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Abstract 

When people try to understand nuanced language they typically process 
multiple input sensor modalities to complete this cognitive task. It turns out the 
human brain has even a specialized neuron formation, called sagittal stratum, to 
help us understand sarcasm. We use this biological formation as the inspiration for 
designing a neural network architecture that combines predictions of different 
models on the same text to construct robust, accurate and computationally 
efficient classifiers for sentiment analysis and study several different realizations. 
Among them, we propose a systematic new approach to combining multiple 
predictions based on a dedicated neural network and develop mathematical 
analysis of it along with state-of-the-art experimental results. We also propose a 
heuristic-hybrid technique for combining models and back it up with experimental 
results on a representative benchmark dataset and comparisons to other methods1 

to show the advantages of the new approaches. 
Keywords: natural language processing, machine learning, deep learning, 

artificial intelligence 

1DISCLAIMER: This paper is not subject to copyright in the United States. Commercial products 
are identified in order to adequately specify certain procedures. In no case does such identification imply 
recommendation or endorsement by the National Institute of Standards and Technology, nor does it 
imply that the identified products are necessarily the best available for the purpose. 
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Introduction 

Applications of deep learning to natural language processing represent attempts to 
automate a highly-sophisticated human capability to read and understand text and even 
generate meaningful compositions. Language is the product of human evolution over a 
very long period of time. Scientists now think that language and the closely related 
ability to generate and convey thoughts are unique human traits that set us apart from 
all other living creatures. Modern science describes two connected but independent 
systems related to language: inner thought generation and sensor modalities to express 
or take them in for processing [9]. For example, human sensory modalities are speaking, 
reading, writing, etc. This allows homo sapiens to express an infinite amount of 
meaning using only a finite set of symbols. e.g. the 26 letters in the English language. 
The result is a very powerful combination that has resulted in the vast amount of 
knowledge and information amassed in the form of written text today. 

Over the course of the long evolutionary development and especially in the modern 
era, the sapiens have mastered the ability to generate and convey sophisticated and 
nuanced thoughts. Consequently, the texts deep learning is tasked with processing, 
known as natural language processing (NLP), range from the simple ones that say what 
they mean to those that say one thing but mean another. An example of the latter is 
sarcasm. To convey or comprehend sarcasm the sapiens typically invoke more than one 
sensory modality, e.g. combining speech with gestures or facial expressions, or adding 
nuances to the speech with particular voice tonalities. In written text, comprehending 
sarcasm amounts to what colloquially is known as reading between the lines. 

With the emergence of A.M. Turing’s seminal paper [38], the research in NLP kicked 
off. Initially, it revolved around handwritten rules, later obsoleted by statistical analysis. 
Until the advent of deep learning, the decision tree based parsing techniques [26, 27] 
were considered as the state of the art methods and linguistic performance was 
measured on the basis of the Turing Test [38]. 

Fast forward to present day, deep learning and the enormous increase in available 
computational power allowed researchers to revisit the previously defined as 
computationally intensive family of recurrent neural networks [19, 36] and produced 
several groundbreaking NLP results [8, 20, 40, 42]. There are also numerous other 
application-specific architectures [5, 10, 13] for NLP problems. We refer the reader to a 
recent comprehensive survey [29] for a detailed review of a large number of deep 
learning models for text classification developed in recent years and a discussion of their 
technical contributions, similarities, and strengths. This survey also provides a large list 
of popular datasets widely used for text classification along with a quantitative analysis 
of the performance of different deep learning models on popular benchmarks. Still, it is 
a publicly-held secret that the algorithms used in machine learning, including the most 
advanced, are limited in the sense that all of them fail to capture all information 
contained in the data they process. Recent research even points to a systemic problem 
known as underspecification [12, 17]. 

Having been faced with this reality, we asked ourselves the question: How do 
humans do it? How do they process ambiguous text? We all know that our human 
sensor abilities are limited: our vision, our hearing, our attention span, our memory are 
all limited. How do we then perform so well given all these limitations? 

Through the evolution of their brain, sapiens have acquired a polygonal crossroad of 
associational fibers called sagittal stratum (SS), cf. Figure 12 , to cope with this 
complexity. Researchers have reported [34] that the bundle of nerve fibers that 
comprises the SS and connects several regions of the brain that help with processing of 
information enables people to understand sarcasm through sensory modalities – both 

2Reprinted from [6] with permission by Springer Nature, order #4841991468054. 
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Figure 1. This image shows 
the sagittal stratum (SS). The 
SS is situated deep on the lat-
eral surface of the brain hemi-
sphere, medial to the arcuate/su-
perior longitudinal fascicle com-
plex, and laterally to the tapetal 
fibers of the atrium [6]. The SS 
is a bundle of nerve fibers that 
connects many different parts of 
the brain and helps with process-
ing sensory modalities (visual and 
sound) and thus enables people 
to understand nuanced language 
such as sarcasm. 

visual information, like facial expressions, and sounds, like tone of voice. Moreover, 
researchers have shown that the patients who had the most difficulty with 
comprehending sarcasm also tended to have more extensive damage in the right SS. In 
other words, the ability to understand sophisticated language nuances is dependent on 
the ability of the human brain to successfully take in and combine several different 
types of sensory modalities. 

