characterization results for Attack
Theater, Context, Impact Method, Logical Impact, and Mitiga-
tion, respectively.

3.1.1 Attack Theater
The mandatory noun group Attack Theater defnes the attack
avenue from which an attack may come. Each vulnerability
is characterized by four noun group labels: Remote, Local,
Pyhsical, and Limited Remote. The F-Measure values for the
Attack Theater group for different ML and IT methods are
shown in Table 2. Depending on the underlying method
used, the models achieve F-Measure values up to 0.98. The
top three methods to predict Attack Theater are KLD, Vote,
and CE with an average F-Measure value of 0.92, 0.91, and
0.91, respectively.

3.1.2 Context
The Context noun group defnes the entities where the
impacts are observed, when a vulnerability is exploited. It
includes seven noun group labels: Application, Hypervisor,
Firmware, Host OS, Guest OS, Channel, and Hardware. The F-
Measure values of Context group for ML and IT methods
are shown in Table 3. The models achieve F-Measure values
up to 0.95 while predicting noun group labels. The top three
methods to predict Context are Vote, SVM, and DT, with an
average F-Measure value of 0.90, 0.87, and 0.85, respectively.

to predict Impact Method are Vote, DT, and KLD with an
average F-Measure value of 0.95, 0.95, and 0.93, respectively.

3.1.4 Logical Impact

The Logical Impact domain describes the impacts that an
exploit can create. One vulnerability may incorporate mul-
tiple logical impacts simultaneously, because the applicable
noun group values are not mutually exclusive. The domain
contains six labels: Service Interrupt, Read, Write, Resource
Removal, Indirect Disclosure, and Privilege Escalation. The F-
Measure values obtained for the Logical Impact noun group
are shown in Table 5 for ML and IT approaches. The top
three methods while predicting Logical Impact are Vote, DT,
and SVM with an average F-Measure value of 0.91, 0.91, and
0.89, respectively.

3.1.5 Mitigation

The Mitigation noun group describes the techniques that
can be used to limit the impact of a vulnerability, even if
it is exploited. Five mitigation techniques from the VDO
model are included: ASLR, MFA, Sandboxed, HPKP/HSTS,
and Physical Security. The F-Measure values while predicting
different mitigation strategies are shown in Table 6 for ML
and IT approaches. The top three methods are Vote, DT, and
SVM, with an average F-Measure value of 0.94, 0.94, and
0.89, respectively.

3.2 Multi-class CVE Characterization

The Attack Theater, Context, and Impact Method VDO
domains have mutually exclusive noun group values in
the training data sets. Therefore, the multi-class classif-
cation, described in Section 2.6.2, is used for them as an
alternative CVE characterization approach. The results of
the multi-class classifcation method for the Attack Theater
noun group are shown in Figure 6. In the single-chance
approach, average F-Measure values while predicting the
Attack Theater noun group values range between 0.8 and
0.97. The double-chance evaluation approach increases the
average F-measure between 2% and 5%, except NB. 5%
increased F-Measure values for KLD (KLD-M) and CE (CE-
M) are shown with a dashed line and scattered square points
in Figure 6.

The results of the multi-class classifcation for the Context
noun group are shown in Figure 7. In the single-chance
evaluation approach, average F-Measure values are between
0.74 and 0.96 for all noun group values, with all char-
acterization methods except NB, which achieved 0.73 on
average. The double-chance evaluation approach increases
the average F-measure between 6% and 8%, except NB and
DT. 8% increased F-Measure values for RF (RF-M), and CE
(CE-M) are shown with the dashed line and scattered square
points in Figure 7.

9

TABLE 2: F-Measure values for Attack Theater. TABLE 3: F-Measure values for Context.

Remote Local Physical Limited Remote App Hyp Fw HOS GOS Ch Hw
KLD 0.94 0.92 0.9 0.91 KLD 0.8 0.76 0.85 0.88 0.76 0.76 0.73
CE 0.94 0.89 0.91 0.91 CE 0.79 0.77 0.85 0.88 0.76 0.78 0.73

SVM 0.92 0.77 0.96 0.79 SVM 0.84 0.95 0.89 0.84 0.93 0.82 0.82
NB 0.89 0.8 0.85 0.75 NB 0.74 0.57 0.73 0.76 0.7 0.69 0.68
DT 0.97 0.8 0.98 0.87 DT 0.7 0.95 0.95 0.76 0.95 0.82 0.8
RF 0.9 0.75 0.9 0.67 RF 0.68 0.76 0.82 0.81 0.88 0.7 0.73

Vote 0.94 0.82 0.98 0.88 Vote 0.87 0.95 0.94 0.84 0.94 0.9 0.85

TABLE 4: F-Measure values for Impact Method. TABLE 5: F-Measure values for Logical Impact.

Trust Context Auth. MitM Code Service Read Write Resource Indirect Privilege
Failure Escape Bypass Exec. Int. Rem. Disc. Esc.

KLD 0.91 0.94 0.88 0.96 0.94 KLD 0.86 0.86 0.83 0.88 0.94 0.78
CE 0.9 0.93 0.86 0.96 0.94 CE 0.86 0.85 0.82 0.87 0.94 0.78
SVM 0.67 0.79 0.84 0.96 0.9 SVM 0.89 0.94 0.95 0.78 0.88 0.88
NB 0.84 0.84 0.85 0.82 0.88 NB 0.84 0.71 0.76 0.83 0.83 0.71
DT 0.92 0.98 0.97 0.99 0.93 DT 0.97 0.92 0.94 0.84 0.94 0.88
RF 0.39 0.76 0.62 0.78 0.81 RF 0.74 0.87 0.88 0.64 0.82 0.82
Vote 0.93 0.94 0.92 1 0.94 Vote 0.95 0.95 0.96 0.84 0.91 0.87

TABLE 6: F-Measure values for Mitigation. values are higher than 0.90 for all noun group values,
with all characterization methods except NB and RF. With

ASLR MFA Sandboxed HPKP Physical
HSTS Security the double-chance evaluation approach, increases ranging

KLD 0.91 0.78 0.73 0.77 0.89 between 4% to 7% are observed in the average F-Measure
CE 0.92 0.76 0.73 0.77 0.88 values of different prediction models, except NB and DT,
SVM 0.94 0.85 0.88 0.84 0.92
NB 0.74 0.76 0.78 0.71 0.78 which stay at 0.84 and 0.96, respectively. 7% and 5% in-
DT 0.96 0.92 0.93 0.97 0.96 creased F-Measure values for RF (RF-M) and KLD (KLD-M)
RF 0.83 0.71 0.72 0.79 0.85
Vote 0.96 0.92 0.92 0.92 0.96 are shown with the dashed line and scattered square points

in Figure 8.

Fig. 6: F-Measure values of the IT and ML approaches while
predicting Attack Theater with multi-class classifcation ap-
proach.

Fig. 8: F-Measure values of the IT and ML approaches while
detecting the Impact Method with multi-class classifcation
approach.

Fig. 7: F-Measure values of the IT and ML approaches while
detecting Context with multi-class classifcation approach.

The results of the Impact Method noun group using a
multi-class classifcation method are shown in Figure 8.
With a single chance prediction, the average F-Measure

3.3 Overall Evaluation

The proposed methodology uses a context-based feature
extraction and a set of ML and IT methods to characterize
vulnerabilities based on the NIST VDO framework. Five
VDO noun groups are used to characterize vulnerabilities
for Attack Theater, Context, Impact Method, Logical Impact,
and Mitigation. The overall average of the F-Measure values
obtained in cross-validation in the binary characterization
for the ML and IT methods are both 0.85. For multi-class
characterization, the F-Measure values increase to 0.88 for
both ML and IT methods. During binary characterization,
the IT methods appear to be more consistent than the ML
methods. The lowest F-Measure value observed with an
IT method is 0.73. However, the performance of some ML
techniques varies depending on the VDO noun group or
label. The box plot of the F-Measure values observed for

10

each ML and IT method is shown in Figure 9 for binary
characterization. Figure 10 shows the box plot of the F-
Measure values for multi-class characterization for each ML
and IT method. The average F-Measure values obtained
for noun group values are between 0.87 and 0.91 for all
ML and IT methods, except NB, which has an average F-
Measure value of 0.79. A paired t-test with α = 0.05 is

Fig. 9: The box plot of the F-Measure values of ML and IT
methods for binary characterization.

