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Abstract 
Machine learning control (MLC) is a highly flexible and adaptable method that enables the design, 
modeling, tuning, and maintenance of building controllers to be more accurate, automated, 

flexible, and adaptable. The research topic of MLC in building energy systems is developing rapidly, 
but to our knowledge, no review has been published that specifically and systematically focuses 
on MLC for building energy systems. This paper provides a systematic review of MLC in building 

energy systems. We review technical papers in two major categories of applications of machine 
learning in building control: (1) building system and component modeling for control, and (2) 
control process learning. We identify MLC topics that have been well-studied and those that need 

further research in the field of building operation control. We also identify the gaps between the 
present and future application of MLC and predict future trends and opportunities. 
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1 Introduction 

Globally, buildings use about 40% of primary energy and 
are responsible for approximately 30% of greenhouse gas 
emissions (Costa et al. 2013). Building control and operation 
have a significant impact on building energy efficiency and 
occupant comfort (Oldewurtel et al. 2012). Moreover, the 
development of the smart grid has led to a revolution in 
power infrastructure from centralized one-way communication 
to decentralized two-way communication (Zhang 2018). 
The National Energy Technology Laboratory estimates that 
more than one-fourth of U.S. electricity demand could be 
dispatchable from buildings through advanced whole-building 
control, operation strategies, and smart grid infrastructure 
(Hagerman 2014). 

Conventional building control in most building 
automation systems (BAS) is rule-based feedback control, 
relying on pre-determined logic and schedules of building 

equipment operation, and realized by classical control 
techniques, such as proportional-integral-derivative (PID) 
control (Hong et al. 2020). The increasing complexity of 
building control tasks, such as control in building-to-grid- 
integration, occupancy-based control, and prediction-based 
control, has introduced challenges to conventional building 
control strategies, because: (1) building systems are massively 
nonlinear, which is difficult for conventional control 
methods to capture; (2) the system dynamics are unknown or 
hard to capture; (3) the dimensionality of control objectives 
and measurements is high; (4) predictive information (such 
as weather, occupancy, and occupant behaviors) is not taken 
into consideration, leading to sub-optimal performance 
(Hong et al. 2020); and (5) conventional control strategies 
are not sufficiently customized to the specific building and 
climate, and they are unable to adapt to changes (such as 
retrofits) to the building (Hong et al. 2020). 

The increase in data availability provides opportunities 
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Nomenclature 

A3C  advantage actor-critic 
AHU  air handling unit 
ANFIS  adaptive neuro-fuzzy inference system 
BAS  building automation system 
BPNN  back-propagation neural network 
DDPG  deep deterministic policy gradients 
DQN  deep Q-network 
HVAC  heating, ventilation, and air-conditioning 
IoT  Internet of things 
ML  machine learning 

MLC  machine learning control 
MPC  model predictive control 
NN  neural network 
PCA  principal component analysis 
PID  proportional-integral-derivative 
PPO  proximal policy optimization 
RBF  radial basis function  
RL  reinforcement learning 
SSSS  sub-keyword synonym subtopics searching 
SVM  support vector machine 

  
 
for machine learning (ML) methods that rely on large 
amounts of data that have been deployed in the fields of 
engineering, manufacturing, healthcare, education, marketing, 
financial modeling, and policing (Jordan and Mitchell 
2015). There is an explosion of building data due to 
decreasing hardware costs, increasing data accessibility, fast 
computers, fast simulations, and advances in Internet of 
things (IoT) and BAS. Machine learning control (MLC) 
combines ML, intelligent control, and control theory, to 
solve control problems. Although not officially defined, MLC 
can refer to any control where ML techniques are partially 
or wholly applied. Although MLC are not subject to 
physics-based models, and therefore lack theoretical rigor, 
they are highly flexible and adaptable methods. Due to  
its adaptability, MLC can address the challenges that 
conventional building controls encounter so that the design, 
modeling, tuning, and maintenance of building controllers 
can be more accurate, automated, flexible, and adaptable, 
making control more accessible in a real building system. 

Research of MLC in building energy systems has developed 
rapidly in recent years, covering research topics including 
ML-based model predictive control (MPC), reinforcement 
learning (RL) control, ML-improved traditional control (e.g., 
PID control), ML-based fuzzy control, and ML-based feature 
engineering for control (Zhang and Wen 2019), applied at 
different levels of building control (building-level, system-level 
and component-level), using various ML algorithms. 
Although some review papers are relevant to MLC, many 
of them simply list the control applications of ML for 
building systems. Other review papers do not review the 
exact topic of MLC in building energy systems, but either 
review a broader scope, like MLC in the building life  
cycle (Hong et al. 2020), or a narrower scope or specific 
sub-category of MLC, such as neural networks (NN) 
(Naidu and Rieger 2011). A review that specifically and 
systematically focuses on MLC in building energy systems 
is lacking. 

This paper fills that gap by providing a systematic review 
of MLC in building energy systems. The paper organization 
is presented in Figure 1. First, we introduce the paper search 
methodology in Section 2. Then, we summarize the review 
papers on MLC and identify the need for this review paper 
in Section 3. In Section 4, we review technical papers in two 
major categories of applications of ML in building control: 
(1) building system and component modeling for control 
and (2) control process learning. In Section 5, we conclude 
by re-emphasizing topics that are well-studied and those that 
are not but have enormous potential. Finally, we identify 
the gaps between present and future applications of MLC 
and predict future trends and research opportunities. 

 
Fig. 1 Review paper structure 

2 Literature search methodology: Sub-Keyword 
Synonym Subtopics Search 

To conduct a comprehensive paper search and review, we 
utilize a paper search methodology called Sub-keyword 
Synonym Subtopics Search (SSSS) introduced in Zhang  
et al. (2021b). This methodology exhausts relevant papers by 
multiple searches with synonym and subtopic sub-keywords 
(Zhang et al. 2021b). For the research topic of MLC in 
buildings as an example, a researcher could use “machine  
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learning control in HVAC” (heating, ventilation, and 
air-conditioning) instead of “machine learning control in 
buildings”, but essentially, the two search terms reflect the 
same research field; one research field can have many 
synonyms when searching on literature databases such as 
Google Scholar. There are also many subtopics for one 
research field. For example, “reinforcement learning control 
in buildings” and “ML-based PID control in buildings” 
are both relevant topics to this review paper. As a result, 
a mechanism is needed to conduct multiple searches to 
exhaust the search keywords reflecting synonym and subtopic, 
and subsequently to exhaust the relevant papers. In SSSS 
methodology, each search keyword consists of multiple 
sub-keywords: there are multiple synonyms or subtopics for 
each sub-keyword, and the set of search keywords consists 
of the full combination of every possible value of the 
sub-keywords (Zhang et al. 2021b). 

We use keywords composed of three sub-keywords in 
this paper. The first sub-keyword defines the subtopics   
of the “machine learning” concept. The list of the first 
sub-keyword is: “machine learning,” “reinforcement learning,” 
“deep learning,” “neural network,” “intelligent,” “genetic 
algorithm,” “self-tuning,” “self-learning,” and “advanced.” 
The second sub-keyword defines subtopics of control 
applications. The list of the second sub-keyword is: “control,” 
“daylight control,” “windows control,” “MPC,” “model 
predictive control,” “PID control,” and “fuzzy control.” The 
list of the third sub-keyword is: “in buildings,” “HVAC,” 
and “building system,” which narrows the search within 
building energy systems. 

We use Google Scholar as the search engine in this 
paper, and the list of search keywords in Google Scholar is 
the full combination of each element in each sub-keyword 
list. One example search keyword was: “machine learning, 
control, in buildings.” The total number of search keywords 
in this paper is 9 × 7 × 3 = 189. As summarized in Table 1, 
in this paper, the first 10 papers per search are considered;  

Table 1 Parameters of SSSS for ML control in buildings 

Parameter Values 

Sub-keyword 1 
Machine learning, reinforcement learning, deep 
learning, neural network, intelligent, genetic 
algorithm, self-tuning, self-learning, advanced 

Sub-keyword 2 
Control, daylight control, windows control, MPC, 
model predictive control, PID control, fuzzy 
control 

Sub-keyword 3 In buildings, HVAC, building system 

Citation threshold 5 for papers before 2018 

Number of papers 
per search 10 

Year from 2010 

Year to 2022 

the publication year of the papers ranges from 2010 to 2021; 
and the citation threshold is five for papers published before 
2018. The SSSS methodology is automated using a module 
coded in Python (https://github.com/lz356/SSSS (Zhang et 
al. 2021b)). The total number of papers returned by the 
search is: 189 keywords × 10 papers/keyword = 1,890 papers, 
but there are duplicate papers found in the search, so the 
final number of non-duplicate papers is 850. 