The evolution 
of language and the 
resulting increased 
sophistication 
of expressing 
human thoughts 
has created 
a challenging 
problem for deep 
learning. How to 
capture and process 
the full semantics 
in a text is still an 
open problem for 
machine learning. 
This is partly 
manifested by the 

facts that first, there are many different ways of encoding the semantics in a text, 
ranging from simple encoding relying on treating words as atomic units represented by 
their rank in a vocabulary [3], to using word embeddings or distributed representation 
of words [28], to using sentence embeddings and even complete language 
models [14, 18, 37]; second, there is no established dominant neural network type capable 
of successfully tackling natural language processing in most of its useful for practice 
applications to the extent required by each specific application domain. 

Based on this observation, we explored the extent to which it is possible to utilize a 
simple encoding of semantics in a text and define an optimal neural network for that 
encoding [39] for sentiment analysis. Our study showed that although each of these 
encoding types and corresponding neural network architecture may yield good results, 
they are still limited in accuracy and robustness when taken by themselves. 

The main thrust of NLP research is based on the idea of developing computationally 
intensive neural network architectures intended to produce better results in the form of 
accuracy on representative benchmark datasets. In contrast, the research on simulating 
the decision making capabilities of our brain related to perception or past experiences 
with machine learning has lagged. Thus, the computed probability of any linguistic 
sample predicted by any individual model is not grounded in a state or function of a 
biological mind. As we mentioned above, the anatomy of the human brain allows 
processing of multiple input sensor modalities to make a decision. Inspired by this, this 
paper seeks to establish a novel approach to sentiment analysis for NLP. 

The primary goal of this paper is to explore the problem from a different perspective 
and study ways to combine different types of encoding intended to capture better the 
semantics in a text, along with a corresponding neural network architecture inspired by 
the SS in the human brain. To do this, we introduce a new architecture for neural 
network for sentiment analysis and draw on the experiences from using it with several 
different types of word encoding in order to achieve performance better than that of 
each individual participating encoding. The main contribution of this paper is the 
design of the biologically-inspired framework for neural networks for sentiment analysis 
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in Section 2 and the analysis of the combiner based on a neural network in Section 2.1. 
The authors would like to emphasize that this paper does not try to improve the 

metrics achieved by aforementioned papers but presents an approach to simulate certain 
decision making scenarios in the human brain. Any model referenced in this section can 
be used as a plug and play module in our framework. 

1 Limitations of existing standalone NLP 
approaches to machine learning 

As indicated above, there are multiple different types of encoding of semantics in text, 
each of varying complexity and suitability for purpose. The polarity-weighted multi-hot 
encoding [39], when combined with appropriately chosen neural network, is generic yet 
powerful for capturing the semantics of movie reviews for sentiment analysis. Even 
though the overall accuracy reported in [39] is high, the approach quickly reaches a 
ceiling should higher prediction accuracy be required by some application domains. 

Encoding based on word embeddings or distributed representation of words [28] is 
widely used. For example, the approach in [32] has been influential in establishing 
semantic similarities between the words for a given corpus, by projecting each word of 
the corpus to a high dimensional vector space. While the dimension of the vector space 
itself becomes a hyperparameter to tweak around, the vectors can be further processed 
or utilized using a recurrent neural network (RNN). When tackling NLP problems, a 
variant of RNN, namely the long short term memory (LSTM) variant and its 
bidirectional version (BLSTM) are known to perform better than other neural networks. 
Through our experiments on various datasets [1, 21], we found that certain vocabulary 
provides deeper semantics to the sentence from the corpus based on the receiver’s 
perception and context. In such situations, the idea of attention [2, 16,25] plays an 
important role and provides the network with an additional parameter called the 
context vector, which can make convergence slower, but the model overall is robust. It 
is also possible to use a learnable word embedding, where the first layer of the neural 
network architecture is the embedding followed by one or more RNN’s. 

Although intuitively one may think that word embeddings should help to increase 
the accuracy of the model to any desirable level because word embeddings do capture 
the semantics contained in the text in a way that mimics how people perceive language 
structure, the available empirical test evidence in terms of reported accuracy rates is 
inconclusive. Our own experiments with word embeddings used by themselves revealed 
an accuracy ceiling similar to that of the polarity-weighted multi-hot encoding. 
Attempts to utilize sentence embeddings have been even less successful [11]. 

Recently, pretrained language models have gained popularity because of their 
improved performance on general NLP tasks [14]. These models are trained on large 
corpora and their applications to specific NLP applications typically involves some 
transfer learning on the corpus of interest. However, they too have limitations which we 
will discuss in more detail in Section 3.2.3. 