Fig. 10: The box plot of the F-Measure values of ML and IT
methods for multi-class characterization.

Fig. 11: T-test results to compare F-Measure values in bi-
nary (A) and multi-class (B) characterization where each
cell shows the difference when the method in the row is
compared with the one in the column.

used to run statistical signifcance tests on the F-Measure
values obtained with different ML and IT methods during
binary and multi-class characterization. Figure 11 shows the
results of the t-tests obtained for binary (A) and multi-class
(B) characterization. In Figure 11, when a method in a row

is compared with another method in a column, statistically
signifcant positive and negative differences are represented
with up and down arrows, respectively. The right arrow
shows that the F-Measure values of the two methods (in
the corresponding row and column) are comparable. During
binary characterization, the F-Measure values obtained with
Vote are statistically better than other methods except DT
and all methods perform better than NB, except RF. The
overall performances of the KLD, CE and SVM are compa-
rable. In multi-class characterization, the F-Measure values
of all methods are comparable, except NB and RF.

Model Performance in Cross Validation: During bi-
nary characterization, the performance of the IT meth-
ods is consistent. However, the performance of ML
techniques varies depending on the VDO noun group
or label (noun group value).

In multi-class characterization, the IT methods are
more consistent than the ML methods. The average
F-Measure values obtained for noun group values are
between 0.87 and 0.91 for all ML and IT methods, except
NB, with an average F-Measure value of 0.79.

4 INSTRUMENTATION: REAL-TIME MINING AND

CHARACTERIZATION OF RAW VULNERABILITY DATA

To examine our automated vulnerability characterization in
the context of vulnerability management workfow, we have
instrumented a platform to curate vulnerability data in real-
time, and used our characterization approach to describe
them using NIST VDO and share vulnerabilities publicly.
This platform aims to automate the manual vulnerability
curation activities currently in place in NIST’s NVD.

Through instrumentation we investigate two main re-
search questions (1) whether this automated instrumenta-
tion would help curate and disseminate CVEs faster than
current systems (e.g. NVD and MITRE CVE programs), and
(2) can ML techniques reduce the manual effort for review
and characterization of CVEs. In particular we will carry out
a set of qualitative and quantitative studies to answer these
two overall questions.

The reminder of this instrumentation section is orga-
nized as follows: sub-section 4.1 describes the instrumen-
tation platform; sub-section 4.2 reports an empirical study
of CVE disclosure timing analysis, therefore demonstrating
that our proposed instrumentation outperforms NVD in
terms of timely disclosure of vulnerabilities; sub-section 4.3
further evaluates the accuracy of our approach in a scenario
simulating if it was deployed publicly for the use in the
wild; sub-section 4.4 reports a qualitative study demonstrat-
ing the practical-significance of our approach in supporting
the analysts in their daily job and reducing their effort in
terms of time spent to review and characterize CVEs; lastly
sub-section 4.5 demonstrate how the automated charac-
terization can further assist the analysts by automatically
generating CVE’s severity scores–a labor-intensive activity
that is performed manually today.

11

NVIP Seed
URL List

More URLs
To Crawl

Visit
URL

Add URL to
Source URL List

Contains CVE

 Seed
URL List

Add Child URLs
to Crawl List

Update Existing
NVIP Sources

Yes No

Reachable

Yes

No

Yes

No

End

Start

 Return
Source URL

List

Crawl Depth
Reached

No

Yes

Start

End

URL Crawler # 1

Reconcile URLs
from URL Crawlers

Fig. 12: The process fow of the NVIP Source URL Crawler.

4.1 Automated Web-Mining to Curate Raw Vulnerability
Data (CVEs)

The instrumented platform includes several different com-
ponents as illustrated in Figure 1.
CVE Source Crawler: The frst component is the CVE
Source Crawler responsible for continuously identifying and
maintaining an updated list of potential CVE sources, i.e.,
web sources that actively disclose software vulnerabilities.
To curate vulnerability data as soon as they are disclosed,
we compiled an extensive seed list of web-sources that dis-
close vulnerabilities. These seed lists contain CNAs1, security
advisories, and other public sources that disclose software
vulnerabilities. To extend these web-sources, we developed
multi-thread CVE source crawler module to help maintain an
updated list of potential CVE sources. It takes a list of seed
URLs as input and spawns multiple processes to scrape
all these pages and all outgoing links from each page to
reach additional potential sources. Source URL Crawler is
a confgurable software component that has a crawl depth
parameter. It can continue to crawl all the links in each page
until the confgured depth is reached. Each page content is
checked with regular expressions to test if a valid CVE ID
is included or not. Only the pages that include a valid CVE
ID are included in the fnal source list, and all other pages
are ignored. Detected CVE sources are checked against the
existing sources of the NVIP, and newly detected sources
are added to the database. Meanwhile, CVE Source Crawler
keeps track of the status of each source URL and removes it
from the database if it cannot be reached anymore due to a
variety of HTTP errors. Source Crawler can be scheduled to
run as a service, to ensure all CVE sources are updated in a

1. CVE Numbering Authorities

timely manner. The process fow of the Source URL Crawler
is shown in Figure 12.
CVE Content Crawler The second component leverages
various parsers to extract CVE descriptions from each web-
source. These CVEs are then processed by NLP-Based Rec-
onciling methods to analyze CVEs with the same identi-
fcation number (CVE ID) and make sure the correct and
most updated version of each CVE description is kept. Each
source might be disclosing new CVEs, or updating existing
ones multiple times in a week, day or even hour. CVE
Content Crawler keeps track of the CVE contents at each
source, to make sure that curated CVEs are up-to-date. It
fetches CVE sources from the database and spawns multiple
CVE crawlers to look at each source in parallel. The list
of CVEs returned by different content crawler processes
might have similar CVE instances (with the same CVE
ID). Therefore, the outputs of these processes need to be
reconciled to ensure that only the most recently updated
instance of each CVE is included. Crawled CVEs are recon-
ciled using the CVE reconciliation process. All crawled and
reconciled CVEs are checked against the CVEs that exist in
the database, to go through another reconciliation process
and identify the ones that are new since the most recent run
or have updated content.
CVE Reconciling: The most challenging problem for the
CVE reconciliation algorithm is to decide whether an exist-
ing CVE description has to be updated or not. To address
this challenge, a rule-based reconciliation method is devel-
oped which uses NLP to extract informative metrics from
CVE descriptions. The method uses four characteristics, i.e.,
the length of the CVE description, the number of sentences
in the description, part-of-speech (PoS) diversity, and the
number of unidentifed PoS. Based on these characteristics,
four metrics are developed to identify if the new CVE
description is longer (“Longer”), it has less unidentifed
PoS (“Less Unknown”), it has more sentences (“More Sen-
tences”), and it has more diverse PoS (“More Diverse”).
Using these four metrics we decide if a CVE description
needs to be updated as shown in Table 7.

TABLE 7: Truth table used for CVE description update rule
set.

Less Unknown Longer More Sentences More Diverse Update
False False True True True
True False False True True
True False True False True
True False True True True
True True False True True
True True True False True
True True True True True

The last components of the system, leverage VDO at-
tributes and historical vulnerability data to automatically
characterize CVEs, calculate a severity score for each CVE.
and carry out the CVE analysis described in Section 4.2.