Of those 850 papers, we included 101 papers in this 
review article based on their relevance, novelty, and quality. 
Specifically, we selected a paper if it met any of the following 
criteria: (1) a classic paper published in a prestigious journal 
with at least 50 citations, (2) a new paper applying novel 
methodologies and algorithms in MLC, and (3) a paper 
with insights and conclusions that benefit the discussion. 
Some papers were included in the citations of the paper 
found in the search instead of directly from the search; 
these papers were manually included for review. Figure 2 is 
a relational graph that shows the research topics/keywords 
and citation relationships among the papers that are 
reviewed in this paper. As indicated by the largest circles, 
the most discussed topics in the papers related to HVAC 
and energy consumption are NNs, model predictive 
control, and reinforcement learning. The most trending 
keywords we reviewed about MLC in buildings include 
demand flexibility, occupant behavior, and deep neural 
network. 

3 Review of review papers 

We summarize the existing review papers on MLC in Table 2. 
Most review papers do not include papers with the exact 
scope of MLC in building energy systems. This first set of 
review papers had the narrow scope of specific control 
applications using ML. Salimi and Hammad (2019) reviewed 
occupancy monitoring-based control, and ML methods are 
only one of the classes of applied techniques. Han et al. 
(2019) reviewed RL methodologies for controlling occupant 
comfort in buildings. They first introduced the general RL 
method and then reviewed applications of RL for comfort 
control in buildings.  

The next set of papers had a narrow focus on specific 
ML algorithms in MLC. Naidu and Rieger (2011) reviewed 
MLC applications in terms of hard-control techniques, 
soft-control techniques, and the fusion of hard- and 
soft-control techniques, using only NN as the ML algorithm. 
Vázquez-Canteli and Nagy (2019) reviewed energy systems 
and RL methods and RL applications in demand response 
modeling and dynamic response. 

The third set of papers had a larger scope that included 
MLC in one section of the review. Hong et al. (2020) 
reviewed ML in the building life cycle. They reviewed two  
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categories of MLC: ML-based MPC and RL-based control. 
Ahmad et al. (2016) reviewed computational intelligence 
techniques for HVAC systems, and MLC is only one of the 
applications; NN is the only ML algorithm included in the 
review. 

To sum up Table 2, in terms of algorithms, RL control 
(Han et al. 2019; Mason and Grijalva 2019; Vázquez-Canteli 
and Nagy 2019; Wang and Hong 2020) and NN control 
(Naidu and Rieger 2011; Mirinejad et al. 2012; Kumar et al. 
2013; Ahmad et al. 2016; Hidalgo-León et al. 2019; Wagiman 
et al. 2020) are the most widely reviewed algorithm topics 
for MLC in buildings; in terms of applications, there are 
papers with larger (Ahmad et al. 2016; Hidalgo-León et al. 
2019; Hong et al. 2020) and smaller scopes (Mirinejad et al. 
2012; Han et al. 2019; Salimi and Hammad 2019; Vázquez- 
Canteli and Nagy 2019), but no review paper is found to 
focus on the exact scope of MLC in building energy systems. 
This paper can fill this gap. The target readers of this paper 
are not only researchers from the building industry who 
would be exposed to cutting-edge machine learning control 
research but also those from the machine learning industry 
who could gain an understanding of the potential and 
challenges in applying MLC in buildings, which provides a 
unique perspective that other existing review papers cannot 
provide. 

4 Review of technical papers 

The ML application that gains the most attention is 
developing ML models for the building system and 
components. As mentioned in Section 1, in real buildings, 

equipment, systems, and envelopes have dynamics that are 
not fully known, so the modeling of them can be learned 
and formulated just using data with ML techniques. 
Building energy modeling, equipment performance modeling 
(e.g., coefficient of performance modeling), and indoor 
environment (e.g., room temperature) modeling, are typical 
applications in this category. Instead of spending a lot of 
effort building an ML model from data and then integrating 
it into the control and optimization process, a second way 
of applying ML is to directly learn the whole controller 
with ML techniques. RL is a typical application that directly 
learns a controller.  

The rest of this section will review the technical papers. 
Section 4.1 reviews papers related to building system and 
component modeling for control, while Section 4.2 is a 
review of papers that learn the control process.  

4.1 Building system and component modeling for control 

Building system and component modeling is a major 
application of ML in building control systems. Real building 
equipment, systems, envelopes, indoor and outdoor 
environments, have dynamics that are not fully known, and 
the modeling of them can be overly complex, nonlinear, 
time-consuming, and uncertain. With adequate data and 
suitable model formulation, ML techniques can capture the 
complex dynamics in real buildings using data with limited 
expert knowledge. After the extended search, the existing 
literature was categorized into two groups according to the 
research focus. The first group focuses on ML modeling for 
the building system and components that has the potential  

 
Fig. 2 Relational graph reflecting covered topics, keywords, and citation relationships 
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for future use in control. These papers focus on the 
algorithms and development of ML models. The second 
group of literature focuses on control and ML modeling is 
only a part of the research. These papers focus on the 
control side with the integration of ML techniques. 

The model-focused papers focus on ML modeling in 
building equipment, systems, envelopes, occupancy, indoor 
and outdoor environment that has the potential for future 
control purposes. These papers discuss the formulation of 

models in terms of data collection and processing, ML 
algorithm, algorithm tuning and testing, supporting techniques, 
and so on. We reviewed ML modeling for building energy 
and cooling/heating load (Yildiz et al. 2017; Seyedzadeh  
et al. 2018; Zhang et al. 2021b), building equipment (chiller, 
cooling tower, etc.) energy and operation (Mosavi et al. 
2019), indoor air temperature and humidity (Cifuentes et al. 
2020), occupancy (Dai et al. 2020), daylighting (Ayoub 2020), 
indoor air quality (Wei et al. 2019), thermal comfort (Ma  

Table 2 Summary of review papers 
No. Reference Topics Scope 

1 Hong et al. 2020 
- Problem formulation 
- MPC 
- RL-based control 

Reviewed ML in the building life cycle; MLC is one 
section 

2 Han et al. 2019 
- Introduction of general RL methods 
- Applications of RL for comfort control in buildings 

Reviewed RL methodologies for controlling occupant 
comfort in buildings 

3 Salimi and  
Hammad 2019 

- Review of control systems in occupancy monitoring-based 
control 

Only reviewed occupancy monitoring-based control, 
and ML is one of the classes of applied techniques 

4 Naidu and Rieger 
2011 

- Hard-control techniques, such as PID, optimal, robust, and 
adaptive control 

- Soft-control techniques, such as NNs, fuzzy logic, and genetic 
algorithm 

- Fusion of hard- and soft-control techniques 

Not focus on ML but reviewed some NN applications 

5 Vázquez-Canteli 
and Nagy 2019 

- Energy systems and RL methods 
- Demand response modeling and dynamic response 

Focused on RL for demand response 

6 Ahmad et al. 2016 - Review of computational intelligence techniques: genetic 
algorithm, NN, PCA (principal component analysis), etc. 