4.2 Timing Analysis of CVE Curation

This section performs a CVE disclosure timing analysis
to compare the CVE disclosure times of our instrumented
approach with the NVD. We use automated and scheduled
crawlers to fnd software vulnerabilities as soon as they are
disclosed. Then, we use the characterization techniques to

12

identify the attributes of the vulnerabilities. In an experi-
ment, we measured the gaps between the time CVEs are
found and characterized by our system and the time they
frst appear in the NVD. Between 5/23/2020 and 7/31/2020,
our approach has detected 575 vulnerabilities earlier than
NVD, with time gaps ranging from 7 to 95 hours. The
distribution of the time gaps for these 525 vulnerabilities
is shown in Figure 13.

For example, CVE-2020-13753 is a vulnerability that al-
lows access outside the sandbox of WebKitGTK and WPE
WebKit (https://webkitgtk.org/), prior to version 2.28.3
and was found at 7/11/2020 08:18:00. The same vulnera-
bility was published on NVD at 07/14/2020 and included
in the NVD Data Feeds (https://nvd.nist.gov/vuln/data-
feeds) approximately 95 hours after the vulnerability was
found by our system.

While NVD publishes a received CVE, still many at-
tributes of the CVE may be incomplete. For instance, as
of September 3rd 2020, the status of CVE-2020-24717 was
‘Undergoing Analysis’ and CVE details were missing. The
vulnerability characterization is aimed to convert this pure
manual process to a semi-automated process. Furthermore,
characterization of CVEs can automate the generation of
vulnerability severity score (CVSS) and other metrics [20].
Additional analysis showed that the developed proof-of-
concept tool was able to identify 100% of CVEs in NVD
in a signifcantly shorter amount of time. Furthermore, it
was able to fnd additional CVEs that did not exist in
NVD at all, because either they were reserved by a CVE
Naming Authority or going through an analysis process
before getting published.

Fig. 13: The distribution of the time gaps (hours) for CVEs
that were detected earlier than NVD between 5/23/2020
and 7/31/2020.

Rapid CVE Curation: Our initial results indicate that
the proposed approach can detect and characterize
vulnerabilities up to 95 hours earlier than NVD. It can
signifcantly reduce the manual effort in the analysis
process and reduce the time gap between the disclosure
of CVEs and their publication.

4.3 Case Study: Model Performance on 2020 CVEs

The goal of this case study is to examine how our solution
performs if it was deployed publicly and used on unseen
data. We created a case study by pulling a set of recent CVEs
from NVD (with CVE-ID > 2020-14000) to measure the
performance of the trained models using real-world CVE
examples. The models were trained on the data collected
earlier and tested on this new data-set. CVEs included in
the case study were not used while training the models.

First, each CVE was labeled with the applicable noun
group values in each of the fve VDO domains. Then, 50
CVEs were selected from the labeled CVEs, with the com-
mon criteria of maintaining a balanced label distribution
in each test set. Except some rarely observed noun group
values like Physical and Local in Attack Theater, Guest OS
in Context and Resource Removal in Logical Impact, all noun
group values are represented with at least 15% of the test
instances. Using each method, all CVEs in the case study
were characterized by the binary or multi-class characteriza-
tion methods described in Section 2.6. Attack Theater, Context
and Impact Method noun groups were used to test multi-
class characterization (Section 3.2). Therefore, the multi-
class characterization with the single-chance and double-
chance approaches were used to characterize CVEs for these
groups. For the Logical Impact and Mitigation noun groups,
the binary classifcation approach was used.

Fig. 14: The accuracy of different methods in the case study
with binary characterization (80% levels are marked with a
dashed red line).

Figure 14 shows the accuracy metrics of the ML and IT
methods with binary characterization. Based on the overall
average accuracy metrics across all noun group values, KLD
and Vote achieve the best average accuracy of 0.88. Figure
15 shows the accuracy metrics of the ML and IT methods for
multi-class characterization with single-chance and double-
chance approaches. In the single-chance approach, KLD, CE
and SVM methods achieve accuracy between 78% and 90%,
and these accuracies increase up to 96% with the double-
chance approach. With the single-chance approach, SVM,
KLD, and CE achieve an average accuracy of 0.85, 0.81,
and 0.81, respectively, across the three VDO noun groups.
With the double-chance approach, these accuracies increase
to 0.90, 0.92, and 0.92 for SVM, KLD, and CE, respectively.

https://webkitgtk.org/
https://nvd.nist.gov/vuln/data-feeds
https://nvd.nist.gov/vuln/data-feeds

13

Fig. 15: The accuracy of different methods in the case study
with multi-class characterization (80% and 90% levels are
marked with a dashed red line).

Fig. 16: The box plot of the F-Measure values of binary
characterization in the case study.

Fig. 17: The box plot of the F-Measure values of multi-class
characterization in the case study.

To compare different characterization methods in the
case study, we use the F-Measure values of the noun group
values obtained during binary and multi-class characteriza-
tion. Figure 16 and 17 show the box plots of the F-Measure
values obtained for binary and multi-class characterizations,
respectively. Figure 18 shows the statistically signifcant
differences between the F-Measure values of each method

Fig. 18: T-test results to compare F-Measure values for
binary (A) and multi-class (B) characterization in the case
study, where each cell shows the difference when the
method in the row is compared with the one in the column.

during the case study. During binary characterization, for
Logical Impact and Mitigation, DT models had a better per-
formance with 10 folds cross-validation, however, they did
not perform that well in the case study. The change in
the performance of the DT model led to a loss in the
performance of the ensemble voting classifer as well. The
average F-Measure values of DT and Vote decreased from
0.93 and 0.92 to 0.80 and 0.75, respectively. The performance
decrease of the DT models could be explained by the slight
change in their underlying training data sets (due to using
100% of the data for training this time, instead of cross
validation). In spite of pruning, changes in the training data
of a decision tree model can cause a signifcant difference
in the tree structure, which might lead to a performance
variation [32], [33].

We observe a more consistent prediction performance
with the IT methods during the case study. Figure 18 shows
that both KLD and CE achieve comparable results with NB,
DT, and Vote and perform better than SVM and RF during
binary characterization. Similarly, they achieve comparable
F-Measure values with SVM and DT and do signifcantly
better than NB, RF, and Vote during multi-class (single
chance) characterization. We confrm the same observation
with the multi-class double-chance approach as well.

Model Performance on 2020 CVEs: The results of the
Model Performance case study indicate that the trained
models are able to characterize CVEs in the wild with
high accuracy, and these models can be leveraged to
decrease the manual CVE characterization efforts in the
community signifcantly.

4.4 Qualitative Study: Effort Reduction in Manual CVE
Review and Characterization

We conduct a human-subject study to investigate whether
the automated CVE characterization approach can enhance
the analysts productivity in CVE reviews and characteriza-
tion. In particular, we will measure the amount of time spent
to characterize CVEs for fve studied VDO noun groups
Attack Theater, Context, Impact Method, Logical Impact, and
Mitigation. Six researchers (from the authors of the paper)
who had up to 10 years of experience with CVE analysis
and were familiar with the NIST Vulnerability Description
Ontology used the descriptions of the 20 most recent CVEs
pulled by automated crawlers of the developed tool to char-
acterize them for fve VDO noun groups. Included CVEs

14

had varying sizes between 651 and 5752 characters (includ-
ing spaces) and all characterizations were done using the
CVE descriptions only, without searching for any additional
information about them.

We conducted a one factor with two-treatment controlled
experiment and followed a crossover design or within-
group where each subject receives the two treatments, and
we get repeated measures [34]. Another option was a par-
allel or between-group design where each subject receives
only one treatment and we obtain independent measures.
There are advantages and disadvantages to each design.
For instance, the benefts of a crossover design are the
elimination of the effects of confounding variables, such as
experience, as each subject serves as his/her own matched
control, and a higher statistical power with fewer subjects.
On the other hand the parallel design minimizes the learn-
ing effects, a known challenge in controlled experiments on
program comprehension [35]. In our study, there also be a
third challenge related to treatment shift that may impact
the mental model and productivity of participants. We chose
crossover design for this qualitative case study.

We use various blocking techniques to control sources of
variation that will reduce error variance. This include source
such as participants experience, or learning biases because
of the order of tasks or exposure to other vulnerability data.

To block the co-founding impact of software and cyber-
security experiences researchers were scored according to
the amount of time they worked on (1) secure software
development, (2) software vulnerabilities, (3) vulnerability
characterization, and (4) the Vulnerability Description On-
tology. Researchers were sorted according to their experi-
ence, where the average of the number of months spent on
each of the aforementioned four areas is used to measure the
experience of each subject. The case study was composed
of two stages and two subject groups were created by
including the frst, third, and ffth subjects in the frst user
group U1 and the second, fourth and sixth subjects in the
second user group U2, to make sure the average experience
of each group is close.

To block the impact of learning biases due to the order of
exposure to the vulnerability data and treatment, we reverse
the order of treatment from one group to the other group.
In such setting, the software security experience across two
groups is balanced, while we do not believe the order of
treatment will have an impact, we take a further action to
minimize the impact of learning biased due to the order of
treatment. Half of participants receive the treatment in one
order and other half in another order.

Twenty CVEs derived from the developed tool were
divided into two groups C1 and C2, and on each stage
of the case study each user group worked on one CVE
group using either a pure manual characterization or semi-
automated characterization approach leveraging the trained
AI/ML models. For the semi-automated characterization, the
system was confgured to use the multi-class characteriza-
tion with Vote.

During Stage 1, researchers in U1 were given the de-
scriptions of the CVEs in C1 and went through a pure
manual characterization process where they recorded the
time spent to read, understand and characterize each CVE
for each of the fve VDO noun groups. For each CVE and

VDO noun group, researchers read the description of each
CVE carefully, used their best judgment to select one or
more relevant noun group values (labels) and recorded the
amount of time elapsed while reading the CVE description
and characterizing it for the noun group. Similarly, in ad-
dition to the descriptions of the CVEs in C2, subjects in U2

were provided with the set of labels that were predicted
for each CVE in C2. Each researcher reviewed the CVE
descriptions in C2 to verify the automatically assigned la-
bels, and recorded the amount of time spent to fnalize the
characterization process for each CVE noun group pair. Re-
searchers evaluated the automatically assigned labels based
on their subjective judgment, therefore the amount of time
spent varied depending on the subjects’ judgment and the
match between their labels and the automatically assigned
ones. For example, if automatically assigned labels included
a noun group value that the subject did not expected to see,
then the verifcation process took a longer period of time to
clarify if the assigned label was wrong or the subject was
missing or ignoring a fact. During the second stage of the
case study, this time subjects in U1 used the semi-automated
characterization approach to characterize CVEs in C2 and
subjects in U2 used the manual characterization to characterize
CVEs in C1.

To have an overall insight about the value of the pro-
posed automated approach in terms of characterization
timing, the average of the time values recorded by each
subject for each noun group are calculated for manual
and semi-automated characterization. Figure 19 shows the
comparison of the average times for the manual charac-
terization process and the semi-automated one using the
trained AI/ML models. Based on the average of the time
values recorded by six subjects, we observe that a signifcant
amount of time is saved when the proposed automated
approach is used for CVE characterization. The percentage
of time saved for the Attack Theater, Context, Impact Method,
Logical Impact, and Mitigation noun groups are observed to
be 48.4%, 44.7%, 51.5%, 37.0%, and 39.1%, respectively.

Fig. 19: Average characterization time of fve noun groups
for the manual CVE characterization process and the semi-
automated one leveraging the trained AI/ML models.

To evaluate the performance of the manual and semi-
automated characterization processes, we calculate the true
positive and false negative counts for the noun group values
assigned by each subject during the case study. Figure 20
shows the recall values of the two approaches for each noun
group. We observe higher recall values for each noun group

15

during the semi-automated characterization, where the subjects
are provided with labels that are automatically assigned by
the AI/ML models. The percentage of improvement in the
recall values of the Attack Theater, Context, Impact Method,
Logical Impact, and Mitigation noun groups are observed
to be 5.1%, 12.6%, 8.8%, 15.8%, and 5.0%, respectively. A
paired t-test with α = 0.05 is used to run a statistical
signifcance test on the recall values obtained for the noun
group values during the manual and semi-automated char-
acterization processes. The paired t-test result indicates that
the difference between the recall values of the two processes
is signifcant with a p value of 0.0009.

Fig. 20: Recall values for each noun group during the man-
ual CVE characterization process and the semi-automated
one leveraging the trained AI/ML models.

Manual Effort Reduction: The results of the qualitative
study with security subject matter experts (SME) shows
that when the proposed automated approach is used
by security SMEs, up to 51.5% of the time spent for
CVE characterization could be saved in comparison to a
full manual process. Furthermore, the recall value of the
characterization process increases up to 15.8%, making
the effort more accurate.

4.5 Automated CVSS Scoring using the NIST Vulnera-
bility Description Ontology

To further support the analysts in the manual review of
CVEs to generate severity scores, we investigate whether
our predicted VDO labels can be further used to score
the severity of published CVEs automatically. This scoring
capability is currently limited because the draft version of
the VDO is not expressive enough to provide a thorough
mapping from VDO to CVSS. However, a goal of VDO is to
support such mappings and thus the fnalized version to be
developed by NIST may remedy the weaknesses revealed
by this work.

Our high level approach is to identify available map-
pings from the VDO labels to CVSS attributes. Then, for
a set of CVEs for which we’ve identifed VDO labels, we
create partial CVSS vectors (where wildcards are used for
some attributes and some attribute value sets). We then use
historical CVE data from the NVD to fnd all CVEs that
match the partially specifed vectors. Lastly, we estimate a

CVSS score for each partial vector by taking the median
CVSS score from all matching CVEs.

More specifcally, we frst defne a set of rules to map
the fve VDO noun groups [20] studied in this paper to the
CVSS version 3.1 [36] base metrics. For each of the entries in
the CVSS base metric group, the following set of rules are
used to establish the mapping:

• Attack Vector (AV): The VDO labels under the Attack
Theater noun group are Remote, Limited Remote, Local,
and Physical). These four map respectively to the four
CVSS Attack Vector metric values: Network (AV:N),
Adjacent (AV:A), Local (AV:L), and Physical (AV:P).

• Attack Complexity (AC): According to the CVSS spec-
ifcation, the complexity of an attack can either be Low
(AC:L) or High (AC:H). The default value of the Attack
Complexity is assumed to be AC:L, however when a Man
in the Middle attack is identifed the attack complexity
is set to AC:H. This is the only VDO value that appears
to affect AC.

• Scope (S): The scope of an attack is assumed to be
Unchanged (S:U) by default. A scope value of Changed
(S:C) is assigned when a Context Escape impact method
or Sandboxed mitigation tactic is detected.

• Confdentiality (C), Integrity (I), Availability (A): The
CVSS impact metrics of Confdentiality, Integrity and
Availability (CIA) are each allowed to have one of three
values: None (N), Low (L), and High (H). For our work,
we add a value of Unknown (U) which indicates that
the metric is not N but that the VDO does not enable
us to distinguish between L and H. Each CIA metric is
assumed to be N unless there is evidence otherwise.
We map each CIA metric to a distinct metric specifc
set of logical impacts: Read and Indirect Disclosure for C,
Write and Resource Removal for I, and Service Interrupt
for A. U is tentatively assigned for a CIA metric if at
least one of the metric specifc set of logical impacts
applies. A U value is upgraded to an H if the VDO
logical impact Privilege Escalation also applies. A logical
impact of Privilege Escalation (with no other logical
impacts specifed) upgrades a N or U value to H as
the VDO specifcation states that Privilege Escalation by
itself implies all other logical impacts.

• Privileges Required (PR) and User Interaction (UI):
For the PR and UI base metrics of the CVSS specifca-
tion, no mapping is defned. This is because the studied
VDO noun groups do not convey the level of required
privileges and the requirement of user interaction. The
values of the CVSS metrics that had no mapping were
set to ‘X’ to indicate no value was assigned.