Focused on computational intelligence techniques, 
including NN 

7 Wang and Hong 
2020 

- What RL algorithms are used in what building control 
problems 

- How these control problems are modeled as RL problems 
- How states/rewards are set in existing literature 
- Discussion on remaining issues 

Reviewed RL for building control problems, including 
controls for whole building, HVAC, and water heater 

8 Mason and Grijalva 
2019 

- Introduction of general RL methods 
- Reviewed by control application: HVAC, water heating, 

home management system and grid-interactive applications 
Reviewed RL for building control problems 

9 Kumar et al. 2013  

- Reviewed different NN models used for building energy 
analysis 

- Reviewed different NN applications in the following areas: 
load estimation, indoor air temperature prediction, energy 
consumption prediction, and HVAC system 

Very limited content about building system control. 
The paper focused on NN in terms of ML algorithms 

10 Mirinejad et al.  
2012 

- Reviewed applications of intelligent controls including fuzzy 
controller and auto-tuned PID 

Focused on fuzzy control, where NN may or may not 
be employed 

11 Wagiman et al.  
2020 

- Reviewed by control technique: controller-based,  
optimization-based, and hybrid of both 

Reviewed limited ML applications. Some controllers 
might be NN-based, but not discussed in detail 

12 Hidalgo-León et al.  
2019 

- Reviewed building energy consumption reduction techniques: 
occupancy detection, HVAC system control, lighting 
control, and energy prediction and estimation 

Discussed building system control, but not based 
on ML in general. It contains one lighting control 
application that includes NN 

13 Merabti et al. 2016 
- Reviewed applications of intelligent controls include PID, 

fuzzy, fuzzy PID, adaptive fuzzy PID, NN, neuro-fuzzy, and 
genetic algorithm 

Compared pros and cons of different intelligent control 
methods. Some methods are NN-based 

14 Afroz et al. 2018 
- Physics-based model for control 
- Data-driven model for control 
- Gray-box model for control 

Reviewed modeling techniques used in building HVAC 
control systems, data-driven is only one part and only 
the algorithm of NN is reviewed 
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et al. 2021), and outdoor weather forecasting (Lazos et al. 
2014). The papers cited in the previous sentence are review 
papers, and representative technical papers are summarized 
in Table 3, which highlights the specific ML algorithms and 
the modeling output. ML algorithms include NN, support 
vector machines (SVM), tree-based algorithms, deep learning, 
hybrid algorithms, ensemble learning, autoregressive 
algorithms, Bayesian networks, extreme learning machines, 
case-based reasoning, meta learning, k-nearest neighbors, 
Gaussian process and mixture models, and fuzzy timeseries 
algorithms. Table 3 shows that building energy consumption 
and cooling/heating load modeling applies more diverse ML 
algorithms than other applications and there is a trend that 
other applications are using more diverse ML algorithms. 

The modeling-focused studies are well-explored by many 
researchers, covering sub-topics such as parameter tuning/ 
optimization, model improvement by supporting techniques 
such as clustering, and interpretation of ML models. 
These papers focus on the formulation of modeling while 
integration between the models and the controllers is not 
thoroughly discussed. 

The control-focused papers focus on further integrating 
ML models to control. Specifically, papers reviewed in this 
section focus on control studies in which ML techniques 
are applied to model the building system and components in 
control. The modeling includes building energy consumption, 
HVAC energy and performance, chiller energy and 
performance, occupancy, cooling load, indoor (zone  

Table 3 Representative studies on building system and component modeling for control 

No. Reference ML algorithm Modeling output 
Model or 

control focused

1. Building energy modeling 

1.1 Fan et al. 2017 

Deep neural network, multiple linear regression, 
elastic net, random forests, gradient boosting 
machines, support vector machine, extreme 
gradient boosting trees 

Short-term day-ahead building cooling load Model 

1.2 Monfet et al. 2014 Case-based reasoning Commercial building energy load Model 

1.3 Cui et al. 2016 Meta learning Short-term building energy load Model 

1.4 Ahmad et al. 2017b Random forest and NN Building energy load Model 

1.5 Lusis et al. 2017 NN, regression trees, and SVM Day-ahead residential building energy load Model 

1.6 Yu et al. 2010 Decision tree and NN Residential building energy load modeling and 
building energy performance indexes Model 

1.7 Kwok and Lee 2011 Probabilistic entropy-based NN Building cooling load Model 

1.8 Guo et al. 2018 Extreme learning machine, multiple linear 
regression, SVM and BPNN Building heating load Model 

1.9 Idowu et al. 2016 SVM, regression tree, feed forward NN, and 
multiple linear regression District heating load Model 

1.10 Wahid and Kim 2016 k nearest neighbor Building energy load Model 

1.11 Cheng and Cao 2014 Multivariate adaptive regression splines and 
artificial bee colony Building energy performance Model 

1.12 Fan et al. 2019a Deep recurrent NN Building energy load Model 

1.13 Kamel et al. 2020 NN, fuzzy inductive reasoning, Lasso  
regression, SVM Building energy load Control 

1.14 Jain et al. 2017 Regression trees and ensemble learning Building energy load Control 

1.15 Smarra et al. 2018 Random forests Building energy load Control 

1.16 Lee et al. 2015 NN Building energy load Control 

1.17 Wang et al. 2019 Long short-term memory networks Building internal load Control 

1.18 Cole et al. 2014 NN models Building energy load Control 

1.19 Chen et al. 2015 NNs and SVM Home energy load Control 

1.20 Huang et al. 2015b NN HVAC system load Control 

1.21 Manjarres et al. 2017 Random forest HVAC system load Control 

1.22 Cox et al. 2019 Non-linear autoregressive with exogenous 
inputs NN Thermal load of district cooling load Control 

1.23 Verrilli et al. 2017 Generalized regression NN Building energy load Control 
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Table 3 Representative studies on building system and component modeling for control  (Continued) 

No. Reference ML algorithm Modeling output 
Model or 

control focused

2. Equipment energy and performance modeling 

2.1 Swider et al. 2001 NN Chiller performance Model 

2.2 Hosoz et al. 2007 NN Thermal performance of cooling tower Model 

2.3 Karunamurthy et al. 2020 Linear regression Thermal performance of cooling tower Model 

2.4 Kim et al. 2019 NN Energy consumption model of chiller Model 

2.5 O’Neill and O’Neill 2016 Bayesian networks HVAC hot water energy consumption Model 

2.6 Sala-Cardoso et al. 2018 Adaptive neuro-fuzzy inference system (ANFIS) HVAC power demand Control 

2.7 Kim and Park 2014 Gaussian process model Chiller energy consumption Control 

2.8 Chow et al. 2002 NN Performance of chiller Control 

2.9 Park et al. 2019c NN Chiller operation Control 

2.10 Yang et al. 2021 NN Optimal cooling power set point Control 

2.11 Park et al. 2019c NN and hybrid NN Chiller power consumption Control 

2.12 Park et al. 2019b NN Daily operation schedule of air handling unit 
(AHU) and chiller Control 

2.13 Kumar et al. 2021 Linear and logistic regression AHU fan speed operation Control 

3. Indoor air temperature and humidity 

3.1 Mba et al. 2016 NN Indoor temperature and relative humidity Model 

3.2 Potočnik et al. 2019 NN, ARX, and extreme learning machine Indoor temperature Model 

3.3 Alawadi et al. 2022 36 machine learning algorithms Indoor temperature Model 

3.4 Mustafaraj et al. 2011 NN Indoor temperature and relative humidity Model 

3.5 Xu et al. 2019 Long short-term memory Indoor air temperature Model 

3.6 Liang et al. 2015 Auto-regressive moving average exogenous Return air temperature Control 

3.7 Ma et al. 2012 Autoregressive exogenous Zone air temperature and power measurement Control 

3.8 Li et al. 2013 BPNN Room temperature Control 

4. Indoor air quality 

4.1 Tang et al. 2014 Multilayer perceptron ensemble Building energy consumption and air quality 
index Model 

4.1 Liu et al. 2013 Output error model Indoor air quality Control 

4.2 Huang et al. 2015a NN Indoor air temperature and building energy 
consumption Control 

4.3 Kim et al. 2016 NN Indoor air temperature, building energy 
consumption, and daylight illuminance Control 

4.4 Yang et al. 2020 NN Indoor PMV data Control 

5. Thermal Comfort 

5.1 Chaudhuri et al. 2017 
SVM, NN, logistic regression, linear discriminant 
analysis, k-nearest neighbors, and classification 
trees 

Thermal comfort Model 

5.2 Wu et al. 2018 Ensemble machine learning 
Thermal comfort (thermal sensation, effective 
temperature, standard effective temperature 
and PMV 

Model 

5.3 Garnier et al. 2014 Feedforward NN Non-linear behavior of the PMV index (thermal 
comfort) Control 

5.4 Zhou et al. 2015 Convex piecewise linear classifier Thermal comfort Control 

5.5 Ruano et al. 2016 Radial basis function (RBF) NNs PMV and Energy estimation Control 

6. Occupancy 

6.1 Yang et al. 2014 SVM Occupancy Model 

6.2 Chen and Jiang 2018 Generative adversarial network Occupancy Model 

6.3 Ryu and Moon 2016 Decision tree Occupancy Model 
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temperature and thermal comfort) and outdoor environment. 
Table 3 also lists the literature in terms of the ML 
algorithms and the quantity of interest that the algorithms 
try to predict. The most commonly predicted variables for 
control-focused ML studies are whole building (Chen et al. 
2015), chiller (Park et al. 2019c), HVAC system (Manjarres 
et al. 2017), district cooling (Cox et al. 2019), indoor air 
temperature (Xu et al. 2019), equipment temperature (Liang 
et al. 2015), thermal comfort (Zhou et al. 2015), occupancy 
(Li and Dong 2018), weather (Finck et al. 2019), building 
thermal behavior (Atabay et al. 2013), electricity tariff 
(Oldewurtel et al. 2010), and renewable energy generation 
(Parisio et al. 2014). In terms of algorithms selected, NNs, 
SVM, and autoregressive methods are found in the 
literature. The ML algorithms selected in the control-focused 
literature are much less diversified than those in the 
modeling-focused literature. 