During the case study, the system was confgured to
use the multi-class characterization with ensemble voting,
and all CVEs published during 2020 and 2021 were char-
acterized automatically to predict VDO noun group values
for each CVE. CVEs published before CVE-2020-14000 were
excluded from the case study, because they were included
in the training data sets. Given a CVE description, the labels
for the fve studied noun groups were predicted using the
trained AI/ML models and the aforementioned mapping
rules were used to generate a partial CVSS feature vector for
each CVE. For example, if Remote, Man in the Middle, Write

16

and Mitigation labels are predicted for the Attack Theater,
Impact Method, Logical Impact, and Mitigation noun groups,
then the CVSS vector [N, H, X, X, C, N, U, N] is created
based on the defned rules, where each entry in the vector
represents the Attack Vector, Attack Complexity, Privileges
Required, User Interaction, Scope, Confdentiality, Integrity, and
Availability component, respectively. Please note that the PR
and UI metrics are set to X , because no mapping is defned,
and the value of the Integrity is set to U to indicate the
ambiguity of the level of integrity violation. Once a partial
CVSS vector is generated from the VDO labels derived from
a CVE description, it was matched against the CVSS vectors
of the previously published CVEs between 2015 and 2019
that match the partial vector and that had a score assigned
by NVD. The median CVSS score of the matching CVEs is
used to assign the severity score of the CVE. Median was
used instead of mean to minimize the sum of the distances
between the chosen value and all applicable CVSS values.

Our analysis showed that out of the 6777 CVEs pub-
lished in 2020 (after CVE-2020-14000) and 2021 (up until
2/25/2021), 317 did not have a base CVSS score assigned
by NVD. For each of the remaining 6460 CVEs, the partial
CVSS vector generated from VDO is matched with the CVSS
vectors of CVEs published between 2015 and 2019. Figure 21
shows the distribution of the 6460 CVSS scores assigned by
the proposed automated approach and the NVD. The mean
of the CVSS scores assigned by our method and NVD are
6.8 and 7.2, respectively. Furthermore, the mean absolute
error of the scores assigned by our approach is found to
be 1.6 when compared to the scores assigned by NVD.
This proof of concept case study provides promising results
and shows that automated CVSS score calculation could be
possible. Please note that the performance of this case study
could be improved further if additional VDO noun group
values enabled more thorough coverage of the CVSS metrics
(especially for the impact of an attack) in the next releases
of VDO.

Fig. 21: The box plot showing the distribution of the me-
dian CVSS scores calculated by the described automated
approach and the scores assigned by NVD.

VDO-based Automated CVSS Calculation: The results
of the CVE scoring case study shows that predicted
VDO labels can be used to score the severity of CVEs
automatically. For 6460 CVEs analyzed during the case
study, the mean values of the CVSS scores assigned

by the proposed automated scoring approach and the
NVD are found to be 6.8 and 7.2, respectively.

In summary, Section 4 frst briefy described an auto-
mated system developed to mine the web and curate raw
vulnerability data and then provided a set of quantitative
and qualitative studies to showcase its contributions by:

1) Testing the system for 68 continuous days to perform a
timing analysis for CVE curation and show that CVEs
could be found and curated earlier than NVD that heav-
ily rely on manual processes.

2) Monitoring the system’s performance on real-life CVEs
to simulate its use by security analysts and show that
CVEs with free-form vulnerability descriptions can be
characterized automatically with high accuracy.

3) Demonstrating the effort reduction brought by the de-
veloped system. A human-subject study was performed
to show that a significant portion of the time that is
currently spent on manual CVE curation could in fact
be saved.

4) Conducting a quantitative study to show the developed
system can be used for automated CVSS severity scor-
ing.

5 USE CASES

Semi-Automated Analysis of Vulnerability Reports: Vul-
nerability reports, bug reports, and issue tracking tickets
exist in a free text format. Automated characterization meth-
ods can extract valuable information from textual reports
to easily interpret them and draw conclusions from them.
While in this work we only applied the characterization
techniques to CVE data, our approach can also be applied
to other sources of information such as bug reports, vulner-
ability reports, developer discussions forums, and any other
textual artifact.
Enable automated analysis using metrics such as the Com-
mon Vulnerability Scoring System (CVSS): Conversion of
CVE description into VDO ontology will enable developers
to obtain an estimated value for vulnerability CVSS scores
on demand. NIST provides a method that describes how to
map VDO noun-groups to CVSS scores and provides the
reasoning for the mapping [20]. Using the automated vul-
nerability characterization with this mapping, it is possible
to build a just-in-time CVSS score generation method.
Support CNAs: NVD relies on voluntary submissions by
various CNAs, however some of the CNAs do not have
adequate resources, guidelines, or tools to establish a sus-
tainable submission method. A semi-automated approach
will reduce the cost of describing and reporting software
vulnerabilities for these CNAs.
Help Developers Characterize and Reason about Security
Bugs: The proof of concept system developed during this
work will provide the minimum information needed to
properly inform all the stake-holders and facilitate the shar-
ing of vulnerability information across language barriers.
Rapid Access to Vulnerability Data: The system developed
for this work discovers and characterizes vulnerabilities as
soon as they are disclosed. The real-time nature of this

17

process can help many organizations access the newest
vulnerabilities and make informed decisions in-time.

6 RELATED WORK

Accurate vulnerability information is crucial for
program repair [5], [37], vulnerability model-
ing/prediction/detection [38]–[40], exploit generation [41],
and conducting empirical studies [1], [2], [14], [42], [43].
Security practitioners need vulnerability information in
a timely manner to patch their systems properly [1]–[5],
[44], [45]. Prior works have studied and enumerated the
challenges of aggregating vulnerability information in an
automated fashion, to allow reasoning [44]–[47] as well
as create a common vocabulary for sharing vulnerability
data [48], [49]. Currently, there are many security-related
databases that contain information about vulnerabilities, i.e.,
descriptions, related vendor advisories, patches, exploits,
root causes, and consequences. Examples of these databases
are Exploit DB [11], Security Focus [10], VulnDB [9], IBM
X-Force [50], VulnCode-DB [8] and NVD [7]. However,
vulnerability data in these systems may not always provide
all information needed to conduct empirical studies. For
instance, ExploitDB is focused on providing code snippets
for breach exploits, whereas NVD lacks such information
built-in. Therefore, security researchers often create their
own datasets, but these datasets are not always reusable by
other researchers [51], [52].

NVD is widely used as the main source of vulnerabil-
ity information in previous research, motivating empirical
studies on the accuracy and consistency of information
available in NVD [13], [16], [17], [53], [54]. Dong et al.
[17] described VIEM, an approach to detect vulnerable
software names and their versions from free text and used
it to examine NVD’s vulnerability information consistency.
They found that NVD contains incorrect information about
vulnerable software versions. Similarly, Nguyen and Mas-
saci [53] studied CVEs associated with Google Chrome, and
found non-negligible errors in NVD’s vulnerable software
versions data that could affect conclusions drawn in em-
pirical studies that rely on it. Zhang et al. [16] explored the
use of NVD’s data to perform vulnerability prediction. They
found diffculty in building prediction models that perform
well based on NVD data. Among the reasons identifed in
this work are data quality problems regarding affected vul-
nerable software versions in NVD and missing information
for CVE instances. Dongliang et al. [13] scrutinized 368
vulnerability reports to quantify their reproducibility. They
found that one single source of vulnerability information is
not enough for reproducibility, because it is often incom-
plete and forces security professionals to manually debug
and guess, to infer missing information.

Because of the data quality problems in the existing vul-
nerability databases, some prior works focused on creating
vulnerability datasets that researchers could reuse in their
work. Ponta et al. [55] described a dataset of vulnerability
fxes, curated by extracting CVEs from NVD and performing
a manual analysis of these reports in order to identify the
commit(s) that fx the CVEs. Similarly, Fan et al. [56] released
a dataset of commit fxes for C/C++ programs. Gkortzis
et al. [57] described VulinOSS, a dataset of vulnerabilities

that correlates software metrics from 8,694 open-source
software with their particular vulnerabilities. Namrud et
al. [58] presented AndroVul, a dataset of vulnerabilities
in Android apps to be used as a benchmark for security
research. Although these datasets are useful for researchers
and practitioners, they are limited in terms of the underlying
programming language/domain of the sample programs
(e.g., C/C++, Android apps) as well as the vulnerability
information types they cover (e.g., commit fxes, software
metrics).