HVAC plant structure is very complex where time 
varying system dynamics, slow-moving processes with time 
delays, and non-ideal behavior of actuators prevail, and 
substantial disturbances, constraints, and uncertainties are 

imposed by running the total HVAC system dynamics 
(Afroz et al. 2018). ML modeling plays a key role in precise 
and automated modeling of the system in a data-driven 
way by handling disturbances, constraints, and uncertainties 
existing within the HVAC system dynamics, thus benefiting 
model-based control. 

As observed from the literature review, ML has been 
widely applied to almost every component and modeling 
task in the building. However, ML is not always the best 
way to model a system or component, and the application 
of ML should be more selective in the modeling task.    
In other words, there is still a large gap between “we can 
use ML modeling” and “we should use ML modeling.” 
Comparison between ML modeling methods and other 
non-ML modeling methods should be conducted in a 
standard and comprehensive way. These comparisons are 
essential to demonstrate the advantages of ML modeling 
for control and persuade industry to apply ML in complex 
system modeling and control.  

Although many papers claim that their ML models are 
built for control, the integration of the ML model with 

Table 3 Representative studies on building system and component modeling for control  (Continued) 

No. Reference ML algorithm Modeling output 
Model or 

control focused

6.4 Jin et al. 2021 1-week seasonal period with an NN structure Occupancy Model 

6.5 Li and Dong 2018 NN and SVM Occupancy Control 

6.6 Mosaico et al. 2019 Deep transfer learning Occupancy Control 

7. Daylighting 

7.1 Ahmad et al. 2017a Random forest and NN Daylighting Model 

7.2 Beccali et al. 2018 NN Daylighting Control 

7.3 Hu and Olbina 2011 NN Daylighting (for split blinds control) Control 

8. Weather forecast 

8.1 Florita and Henze 2009 Moving average models and NN Weather forecasting model building applications Model 

8.2 Dong and Lam 2014 recurrent NN Weather forecasting model for building  
applications Control 

8.3 Javed et al. 2014 Novel random NN compared with similar NN Energy consumption in buildings, and solar 
radiation prediction Control 

8.4 Finck et al. 2019 NN Short-term solar radiation, heating system 
energy load, energy load of all thermal zones Control 

8.5 Wei et al. 2015 

Chi-squared automatic interaction detector, 
boosting tree, random forest, multi-layer 
perceptron, multivariate adaptive regression 
splines, and SVM 

Energy consumption, indoor air temperature, 
indoor air humidity, and CO2 concentration Control 

9. Others 

9.1 Atabay et al. 2013 NN Building thermal behavior Control 

9.2 Parisio et al. 2014 Least-square SVM Renewable power generation and the demand 
for the day ahead Control 

9.3 Oldewurtel et al. 2010 Least-squares SVM Electricity tariff price forecasting Control 

9.4 Yousaf et al. 2021 ANFIS and SVM Electricity price forecasting Control 
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control is not always well covered. When applied to and 
integrated with control applications, more problems will 
appear, such as inference speed, optimization compatibility, 
abnormal inference, and interpretability. These topics should 
also be covered by conducting comprehensive experiments 
in real systems. Most papers examine the feasibility of ML 
in certain modeling tasks and prove its increased accuracy. 
Although accuracy is the most important metric for modeling, 
it is not always the most important metric in the context of 
control. The reliability and extendibility of the model are 
also important, especially when the model inferences are 
based on inputs that are vastly different from the training 
data. 

In summary, the key challenges for building system  
and component modeling for control are threefold. First, 
more automated, streamlined, plug-n-play, and scalable ML 
modeling as well as validation is lacking. Second, using 
biased data or data with limited range of inputs in ML model 
training and development is not reliable for predicting 
unseen situations (Zhang 2021; Zhang and Wen 2021). Third, 
more studies focusing on improving the computation 
efficiency of dealing with big data and optimization in  
the modeling and application process are needed, since  
ML modeling is dealing with big data and sophisticated 
optimizations, and it is challenging in terms of computational 
capability and efficiency to apply it for control in real-time. 

4.2 Control process learning 

Instead of using ML to model control components, the 
papers reviewed in this section cover techniques that directly 
learn the whole controller using ML techniques. From the 
reviewed literature, learning the control can be categorized 
into three groups: RL (Section 4.2.1), ML-based PID control 
(Section 4.2.2), and ML-based fuzzy control (Section 4.2.3). 
We summarize the challenges and opportunities in  
Section 4.2.4. 

4.2.1 Reinforcement learning (RL) 

In recent years, especially since 2017, there has been an 
increase in the number of studies investigating the use of 
deep RL for building optimal control. Compared with 
traditional building optimal control approaches (e.g., MPC), 
RL controllers are expected to achieve a similar if not better 
control performance while reducing implementation costs. 
Specifically, as discussed in Zhang et al. (2021d), although 
online MPC is considered mainstream in building optimal 
control, it requires the solution of an optimization problem 
on-the-fly within each control interval, which might only 
be attainable on advanced computing platforms that are 
not cost-effective. Explicit MPC, though able to remove the 
dependency on on-demand computation, is only suitable 

for small scale problems with a shorter prediction horizon 
and smaller state dimension (Mayne 2014). In addition to 
the high cost of computing hardware and optimization 
software, MPC-based approaches often require an accurate 
yet simple building model that can be formulated into the 
optimization problem (i.e., differentiable). This inevitably 
increases modeling costs. In contrast, a controller based on 
RL does not require intensive real-time computation and the 
control actions are obtained by evaluating an RL control 
policy, which can be easily deployed on an edge device (i.e., 
cost effective devices with limited computation capability) 
due to the light online computation requirement. Admittedly, 
the offline computational requirements for RL are significant, 
but this can be addressed by using cloud computing system 
with affordable costs. In addition, RL does not require   
a mathematically expressible building model; instead, the 
building model can take the form of a first-principle 
simulator (e.g., EnergyPlusTM), a data-driven model (e.g., 
non-differentiable ML model) or even a real building in 
some cases (e.g., when the RL controller is already properly 
pretrained). As a result, RL controllers stand out as good 
candidates for building optimal control, with lower 
implementation costs when compared with state-of-the-art 
controllers. We review existing RL literature from several 
different perspectives. 

Table 4 contains the list of RL papers reviewed, and it 
includes the following information for each paper: the 
system to be controlled (e.g., HVAC), the level of control 
(e.g., setpoint calculation, device on/off determination), the 
RL algorithm(s), the data source, and the relevant time 
intervals used in the study. In addition, the table includes 
information about the reward structure, which is a key 
element of RL. These topics are discussed in the next few 
paragraphs. 

Some papers summarize the characteristics, limitations, 
pros, and cons of RL modeling in buildings. Chen et al. 
(2018) mentioned the limitation of RL control: it requires a 
sufficiently long learning period before it can make optimal 
decisions under various conditions. In real-world practice, 
this prerequisite may cause difficulty, but can be alleviated 
by the assistance of building simulations. Yang et al. (2015) 
concluded that the most attractive features of RL controls 
are: (1) direct application into a real-world scenario, (2) 
limited prior knowledge requirements, (3) self-adaptation 
to the local environment, and (4) self-adjustment to input 
variations.  

In terms of building type, most papers investigate 
applications in commercial buildings, a few studies focus 
on the residential sector, and some do not mention the 
specific building type. The controllable inputs for RL can 
be categorized into component level control and system level 
control. Only three papers include component level control:  
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Table 4 Summary of RL research 

No. Reference 
System 

type 
Level (details) of 

control RL algorithms Data source 

Sample time/ 
control interval/ 
control horizon Action space and reward structure

Highlighted 
features 

1 
Wei et al. 
2017 

HVAC 
Airflow control for 
every zone 

Deep Q-network 
(DQN) 

Simulation: 
EnergyPlus 
co-simulated with 
BCVTB 

1min/15min/ 
1 month 

Discrete action space  
Reward: energy consumption and 
thermal discomfort (temperature 
only) 

NA* 

2 
Chen et al. 
2018 

HVAC and 
window 

Heating, cooling, on/ 
off, window opened 
and closed for natural 
ventilation 

Tabular 
Q-learning 

Simulation: 
EnergyPlus 

20 min/ 
20 min/1 yr. 