Other prior works focused on investigating some of the
problems observed in the current vulnerability management
systems, attempting to automatically characterize vulner-
abilities [59]–[65]. Some works investigated approaches to
characterize specifc attributes related to the life-cycle of
a vulnerability (i.e., time of introduction, disclosure, and
patch) [66]–[68] as well as their severity [18], [69], [70]. Joshi
et al. [60] attempt to partially solve the problem of vulner-
ability characterization by proposing the use of techniques
that automatically extract a limited set of security entities
from free-text. However, an automated end-to-end approach
is needed to characterize vulnerabilities and reduce the
manual effort needed for CVE management. Some prior re-
search studies attempt to automate the process of accurately
identifying all software product versions that are affected
by a vulnerability [62], [63]. However, these automated
processes of tracing vulnerable software releases suffered
from weaknesses that result in a high number of false
positives. In a relatively recent study [61], CVEs derived
from a vulnerability report platform are used to categorize
vulnerabilities, predict their risk level, and identify solutions
required to address them. However, vulnerabilities were
derived from a single source, and the generated data set was
very limited, i.e., only 39,417 vulnerability entries in 16 cat-
egories were considered. A more comprehensive approach
is needed to design and develop a continuously running
automated platform that considers multiple vulnerability
sources. Furthermore, it should provide intelligent analysis
and characterization services to the software community,
identifying the vulnerability context, impacted target assets,
attack methods, and potential mitigation techniques based
on a well-known vulnerability ontology.

7 THREATS TO VALIDITY

In this section, we briefy summarize the internal, external,
and construct validity threats and the measures taken to
mitigate each threat [71].

An internal validity threat occurs when the cause-effect
relationship between the dependent and independent vari-
ables are not trustworthy. To help mitigate internal validity
threats, frst we selected a set of real-life CVEs and used
CVE descriptions as the sole source of context-aware feature
extraction and vectorization. We used a variety of machine
learning and information theoretical methods to cross-check
our fndings, and applied cross validation to report empiri-
cal fndings.

External validity determines how well the results of a
study can be generalized, and it is threatened when the
results observed on one data set are not applicable to oth-
ers. To mitigate external validity threats, frst we collected

18

data from a diverse set of real-life CVEs which report real
vulnerabilities from a variety of domains. While evaluating
whether the process of vulnerability curation and characteri-
zation can be improved using ML and information retrieval,
we used cross-validation during quantitative analysis and
a cross-over design approach during qualitative studies to
minimize potential biases. However, one of the limitations
of our study is the size of the datasets used during the
quantitative and qualitative analyses. Since manual CVE
characterization is a time-consuming and expensive pro-
cess, we used a small set of CVEs during these analyses
to demonstrate the practical contribution of the proposed
approach. More experiments with larger sets of more diver-
sifed CVEs might be needed to cross-check our fndings.

Construct validity defnes how well an experiment can
measure its claims and can be threatened by a variety of
factors, including errors in the experiment pipeline and bi-
ases in the experiment design. To mitigate the construct va-
lidity threats, we automated all experiment steps including
CVE pre-processing, feature extraction, vectorization, model
training and testing. To mitigate any potential biases, we fol-
lowed a cross-over design approach during the qualitative
analyses. However, it should be noted that predicted CVE
noun group values are dependent on the natural language
description of the underlying CVE, and the wording of the
vulnerabilities matters. To ensure repeatability, we used the
CVE descriptions from the NVD, but an AI/ML model may
predict different noun group values for the same CVE if its
description is pulled from a different vulnerability database.
Therefore, it could be good to perform the same set of
experiments on the same set of CVEs pulled from different
CNAs. Furthermore, we used the default parameter set in
Weka to carry out the ML experiments. Conducting pa-
rameter tuning may improve the performance of some ML
algorithms (e.g., SVM) and that may boost the performance
of the voting algorithm as well. Therefore, the comparison
between the ML and IT methods may produce slightly
different results when model parameters are tuned. And f-
nally, we used a threshold value of ρ = 0.7 (and not 0.5, like
classifers do by default) during our experiments for multi-
class CVE characterization. This was chosen heuristically to
increase the probability of seeing the second or even the
third predictions. Using a different threshold might affect
the performance of multi-class characterization. The script
used to run the experiments will be shared in the GitHub
repository and different ρ values could be tested by future
works.

8 CONCLUSION

This paper uses novel Natural Language Processing (NLP),
Machine Learning (ML), and Information Theoretical (IT)
methods to show the feasibility of automated CVE collection
and characterization. It develops a confgurable, scalable,
and portable proof of concept experimental system which
crawls CVEs from security bulletins, advisories, exploit
databases, issue tracking systems, and provides automated
vulnerability characterization services.

It uses the public NIST’s VDO framework to characterize
CVEs and help unify vulnerability communication in the
security community. For each CVE, it identifes where an

attack comes from, the vulnerability context, impact meth-
ods used in the exploits, potential consequences (logical im-
pacts) and mitigation strategies. Five researchers followed
a systematic methodology and spent 3000+ person-hours
to generate labeled CVE data sets for fve domains (noun
groups) in the VDO framework. Using conventional ML
classifers and novel IT methods, binary and multi-class
prediction models are built to characterize CVEs in fve
domains and provide automated vulnerability intelligence
capabilities.

The performance of a set of conventional ML methods
and novel IT approaches are compared for binary and multi-
class characterization. First, a ten folds cross-validation ap-
proach is used to test each method, and then a case study
is created to evaluate the performance of each method on
real-life CVE examples. Experiment results indicate that
CVEs can be characterized instantly, with relatively high
F-Measure values. Our analysis reveals that the proposed
entropy-based IT technique achieves similar or even better
performance compared to the conventional ML classifers.
A second case study is created to measure the value of the
proposed approach in terms of the amount of time spent in
the characterization process. The case study results indicate
that the proposed methodology could save up to 47% of
the time spent for vulnerability characterization and could
signifcantly speed up the CVE publication process.

Our vectorization method combines TF-IDF with n-gram
to be able to capture contextual information about each
term. In particular, as we described earlier, this is impor-
tant for the security domain that often context plays an
important role in reasoning. This paper demonstrates the
possibility of automating a task that today is done manu-
ally. Given the current analysis pipeline and the promising
results, we demonstrate the practical signifcance of the
approach. Future research could improve the performance
of the algorithms further by leveraging word2vec models
trained on a domain-specifc corpus and using tuned pa-
rameters for ML methods.

9 ACKNOWLEDGMENTS

This work was partially funded by the U.S. Department of
Homeland Security, contract 70RSAT19CB0000020.

REFERENCES

[1] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy,
S. Savage, and V. Paxson, “You’ve got vulnerability: Exploring
effective vulnerability notifcations,” in 25th USENIX Security Sym-
posium (USENIX Security 16), 2016, pp. 1033–1050.

[2] C. Sabottke, O. Suciu, and T. Dumitras, “Vulnerability
disclosure in the age of social media: Exploiting twitter
for predicting real-world exploits,” in 24th USENIX
Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, Aug. 2015, pp. 1041–
1056. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/sabottke

[3] F. Li, G. Ho, E. Kuan, Y. Niu, L. Ballard, K. Thomas, E. Bursztein,
and V. Paxson, “Remedying web hijacking: Notifcation effective-
ness and webmaster comprehension,” in Proceedings of the 25th
International Conference on World Wide Web, 2016, pp. 1009–1019.