Discrete action space (5)  
Reward: energy consumption and 
occupant discomfort (temperature 
and humidity). 

Mentioned the 
limitation of RL 
control 

3 
Yang et al. 
2015 

HVAC and 
renewable 
energy 
system 

Photovoltaic thermal 
(PV/T) collectors, 
geothermal heat pump 

Tabular 
Q-learning and 
Batch Q-learning 
with Memory 
Replay 

Real building: 
residential building in 
Zurich, Switzerland, 
compared with 
simulation results 

30 min (PV/T) & 
event-driven 
(heat pump)/ 
30 min (PV/T) & 
event-driven (heat 
pump)/1 month 

Discrete action space  
Reward: Case 1: net power output 
(thermal energy collected minus 
electricity consumption); Case 2: 
heat compensation and heat supply

Summarized 
advantages and 
disadvantages 
of RL 

4 
Ruelens  
et al. 2017 

HVAC Heat-pump thermostat 
Batch RL: fitted 
Q-iteration 

Simulation: 
equation-based 
(model-free) 

15 min/ 
15 min/24 hr. 

Discrete action space  
Reward: two cost functions related 
to demand response 

NA 

5 
Barrett and 
Linder 
2015 

HVAC 
AC on/off (heating 
only) 

Bayesian Inference 
& Q-learning 

Simulation: 
equation-based 
(model-free) 

1 min/1 min/NA
Discrete action space (4)  
Reward: heuristic rule learning. 

NA 

6 
Fazenda  
et al. 2014 

HVAC Electric heater on/off Q-learning 
Simulation: 
MATLAB 

dynamic/ 
dynamic/ 24 hr. 

Discrete action space (2) 
Reward: tenant preference 
violation and heating cost. 

Component 
level control 

7 
Zhang and 
Lam 2018 

HVAC Radiant heating system A3C Real building 
5 min/5 min 
/ 3 months 

Discrete action space (11) 
Reward: thermal comfort (PPD) 
and energy consumption 

Real building 
experiments 

8 
Li and Xia 
2015 

HVAC Cooling setpoint 
Multi-grid method 
of Q-learning 

Simulation: MATLAB 
and EnergyPlus 

15 min/ 
15 min/NA 

Discrete action space 
Reward: thermal comfort (PPD) 
and energy consumption 

NA 

9 
Overgaard 
et al. 2019 

HVAC 
(hydronic 
based 
heating) 

Mixing loop control 
valve 

TD-learning with 
eligibility trace 

Real building 
calibrated simulation: 
office building in 
Bjerringbro, Denmark.

5 min/5 min /NA
Discrete action space  
Reward: temperature deviation and 
energy consumption 

Real building 
calibrated 
building model

10 
Zhang  
et al. 2019b 

HVAC and 
water 

Mullion system supply 
water temperature 
setpoint 

A3C 
Real building 
calibrated EnergyPlus 
simulation 

5 min/15 min/ 
3 months 

Discrete action space (11) 
Reward: thermal comfort (PPD) 
and energy consumption 

NA 

11 
Ding et al. 
2019 

HVAC, 
lighting, 
blind and 
window 

Building’s subsystems, 
including HVAC, 
lighting, blind and 
window systems 

Branching Dueling 
Q-Network (BDQ)

Real building 
calibrated EnergyPlus 
simulation 

15 min/15 min/ 
1 month 

Discrete action space (2e6) 
Reward: thermal comfort, visual 
comfort, indoor air quality and 
energy consumption 

NA 

12 
Park et al. 
2019a 

Lighting 
Occupant centered 
controller for lighting 

Dynamic 
programming, 
solved by value 
iteration 

Real building: Ernest 
Cockrell Jr. Hall 

1 min/≥1 
min/NA 

Discrete action space (3)  
Reward: visual comfort and energy 
consumption 

One of the very 
few RL papers 
related to lighting

13 
Han et al. 
2020 

Window 
Window opening and 
closing 

Q-learning and 
SARSA 

Real building: office 
building 

10 min/10 min/ 
24 hr. 

Discrete action space (2) 
Reward: thermal and indoor air 
quality discomfort 

One of the very 
few RL papers 
use real building

14 
Costanzo 
et al. 2016 

HVAC 
Heating system on/off 
control 

RL, fitted 
Q-iteration and 
NN 

Real building 
calibrated simulation

5 min/5 min/ 
8 hr. 

Discrete action space (2) 
Reward: energy consumption only.

A backup 
controller 
enforces indoor 
temperature 
comfort band. 

15 
Gao et al. 
2019 

HVAC 
Indoor air temperature 
and humidity setpoint 

Deep RL: deep 
deterministic 
policy gradients 
(DDPG) 

Simulation: TRNSYS
30 min/30 min/ 
24 hr. 

Continuous action space (2) 
Reward: thermal discomfort and 
energy consumption 

NA 
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electric heater on/off in a residential building (Fazenda et al. 
2014), window opening and closing (Han et al. 2020), and 
mixing loop control valve (Overgaard et al. 2019). In other 
papers, RL is used for system level control for zone airflow 
(Wei et al. 2017), HVAC system heating/cooling control 
(Barrett and Linder 2015; Li and Xia 2015; Costanzo et al. 
2016; Chen et al. 2018; Nagy et al. 2018), window system 
(Chen et al. 2018), distributed energy resources (Yang et al. 
2015; Touzani et al. 2021), heat pump operation (Yang et al. 
2015; Peng and Morrison 2016; Ruelens et al. 2017), radiant 
heating system (Zhang and Lam 2018; Zhang et al. 2019b), 
lighting system (Park et al. 2019a), indoor temperature 
control (Gao et al. 2019; Zhang et al. 2019a), hot water 
system (Kazmi et al. 2018), and all building sub-systems 
(Ding et al. 2019). 

Designing a proper reward structure for an RL controller 
and aligning it with the desired control objective is extremely 
important. In the domain of building control, two major 

objectives are: (1) improving the occupant’s comfort and 
(2) minimizing energy consumption. In addition to these 
two commonly used objectives, under the grid-interactive 
efficient building (GEB) framework, some studies 
include rewards related to providing grid services. Although 
it is common to see some papers use arbitrary numbers 
(e.g., 0 or −1) to define the reward/penalty under certain 
circumstances (e.g., Barrett and Linder 2015), in general it 
is better if the reward system is interpretable, for instance, a 
weighted-sum objective, and setting the reward to negative 
control costs (e.g., Chen et al. 2018; Ding et al. 2019). 

The action space for RL controllers is usually defined in 
a straight-forward manner, namely, it is determined by the 
number and type of control variables. In general, the action 
space can be either discrete (Wei et al. 2017; Zhang et al. 
2019b) or continuous (Raman et al. 2020; Zhang et al. 
2020b). Among existing papers, those that consider discrete 
action space outnumber the ones with a continuous action 

Table 4 Summary of RL research  (Continued) 

No. Reference 
System 

type 
Level (details) of 

control RL algorithms Data source 

Sample time/ 
control interval/ 
control horizon Action space and reward structure

Highlighted 
features 

16 
Nagy et al. 
2018 

HVAC Space heating power 
Double deep neural 
fitted Q-iteration 

Simulation 1 hr./1 hr./24 hr.
Discrete action space (6) 
Reward: thermal discomfort and 
energy consumption 

NA 

17 
Zhang et al. 
2019a 

HVAC 
HVAC scheduling of 
zone temperature 

Model-based RL 
Simulation: 
EnergyPlus 

Dynamic  
(1-15 min)/ 
15 min/75 min 

Discrete action space (4) 
Reward: energy consumption and 
thermal discomfort (temperature 
deviation) 

NA 

18 
Peng and 
Morrison 
2016 

HVAC Heat pump thermostat 

Model predictive 
prior reinforcement 
learning with the 
adaptive set-point 
temperature 
algorithm 

Simulation: 
equation-based gray 
box 

NA 

Discrete action space (60) 
Reward: thermal discomfort 
(temperature deviation) and 
energy consumption 

NA 

19 
Kazmi et al. 
2018 

Water 
Hot water system 
operations (control on 
hot water production) 

Model-based DRL: 
Partially Observable 
Markov Decision 
Process (POMDP)

Real building: 
thirty-two houses in 
the Netherlands 

(5–15 min)/  
(5–15 min)/NA 

Discrete action space (2) 
Reward: thermal discomfort, 
energy consumption and 
exploration bonus 

NA 

20 
Chen et al. 
2019 

HVAC and 
water 

Supply water 
temperature 

Gnu-RL, A 
Precocial RL 

Simulation 
(EnergyPlus) and 
real building 

5 min/15 min/ 
24 hr. 

Continuous action space (1) 
Reward: thermal discomfort (state 
setpoint deviation) and control effort 
(magnitude of control signal) 

An MPC based 
non-NN RL 
policy. 

21 
Zhang et al. 
2021d 

HVAC 
HVAC ON/OFF signal 
for multiple zones split 
AC units. 

A3C and Ape-X 
DQN 

Simulation: 
equation-based 

5 min/5 min/ 
4 hr. 

Discrete action space 
Reward: thermal discomfort 
(comfort margin and temperature 
violation) and power consumption.

NA 

22 
Raman et al. 
2020 

HVAC 
Control for cooling 
and dehumidifying coil. 

Zap Q-learning 
Simulation: 
equation-based (RC 
model) 

NA 

Continuous action space 
Reward: thermal discomfort 
(temperature and humidity 
violation) and power consumption

NA 

23 
Zhang et al. 
2020b 

HVAC 

Airflow control for 
every zone and chiller 
discharge air 
temperature 

A two-stage policy 
search framework 
combining 
Evolution strategy- 
based RL and PPO

Simulation: 
equation-based 
(reduced order 
model) 

5 min/5 min/ 
24 hr. 

Continuous action space (6) 
Reward: thermal discomfort  
(T deviation), power consumption 
and grid service violation 

NA 

* NA: not available 
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space for two potential reasons: (1) in some problems 
discretization of control variables is straight-forward and 
does not cause significant performance deterioration;    
(2) problems with continuous action space are, generally 
speaking, more difficult to learn due to a much larger policy 
search space. However, due to algorithmic and computational 
developments, learning an RL control policy for continuous 
control problems has become tractable. 

Another important factor is the availability of the 
learning environment; although theoretically real buildings 
can be used for learning, it is not desirable for two major 
reasons. First, RL is notorious for requiring a large amount 
of experience to train an optimal controller and directly 
learning from a building limits the sample efficiency to 
real-time, so it takes a long time to gain sufficient experience 
during training (Liu and Henze 2006; Chen et al. 2018). 
Second, the learning process requires exploration, which will 
inevitably lead to actions yielding high costs or undesirable 
consequences in real life, especially at the beginning of the 
learning phase. As a result, most papers use simulations for 
the learning environment. Among these papers, some use 
real-building calibrated simulations (Costanzo et al. 2016; 
Ding et al. 2019; Overgaard et al. 2019; Zhang et al. 2019b). 
A few studies use real buildings to validate the controller 
trained by simulation (Kazmi et al. 2018; Zhang and Lam 
2018; Park et al. 2019a; Han et al. 2020), which has many 
advantages. 

Based on the available learning environment and the 
nature of the action space, an appropriate RL algorithm is 
chosen. If learning is simulation based and running the 
simulation is computationally inexpensive, on-policy learning 
algorithms such as asynchronous advantage actor-critic 
(A3C) (Mnih et al. 2016) and proximal policy optimization 
(PPO) (Schulman et al. 2017) can be utilized, for instance 
(Zhang and Lam 2018; Zhang et al. 2021d). In cases where 
the collection of learning data is less efficient, i.e., learning 
from a slow simulation, off-policy algorithms with higher 
sample efficiency can be considered. Among these algorithms, 
Q-learning and its variants, starting from the tabular form 
(Chen et al. 2018) to deep Q-network (DQN) (Wei et al. 
2017), stand out and are utilized in many studies. In addition, 
methods like Deep Deterministic Policy Gradients (DDPG) 
(Gao et al. 2019) and Zap Q-learning (Raman et al. 2020) 
extend the Q-learning philosophy to problems with a 
continous action space.  

Regarding the length of the control horizon and each 
interval, the control interval varies from 1 minute to 1 hour. 
A shorter interval is often more precise, however, a longer 
interval may be used for reasons such as: (1) limited 
resolution of the sample data, (2) the balance of simulation 
precision and speed (Zhang et al. 2019a) and (3) a longer 
response time of the control device to an action (Zhang et al. 

2019b). The training episode is usually decided based on 
the hourly (Costanzo et al. 2016; Zhang et al. 2019a), daily 
(Ruelens et al. 2016; Nagy et al. 2018), or seasonal (Yang  
et al. 2015; Zhang and Lam 2018; Zhang et al. 2019b) 
patterns of the system operations. 

4.2.2 ML-based PID control 

The objective in tuning a PID loop is to adjust its output 
to move the process variable as quickly as possible to the 
setpoint while minimizing overshoot, and then holding the 
variable steady at the setpoint without excessive control 
changes. The optimized parameters (Kp, Ki, Kd) for a PID 
controller depend on what that controller is driving. A 
self-tuning PID controller can identify the process dynamics 
using a short period of process behavior, such as a setpoint 
change under the closed loop control condition, and then 
tuning the PID parameters based on the identified ideal 
parameters for both setpoint tracking and disturbance 
regulation characteristics; this makes it easy to set up the 
initial PID parameters and adapt the PID values to changes 
in the process dynamics (Takatsu et al. 1991). Self-tuning is 
critical to the automated design and implementation of PID 
controllers. ML techniques are increasingly studied and 
implemented in this field because of their pure data-driven 
and non-domain-knowledge-required characteristics. The 
ML-based PID controllers discussed in this section primarily 
use ML-aided tuning techniques. Zhang et al. (2011a) 
reviewed and researched PID control based on a back- 
propagation neural network (BPNN). In their paper, they 
showed that a NN with the ability to capture arbitrary 
nonlinear expressions could find the best parameters for 
PID control by studying system performance. The Kp, Ki, 
and Kd parameters learned by BPNN are then used in a 
self-learning PID controller. The simulation results show that 
the system has good static and dynamic performance. 

Table 5 lists the papers that studied ML-based PID 
control in buildings. Most papers focus on HVAC control. 
Lighting control, elevator control, and fan control are also 
studied. In terms of ML algorithms, NNs are the most widely 
used algorithm for ML-based PID control in buildings. 
Bayesian networks (Fiducioso et al. 2019) are the only 
other algorithm used in these studies. Unlike RL, which is 
most often a black-box approach that depends only on 
data, ML-based PID control is a gray-box approach with a 
pre-determined model structure with parameters Kp, Ki, 
and Kd. It still depends on data, but because the model has 
a defined structure, it does not have to learn from scratch 
in the way that RL often does. The advantage of ML-based 
PID control over RL is its lower computation cost/time and 
robustness due to the pre-determined model structure. 
Given the more sophisticated and complicated tuning tasks 
in PID controllers and the requirement for robustness in 
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building control, ML-based PID control will be increasingly 
studied in the future. 

4.2.3 ML-based fuzzy control 

Fuzzy control is suitable for a system where a mathematical 
model is difficult to derive and dynamic characteristics are 
not easy to quantify (Chua et al. 2017). The goal of a fuzzy 
logic system (or model) is the acquisition of a knowledge 
(rule) base that represents the input–output function of  
the real system or problem that we want to model (Hussain 
et al. 2014). However, fuzzy-based inference mechanisms 
have their own limitations. As the problem complexity grows 
(due to the system complexity, a large amount of disparate 
sensor data, the number of potential faults, etc.), the number 
of fuzzy sets and fuzzy rules required to analyze the system 
performance also grows (Najafi et al. 2012). Added to this 
is the difficulty in adjusting and tuning fuzzy sets manually 
or through other approaches (Najafi et al. 2012). The 
objective of the learning process is to create and then fine 
tune the fuzzy sets and rules so as to meet user specified 
performance criteria for the system (Hussain et al. 2014). 
This process is remarkably similar to the learning process 
in ML, so many ML techniques are also applied in fuzzy 
control.  