[4] M. Vasek and T. Moore, “Do malware reports expedite cleanup?
an experimental study.” in 5th Workshop on Cyber Security
Experimentation and Test (CSET 12). Bellevue, WA: USENIX
Association, Aug. 2012. [Online]. Available: https://www.usenix.
org/conference/cset12/workshop-program/presentation/Vasek

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/sabottke
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/sabottke
https://www.usenix.org/conference/cset12/workshop-program/presentation/Vasek
https://www.usenix.org/conference/cset12/workshop-program/presentation/Vasek

19

[5] A. Machiry, N. Redini, E. Camellini, C. Kruegel, and G. Vigna,
“Spider: Enabling fast patch propagation in related software
repositories,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020.

[6] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutraliz-
ing vulnerabilities with security workarounds for rapid response,”
in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 618–
635.

[7] National Vulnerability Database, “Nvd dashboard,” https:
//nvd.nist.gov/general/nvd-dashboard#, 2018, (Accessed on
05/04/2018).

[8] R. Habalov and T. Schmid, “Vulncode-db,” https://www.
vulncode-db.com/, (Accessed on 09/02/2020).

[9] “Vulndb,” https://vulndb.cyberriskanalytics.com/, (Accessed on
09/01/2020).

[10] “Securityfocus,” https://www.securityfocus.com/, (Accessed on
09/01/2020).

[11] “Exploit database - exploits for penetration testers, researchers,
and ethical hackers,” https://www.exploit-db.com/, (Accessed
on 09/01/2020).

[12] National Institute of Standards and Technology (NIST), “National
vulnerability database (nvd),” https://nvd.nist.gov, 2020, (Ac-
cessed on 10/29/2020).

[13] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and
G. Wang, “Understanding the reproducibility of crowd-reported
security vulnerabilities,” in 27th USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX Association,
Aug. 2018, pp. 919–936. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity18/presentation/mu

[14] F. Massacci, “Which is the right source for vulnerabilities studies?
an empirical analysis on mozilla frefox,” in In Proceedings of
MetriSec’10. Citeseer, 2010, pp. 1–8.

[15] F. Farahmand, S. Navathe, P. Jr, and G. Sharp, “Managing vulnera-
bilities of information systems to security incidents,” in Proceedings
of the 5th international conference on Electronic commerce, 09 2003, pp.
348–354.

[16] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using
the national vulnerability database to predict software vulnera-
bilities,” in International Conference on Database and Expert Systems
Applications. Springer, 2011, pp. 217–231.

[17] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang,
“Towards the detection of inconsistencies in public security
vulnerability reports,” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association,
Aug. 2019, pp. 869–885. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity19/presentation/dong

[18] J. Ruohonen, “A look at the time delays in cvss vulnerability
scoring,” Applied Computing and Informatics, vol. 15, no. 2, pp. 129–
135, 2019.

[19] B. Ladd, “The race between security professionals
and adversaries,” https://www.recordedfuture.com/
vulnerability-disclosure-delay/, June 2017, (Accessed on
09/02/2020).

[20] H. Booth, “Draft NISTIR 8138, Vulnerability Description Ontology
(VDO),” National Institute of Standards and Technology (NIST),
Tech. Rep., 2016.

[21] S. Kullback and R. A. Leibler, “On information and suffciency,”
The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86,
03 1951. [Online]. Available: https://doi.org/10.1214/aoms/
1177729694

[22] “Apache OpenNLP,” http://opennlp.apache.org, 2011, (Accessed
on 09/02/2020).

[23] M. Mirakhorli and Jane Cleland-Huang, “Detecting, tracing, and
monitoring architectural tactics in code,” IEEE Trans. Software
Eng., 2015. [Online]. Available: http://doi.ieeecomputersociety.
org/10.1109/TSE.2015.2479217

[24] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifers,” in Proceedings of the ffth annual
workshop on Computational learning theory, 1992, pp. 144–152.

[25] J. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Advances in Kernel Methods: Support Vector
Learning, pp. 185–208, 02 1999.

[26] D. Jurafsky and J. H. Martin, Speech and language processing : an
introduction to natural language processing, computational linguistics,
and speech recognition. Upper Saddle River, N.J.: Pearson Prentice
Hall, 2009. [Online]. Available: http://www.amazon.com/

Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=
pd bxgy b img y

[27] G. H. John and P. Langley, “Estimating continuous distributions
in bayesian classifers,” in Proceedings of the Eleventh Conference on
Uncertainty in Artifcial Intelligence, ser. UAI’95. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1995, p. 338–345.

[28] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[29] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, p.
5–32, Oct. 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[30] L. I. Kuncheva, Bagging and Boosting. John Wiley & Sons,
Ltd, 2004, ch. 7, pp. 203–235. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/0471660264.ch7

[31] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining, Fourth
Edition: Practical Machine Learning Tools and Techniques, 4th ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2016.

[32] R. Li and G. G. Belford, “Instability of decision tree
classifcation algorithms,” in Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’02. New York, NY, USA: Association for
Computing Machinery, 2002, p. 570–575. [Online]. Available:
https://doi.org/10.1145/775047.775131

[33] K. Dwyer and R. Holte, “Decision tree instability and active
learning,” in Machine Learning: ECML 2007, J. N. Kok, J. Koronacki,
R. L. d. Mantaras, S. Matwin, D. Mladenič, and A. Skowron, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 128–139.

[34] R. Conradi and A. I. Wang, Empirical Methods and Studies in
Software Engineering: Experiences from Esernet. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2003.

[35] J. Quante, “Do dynamic object process graphs support program
understanding? - a controlled experiment.” in 2008 16th IEEE
International Conference on Program Comprehension, June 2008, pp.
73–82.

[36] “Common Vulnerability Scoring System version 3.1: Specifcation
Document,” https://www.frst.org/cvss/specifcation-document,
(Accessed on 02/25/2021).

[37] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties
to generate vulnerability patches,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 539–554.

[38] F. Xiao, J. Zhang, J. Huang, G. Gu, D. Wu, and P. Liu, “Unexpected
data dependency creation and chaining: A new attack to sdn,” in
2020 IEEE Symposium on Security and Privacy (SP), 2020, pp. 264–
278.

[39] S. More, M. Matthews, A. Joshi, and T. Finin, “A knowledge-
based approach to intrusion detection modeling,” in 2012 IEEE
Symposium on Security and Privacy Workshops. IEEE, 2012, pp.
75–81.

[40] D. Brumley, J. Newsome, D. Song, Hao Wang, and Somesh
Jha, “Towards automatic generation of vulnerability-based signa-
tures,” in 2006 IEEE Symposium on Security and Privacy (S P’06),
2006, pp. 15–16.

[41] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic
patch-based exploit generation is possible: Techniques and impli-
cations,” in 2008 IEEE Symposium on Security and Privacy (SP 2008),
2008, pp. 143–157.

[42] T. Scholte, D. Balzarotti, and E. Kirda, “Have things changed
now? an empirical study on input validation vulnerabilities in
web applications,” Computers & Security, vol. 31, no. 3, pp. 344–
356, 2012.

[43] ——, “Quo vadis? a study of the evolution of input validation
vulnerabilities in web applications,” in International Conference on
Financial Cryptography and Data Security. Springer, 2011, pp. 284–
298.

[44] Madhusudhanan Chandrasekaran, Mukkarram Baig, and
Shambhu Upadhyaya, “Avare: aggregated vulnerability
assessment and response against zero-day exploits,” in 2006
IEEE International Performance Computing and Communications
Conference, 2006, pp. 8 pp.–610.

[45] Sufatrio, R. H. Yap, L. Zhong et al., “A machine-oriented integrated
vulnerability database for automated vulnerability detection and
processing,” Large Installation System Administration (LISA), 2004.

[46] A. Arnold, B. M. Hyla, and N. C. Rowe, “Automatically building
an information-security vulnerability database,” in Proc of 2006
IEEE Workshop on Information Assurance US Military Academy, 2006.