The synergy of NN technology with fuzzy logic, and the 
algorithms used in computational intelligence, are the basic 
concepts behind most ML-based fuzzy control in smart 
buildings (Ghadi et al. 2014). The synergistic neuro-fuzzy 
technique is a hybrid system consisting of NNs and fuzzy 
logic technology. The controller using this synergy is called 
a neuro-fuzzy controller, which has been widely studied in 
building controls. The typical diagram of a neuro-fuzzy 
controller is illustrated in Figure 11 of Ursu et al. (2013). 
Kaur presented the neuro-fuzzy controller algorithm for an 

air conditioning system, which combines the learning 
capabilities of NNs and control capabilities of fuzzy logic 
control. The neuro-fuzzy controller for an air conditioning 
system takes two inputs (temperature and humidity) and 
controls the compressor speed. Wang (2013) presented   
a fuzzy NN that has the advantage of self-adapting, 
self-learning and tuning on-line. In simulation, the fuzzy 
NN system demonstrates stability, and uncertain factors 
have limited impact on stability, so it demonstrates good 
control of the steam pressure systems of a boiler. 

Introducing and merging advanced optimization methods 
in ML to the field of fuzzy control is another research 
direction in ML-based fuzzy control. The most common 
optimization algorithm in fuzzy control is the genetic 
algorithm, but many optimization algorithms that are 
ML-based or often used with ML algorithms are also applied 
in fuzzy control. Adaptive neuro-fuzzy inference system, 
ANFIS, is a specific ML algorithm that combines ML 
optimization algorithms with fuzzy logic. It has been widely 
used to predict and control building energy systems. 
Ardabili et al. (2020) proposed two hybrid models for 
HVAC control: ANFIS-particle swarm optimization and 
ANFIS-genetic algorithm. ANFIS controllers are also used to 
control hydronic sub-systems such as heating, solar energy, 
and other renewable energy sources. In some research, 
people manually combined NN with fuzzy control by using 
NN to predict variables first and then feeding the NN 
results to fuzzy control. Collotta et al. applied NN to predict 
indoor temperatures and then applied the predicted values 
to a fuzzy logic control unit for on/off switching of the 
HVAC system. Papantoniou et al. applied NN to predict 
outdoor and indoor air temperatures that are then used for 
real-time HVAC setpoint control using fuzzy techniques. 
Table 6 lists the papers related to ML-based fuzzy control. 

Table 5 Summary of ML-based PID control studies 
No. Reference System type System details ML algorithm Highlighted features 

1 Ai et al. 2010 HVAC Solar heating system NN NA 

2 Attaran et al. 2016 HVAC Humidifier and heating coil 
control 

RBF NN combined with the epsilon 
constraint Better than traditional PID

3 Fiducioso et al. 2019 HVAC Room temperature control Contextual Bayesian Optimization NA 
4 Song 2014 HVAC Indoor environment Fuzzy logic control and NN technology Combine fuzzy and NN 
5 Ursu et al. 2013 HVAC Whole HVAC system Fuzzy supervised neuro-control NA 
6 Zhang et al. 2011b HVAC Whole HVAC system BPNN NA 
7 Sharifian et al. 2011 Building elevator Elevator RBF NN Applied in elevator 

8 Ghadi et al. 2016 HVAC systems and 
light controllers 

HVAC systems and light  
controllers 

A combination of fuzzy logic, neural  
controller, and PID controller NA 

9 Lee and Chen 2015 HVAC Server fan cooling system Combining a PID NN with fan-power- 
based optimization NA 

10 Dehghani and  
Khodadadi 2017 HVAC Heating system Neuro-fuzzy PID controller based on 

smith predictor NA 

* NA: not available 
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4.2.4 Challenges and opportunities of RL 

Applying RL in real-world building control problems is still 
challenging. First, deep RL approaches in general are data 
intensive. Though this is reasonable and necessary due to 
the requirements of adequate exploration and exploitation 
to learn the optimal control law, it poses a challenge in 
real-world applications. To address this, the following 
approaches are currently under investigation: (1) develop 
data-driven or physics-informed building model learning 
approaches that can automatically learn the thermal dynamics 
from building operation data and deliver that model in the 
form of a building simulator used to train the RL agent;  
(2) use transfer learning (Pinto et al. 2022b) to jumpstart 
the RL controller training from one of the following four 
sources: (a) an existing RL controller from a similar building, 
see Zhang et al. (2020c) as an example, (b) a building 
controller learned via imitation learning, which imitates 
the existing building controller, (c) a building controller 
learned via offline RL (i.e., train RL policy from a static dataset 
without exploration, see examples in Pinto et al. (2022a) 
and Fujimoto et al. (2019)), which not only imitates but 
also improves the existing building controller, and (d) a 
building controller learned from other operation scenarios 
and weather conditions, see Lissa et al. (2020) as an example. 

Another drawback of RL when compared with MPC is that 
it cannot handle some types of constraints directly (e.g., 
state related constraints). One common workaround in RL 
is like the penalty method used in constrained optimization, 
where a constraints violation penalty is included in the 
reward function. This, though in general an effective solution, 
does not provide theoretical guarantee that the constraints 
will not be violated and determining the penalty coefficient 
is tricky. Safe RL approaches, e.g., Paternain et al. (2019), 
can help address this challenge by solving a constrained 
Markov decision process to deliver a control policy that 
guarantees required safety levels (in the form of chance 
constraints). Finally, RL training can be sensitive to hyper- 
parameters and there are usually multiple hyper-parameters 
for an RL algorithm, related to general learning and the 
specific configuration for the algorithm. Though there are 
general rules of thumb, choosing hyper-parameters that 
deliver the best performance is still challenging, especially 
for different control problems (buildings with different 
floor plan, control variables and constraints) in which the 
optimal combination of hyper-parameters may differ. 
Therefore, future studies are required to investigate and find 
approaches that aid real-world practitioners in efficiently 
determining the best performing hyper-parameters when 
training RL controllers for new buildings. 

Table 6 Summary of ML-based fuzzy control studies 

No. Reference 
Building  

type 
System 

type System details ML algorithm 
Highlighted 

features 

1 Kaur and Kaur 2012 NA* HVAC Control compressor speed Neuro fuzzy controller NA 

2 Kaur and Kaur 2012; 
Ursu et al. 2013 

Commercial 
building HVAC Flow rate of air and chilled/ 

heated water in the coil Fuzzy supervised neural control 

Consider both 
energy and 
thermal 
comfort 

3 Collotta et al. 2014; 
Esen et al. 2008 NA HVAC On/off switching of the HVAC 

system 
NN predicts indoor temperatures that are used 
for a fuzzy logic control unit NA 

4 Ardabili et al. 2016 NA HVAC Control temperature and 
relative humidity values Fuzzy and predictive (RBF) controllers Simulations 

5 Papantoniou  
et al. 2015 

Commercial 
building HVAC Control temperature setpoint 

NN predicts outdoor and indoor air temperature 
that are used for real time control using fuzzy 
techniques 

NA 

6 Ardabili  
et al. 2020 

Industrial 
building HVAC Predictions for future controls 

Adaptive neuro-fuzzy inference system-particle 
swarm optimization and adaptive neuro-fuzzy 
inference system-genetic algorithm 

NA 

7 Yu and Dexter 2010 NA HVAC Room temperature setpoint and 
tank water temperature setpoint Fuzzy controller tuned by RL Simulations 

8 Du and Li 2010 NA HVAC Water flow rate Self-learning fuzzy control method based on 
RBF NNs NA 

9 Wang 2013 NA Boiler Steam pressure control Fuzzy NN NA 

10 Ali et al. 2014 Commercial 
building HVAC Supply air pressure control Adaptive neuro-fuzzy controllers Simulations 

* NA: not available 
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5 Conclusions 

5.1 Future trends and challenges 

From our point of view, future studies on the application of 
ML for building control will move from simply applying 
specific ML algorithms to developing a more comprehensive 
and generic workflow that leads to ML controllers for real 
buildings. To be more specific, we predict the following 
trends: (1) the focus will move from ML algorithm to 
sensor/data related studies, including metadata schema (or 
semantic data) and smart sensors in MLC; (2) there will be 
increased exploration of novel methodologies to consider 
and combine domain knowledge into the MLC development; 
and (3) more research will focus on practical topics such as 
data engineering and computation cost for ML controller 
development in real buildings. 

Real building applications, reduction of engineering cost, 
and automation are the three major challenges of building 
MLC studies. Specifically, the challenges include: (1) 
engineering cost reduction and automation are the major 
advantages of MLC, but to embed MLC algorithms into 
building automation systems is challenging—more advanced 
hardware is required to meet the computation requirements; 
(2) the automation mentioned in (1) can be realized by 
making the developed MLC algorithms compatible with 
various energy system types, building types, and weather 
conditions; it is challenging to develop a generic and 
extendible framework with automated tuning and modeling 
workflow; and (3) it is challenging to test the algorithm 
extendibility on multiple real-building testbeds because 
testbeds with fault-free sensors and high-quality data are 
rare. 

5.2 Potential directions of future research  

Although MLC in building operation is carefully reviewed 
in this paper, some important research topics are barely 
covered, which leaves many research and industry 
opportunities in the future. The potential directions of future 
research are identified by: (1) insights and conclusions of 
the literature reviewed in each sub-section, (2) the authors’ 
research and industry experience, and (3) the emerging 
research trends and topics in the field of building energy 
efficiency. 

From the research perspective: 
 Smart and connected communities. The research topic 

of smart and connected communities and cities is 
increasingly studied and is a big trend in building energy 
studies. MLC can play a key role in the community or 
urban scale for multiple buildings and t`he interactions 

among building and energy systems. However, the 
implementation and study of MLC in the larger scale 
needs more attention and has great research potential in 
the future. 

 Grid-interactive efficient buildings. The research topics 
of building demand flexibility and grid-interactive 
efficient buildings are also increasingly studied. More 
review and technical studies are expected to apply MLC 
in understanding and coordinating the operation of 
buildings and the grid.  

 Fault detection and diagnostics. Equipment faults and 
control errors are pervasive in today’s commercial buildings 
(Zhang et al. 2020a). It is challenging for building controls 
to maintain performance in the presence of building 
faults. It is even more challenging for MLC, where the 
uncertainty of the impact of faults on building control is 
even harder to quantify because of the data-driven 
characteristics of MLC (Bae et al. 2021; Zhang et al. 
2021a). As a result, how to make MLC work better with 
building faults have great research potential. 

 Performance evaluation. Almost all papers claimed 
improved performance by using their proposed MLC, 
but the conclusions are from different building, different 
energy system, different MLC algorithms, different test 
scenarios, and different performance metrics. If the MLC 
performs good in one building, will it also be adaptive to 
other buildings? Most papers did not answer this question. 
High-quality test data and testbeds are greatly needed for 
the development of algorithms in this field, which is key 
to quantify and evaluate MLC performance. Although 
we already have standard virtual control testbeds such as 
BOPTEST (Blum et al. 2019), more real building testbeds, 
which can be accessed remotely (e.g., through cloud 
services), with high-quality labeled test data are needed 
for a better development and performance evaluation of 
MLC studies.  

 Selection of the most suitable MLC. It is hard to 
conclude which MLC technique is suitable for a particular 
application. However, future studies should guide people 
to select MLC for different applications by comparing 
different MLC techniques for test problems and then 
recommending best suited techniques for the particular 
problem. Many researchers combine different ML 
techniques (hybrid) to overcome their deficiencies. No 
single MLC has all the desirable features, so most of the 
methods can complement one another resulting in better 
control. In most cases, hybrid techniques and meta 
modeling provided better results and should obtain 
more attention from researchers. 
From the industry perspective: 
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 Robustness and reliability. Most of the studies were 
validated by simulations or on small-scale HVAC systems. 
Practical validation needs to be performed on commercial 
HVAC systems, controlling them on a real-time basis. 
The simulation performance might not be reliable and 
robust for the stated goals, as the method might work for 
some buildings but could not be generalized to others. 
Methods to evaluate these techniques in terms of not only 
accuracy but also robustness to real-world uncertainty 
are needed. For example, the performance of MLC under 
significant environmental changes (such as climate change 
and natural disasters) or changes in thermal comfort 
requirements is a good research topic. In addition, 
cybersecurity studies in building control are also worth 
investigating to improve robustness and reliability. 

 Adaptability and transferability. The lack of model 
adaptability and transferability limits a model trained with 
one data-rich building to be used in another building 
with limited data. Scalable MLC is one of the most 
important research directions from the industry perspective. 
For example, MPC is very mature and well-studied in 
academia, but it is barely applied in the building industry 
and rule-based control is still more prevalent. The use of 
ML to further empower the automation of developing 
MLC in buildings is a promising research direction    
in the future. Metadata-schema-based MLC is one 
research direction that would improve adaptability and 
transferability. 

 Technoeconomic analysis of MLC deployment in 
buildings. The cost of applying MLC includes development, 
operation, and maintenance costs. The authors estimate 
that a large proportion of cost comes from operation 
because MLC requires local or cloud computing 
infrastructure with high computational capability to 
support ML or MLC. This is either a one-time investment 
(for local computing) or continuous cost (for cloud 
computing). The cloud computing controls and optimizes 
building operation by using a shared and dynamic 
infrastructure which relies on the advancements in 
internet connection speed and computational capability. 
The cost and benefits of MLC are barely studied in 
existing literature, but this research is essential to MLC 
application in industry. 

 Accelerating MLC training and inference. The speeds 
for MLC training and inference are both essential. How 
fast MLC can be trained or developed determines the 
feasibility of MLC. The speed for training is especially 
important for RL, as discussed in Section 4.2.4. How fast 
MLC can infer will determine whether MLC can run in 
real-time. To realize that, we should either improve the 
computational capability (e.g., by using high performance 
computing), or reduce the computational burden (e.g., 

by using computationally efficient models and surrogate 
models). Both the training and inference speed for MLC 
are worth investigating. 

 Model interpretability. It is a challenge for modelers 
and users of MLC to fully understand the inference 
mechanism learned, thus jeopardizing trust in the MLC 
decision. The models developed are typically of low 
interpretability, which is the nature of black-box models. 
Interpretable machine learning is an emerging subject  
in the field of big data analytics, which aims to provide 
methods and tools to enhance model interpretability 
without sacrificing model complexity (Doshi-Velez and 
Kim 2017). However, thus far this topic has only been 
studied in ML energy modeling (Fan et al. 2019b; Manfren 
et al. 2022), thermal comfort modeling (Zhang et al. 
2021c), and fault detection (Madhikermi et al. 2019; Li  
et al. 2021). Interpretable MLC is worth investigating in 
the future to improve the credibility of MLC and persuade 
the industry to widely apply MLC. 

 Identify suitable applications. MLC is not going to 
resolve all the challenges of building controls. Identifying 
the control applications that are suitable or worth 
consideration for applying MLC is critical to motivating 
building control vendors and the building industry to 
widely apply MLC. MLC is originally motivated by 
problems involving complex control tasks where it may 
be difficult or impossible to model the system and develop 
a useful control law. Instead, people leverage experience 
and data to learn effective controllers. To put it in another 
way, complex control tasks with complex development 
of models and control laws, but with abundant data, are 
the places where industry should apply MLC. As we 
mentioned earlier, smart and connected communities, 
grid-interactive efficient buildings, fault detection and 
diagnostics, would benefit from MLC. In addition, MPC 
would be useful in buildings where the modeling      
of components is very complex, time-consuming, or 
unscalable. However, more specific applications need to 
be identified to motivate control vendors and the building 
industry to widely apply MLC. 

5.3 Summary 

This paper systematically reviewed MLC in building energy 
systems. We utilized the SSSS module to exhaust relevant 
literature. We summarized the existing review papers on 
MLC and identified that most review papers do not include 
papers with the exact scope of MLC in building energy 
systems; a review that specifically and systematically focuses 
on MLC in buildings energy systems is missing. Then, technical 
papers were reviewed in terms of two major categories of 
applications of ML in the control process: building system 
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and component modeling for control, and learning the 
control process. The key conclusions from the review of 
technical papers are: 
(1) Building system and component modeling for control is 

the most widely studied ML topic in building control. 
However, there is less research into further utilization 
and integration of the ML models to control.  

(2) RL is one of the most recent research topics in the field 
of building control. RL papers discuss diversified building 
system types, levels of control, ML algorithms, data 
sources, sample time/control interval/control horizon, 
action space and reward structure.  

(3) ML-powered traditional control (e.g., ML-based self-tuning 
for PID and ML-based fuzzy control) is also a promising 
research direction which tends to automatically improve 
traditional controls. 
Based on the results of the review, we identified gaps in 

the existing research and promising directions for future 
research. We predict that future efforts will focus on 
overcoming the challenges of moving MLC to real buildings 
on a more comprehensive scale. Some key steps include 
automating processes, reducing engineering costs, acquiring 
high quality datasets, minimizing computational costs, and 
proving and improving the reliability of the approaches. 
Research will also be needed in improving the integration of 
metadata schema and smart sensors with ML algorithms. 
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