[47] V. Mulwad, W. Li, A. Joshi, T. Finin, and K. Viswanathan, “Ex-
tracting information about security vulnerabilities from web text,”

https://nvd.nist.gov/general/nvd-dashboard#
https://nvd.nist.gov/general/nvd-dashboard#
https://www.vulncode-db.com/
https://www.vulncode-db.com/
https://vulndb.cyberriskanalytics.com/
https://www.securityfocus.com/
https://www.exploit-db.com/
https://nvd.nist.gov
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
https://www.usenix.org/conference/usenixsecurity18/presentation/mu
https://www.usenix.org/conference/usenixsecurity19/presentation/dong
https://www.usenix.org/conference/usenixsecurity19/presentation/dong
https://www.recordedfuture.com/vulnerability-disclosure-delay/
https://www.recordedfuture.com/vulnerability-disclosure-delay/
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
http://opennlp.apache.org
http://doi.ieeecomputersociety.org/10.1109/TSE.2015.2479217
http://doi.ieeecomputersociety.org/10.1109/TSE.2015.2479217
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471660264.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471660264.ch7
https://doi.org/10.1145/775047.775131
https://www.first.org/cvss/specification-document

20

in 2011 IEEE/WIC/ACM International Conferences on Web Intelligence
and Intelligent Agent Technology, vol. 3, 2011, pp. 257–260.

[48] Z. Syed, A. Padia, T. Finin, L. Mathews, and A. Joshi, “Uco: A
unifed cybersecurity ontology,” UMBC Student Collection, 2016.

[49] M. Iannacone, S. Bohn, G. Nakamura, J. Gerth, K. Huffer,
R. Bridges, E. Ferragut, and J. Goodall, “Developing an ontology
for cyber security knowledge graphs,” in Proceedings of the 10th
Annual Cyber and Information Security Research Conference, 2015, pp.
1–4.

[50] IBM, “IBM X-Force Exchange,” https://exchange.xforce.
ibmcloud.com/, (Accessed on 09/01/2020).

[51] M. Zheng, H. Robbins, Z. Chai, P. Thapa, and T. Moore, “Cyber-
security research datasets: taxonomy and empirical analysis,” in
11th USENIX Workshop on Cyber Security Experimentation and Test
(CSET 18), 2018.

[52] C. Grajeda, F. Breitinger, and I. Baggili, “Availability of datasets for
digital forensics–and what is missing,” Digital Investigation, vol. 22,
pp. S94–S105, 2017.

[53] V. H. Nguyen and F. Massacci, “The (un) reliability of NVD vul-
nerable versions data: An empirical experiment on google chrome
vulnerabilities,” in Proceedings of the 8th ACM SIGSAC symposium
on Information, Computer and Communications Security. ACM, 2013,
pp. 493–498.

[54] A. Ozment and S. E. Schechter, “Milk or wine: does software
security improve with age?” in USENIX Security Symposium, vol. 6,
2006.

[55] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, and C. Dangremont,
“A manually-curated dataset of fxes to vulnerabilities of open-
source software,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), 2019, pp. 383–387.

[56] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vul-
nerability dataset with code changes and cve summaries,” in
2020 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 2020, pp. 383–387.

[57] A. Gkortzis, D. Mitropoulos, and D. Spinellis, “Vulinoss: A
dataset of security vulnerabilities in open-source systems,” in
Proceedings of the 15th International Conference on Mining Software
Repositories, ser. MSR ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 18–21. [Online]. Available:
https://doi.org/10.1145/3196398.3196454

[58] Z. Namrud, S. Kpodjedo, and C. Talhi, “Androvul: a repository
for android security vulnerabilities,” in Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering, 2019, pp. 64–71.

[59] G. Huang, Y. Li, Q. Wang, J. Ren, Y. Cheng, and X. Zhao, “Au-
tomatic classifcation method for software vulnerability based on
deep neural network,” IEEE Access, vol. 7, pp. 28 291–28 298, 2019.

[60] A. Joshi, R. Lal, T. Finin, and A. Joshi, “Extracting cybersecurity
related linked data from text,” in 2013 IEEE Seventh International
Conference on Semantic Computing (ICSC). IEEE, 2013, pp. 252–259.

[61] X. Zhang, H. Xie, H. Yang, H. Shao, and M. Zhu, “A general
framework to understand vulnerabilities in information systems,”
IEEE Access, vol. 8, pp. 121 858–121 873, 2020.

[62] C. Cabrey, “Identifying the presence of known vulnerabilities in
the versions of a software project,” Master’s thesis, Rochester
Institute of Technology, 2016.

[63] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic
method for assessing the versions affected by a vulnerability,”
Empirical Software Engineering, vol. 21, no. 6, pp. 2268–2297, 2016.

[64] X. Gong, Z. Xing, X. Li, Z. Feng, and Z. Han, “Joint prediction
of multiple vulnerability characteristics through multi-task learn-
ing,” in 2019 24th International Conference on Engineering of Complex
Computer Systems (ICECCS), 2019, pp. 31–40.

[65] D. Gonzalez, H. Hastings, and M. Mirakhorli, “Automated char-
acterization of software vulnerabilities,” in 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2019, pp.
135–139.

[66] W. A. Arbaugh, W. L. Fithen, and J. McHugh, “Windows of
vulnerability: a case study analysis,” Computer, vol. 33, no. 12, pp.
52–59, Dec 2000.

[67] A. Jumratjaroenvanit and Y. Teng-amnuay, “Probability of attack
based on system vulnerability life cycle,” in 2008 International
Symposium on Electronic Commerce and Security, Aug 2008, pp. 531–
535.

[68] R. Wita, N. Jiamnapanon, and Y. Teng-Amnuay, “An ontology for
vulnerability lifecycle,” in 2010 Third International Symposium on

Intelligent Information Technology and Security Informatics. IEEE,
2010, pp. 553–557.

[69] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale
vulnerability analysis,” in Proceedings of the 2006 SIGCOMM
Workshop on Large-scale Attack Defense, ser. LSAD ’06. New
York, NY, USA: ACM, 2006, pp. 131–138. [Online]. Available:
http://doi.acm.org.ezproxy.rit.edu/10.1145/1162666.1162671

[70] H. Holm and K. K. Afridi, “An expert-based investigation of
the common vulnerability scoring system,” Computers & Security,
vol. 53, pp. 18 – 30, 2015. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167404815000620

[71] P. Runeson and M. Hoest, “Guidelines for conducting and re-
porting case study research in software engineering,” Empirical
Software Engineering, vol. 14, pp. 131–164, 2009.

https://exchange.xforce.ibmcloud.com/
https://exchange.xforce.ibmcloud.com/
https://doi.org/10.1145/3196398.3196454
http://doi.acm.org.ezproxy.rit.edu/10.1145/1162666.1162671
http://www.sciencedirect.com/science/article/pii/S0167404815000620
http://www.sciencedirect.com/science/article/pii/S0167404815000620

	Introduction
	Methodology: Vulnerability Characterization
	Vulnerability Description Ontology (VDO)
	Data Collection & Labelling
	Data
	Data Labeling Process

	CVE Pre-processing
	Context-Aware Feature Extraction and Vectorization of CVEs
	CVE Characterization Methods
	Classifiers
	Information Theory based CVE Characterization

	Experiment Design
	Binary CVE Characterization
	Multi-class CVE Characterization
	Evaluation Setup
	Performance Metrics

	Vulnerability Characteization Results
	Binary CVE Characterization
	Attack Theater
	Context
	Impact Method
	Logical Impact
	Mitigation

	Multi-class CVE Characterization
	Overall Evaluation

	Instrumentation: Real-time Mining and Characterization of Raw Vulnerability Data
	Automated Web-Mining to Curate Raw Vulnerability Data (CVEs)
	Timing Analysis of CVE Curation
	Case Study: Model Performance on 2020 CVEs
	Qualitative Study: Effort Reduction in Manual CVE Review and Characterization
	Automated CVSS Scoring using the NIST Vulnerability Description Ontology

	Use Cases
	Related Work
	Threats to Validity
	Conclusion
	Acknowledgments
	References