All these different types of encoding can be challenged further by varying style of 
writing or level of mastering the language. Examples of the former are nuanced 
language such as sarcasm. Some reviewers choose to write a negative review using many 
positive words yet an experienced reader can sense the overall negative sentiment 
conveyed between the lines while the polarity-weighted multi-hot encoding [39] and 
word embeddings [32] may struggle with it. Examples of the latter are primitive use of 
the language by non-native speakers resulting in sentences with broken syntax and 
inappropriate terminology. Other difficult cases are reviews that contain a lot of 
narrative about the plot of the movie but very little of the reviewer’s opinion about how 
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she feels about the movie. Yet another problematic class are movie reviews that rate a 
movie excellent for one audience, e.g. children, but not good for another, e.g. adults. 
Careful analysis of the data in [1,21] reveals examples of all these kinds of reviews, often 
confusing models based on the encodings described here. Such complications represent 
significant challenges to each of these types of encoding when used by themselves, no 
matter the power of the neural network. 

This observation raises a question: if one is interested in obtaining a more robust 
and versatile representation of the semantics of text would an approach that combines 
different types of encoding yield a better result than attempting to just improve each of 
them within their envelopes? 

2 Sagittal stratum-inspired neural network 

We now turn to the design of a neural network that aims to simulate the way SS in the 
human brain operates. Recall that the SS brings information from different parts of the 
brain, each responsible for processing different input sensory modalities, to enable a 
higher order of cognition, such as comprehension of sarcasm. Our context here is NLP 
and one way to map the functioning of the SS to it is to consider combining different 
representations of the semantic content of a text. To do this, one first has to pick the 
types of representations of the text. Because we aim at computing different perspectives 
on the same text, it is natural to seek representations that are independent. For 
example, the polarity-weighted multi-hot encoding [39] is based on the bag-of-words 
model of the language and has nothing in common with word embeddings that rely on 
language structure [32] or the transformer language model [14]. But if independence of 
representation is adopted, how does one combine the models computed from each of 
them? 

Unlike image processing where each model is computed over the pixel grid of the 
image, in NLP there is no common basis onto which to map and combine the different 
models. Instead, we again use a hint from how the human brain performs some 
cognitive tasks. When a person hears another person utter a phrase, to comprehend 
what the speaker is trying to convey the brain of the listener first processes the words in 
the phrase, then the listener assesses if the speaker rolled her eyes, for example, when 
uttering the words, to decide if she spoke sarcastically. The brain of the listener 
combines these two assessments with the help of the SS to arrive at a final conclusion if 
the speaker spoke sarcastically or not. This suggest we can combine the resulting 
assessments from each model on a particular review ˝ , e.g., the probability of classifying 
it as positive or negative, to decide on the final classification. 

The neural networks based on the different language models are trained on the same 
corpus. In the case of transformer models, which are pre-trained on extremely large 
corpora, they are transfer trained on the same corpus as the remaining models to ensure 
proper adaptation to the problem at stake. The trained models are saved and used to 
compute predictions. For the sake of developing notation, we assume there are K 
different models. 

The predictions from the K models are fed into a SS-inspired classifier. Based on 
our understanding for how SS works in the human brain to enable interpretation of 
language that can only be resolved correctly when multiple sensor modalities are used 
together, we construct the network shown in Figure 2 and experiment with several 
different mechanisms F for combining the models. 

In general the computed probabilities for review classification from the participating 
models are combined in a way that favors identifying the most probable case, which is 
analogous to the way humans assess multiple sensor modalities in order to process 
ambiguous speech and deduce the most plausible interpretation. Our task is to combine 
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Figure 2. The SS classifier. Here F is some appropriately defined function that 
combines the input from the participating models. 

the predictor models taking into account that they represent different views on the 
semantics in the same text. Recall from the observation in Section 2 that the only 
meaningful way to combine the models is through the probability assessment each of 
them produces for a given review and in turn the entire corpus. While the ensemble 
techniques [30] have been known for good performance in computer vision related tasks 
[23, 31, 33, 35], the same is not true for natural language processing based problems. 
This analogy can also be backed by the fact that models using different encodings have 
different latent space and hence merging such latent spaces may not produce an optimal 
solution due to the varying rate of convergence of individual models. But the major 
issue is the projection of one model’s latent space onto another. Due to different 
encodings, such projections may produce inconsistent coalesced models. 

One other potential concern here is that the models may be strongly correlated as 
they are trying to predict the same thing. We compensate for this by using 
fundamentally different language models. Each of the models has different limitations 
that are challenged by the text of the different reviews in the dataset, yielding different 
predictions on some of them. In addition, we apply random shuffling of the training 
dataset on each training epoch. These two factors alleviate this potential concern to a 
large extent, as confirmed by the computational results in Section 3. Thus, our 
approach is different than the classic leave-one-out training approach in [4, 24] and 
better suited for the current state-of-the-art NLP models and their applications on large 
datasets of interest. 

In principle, there are two potential approaches to combining the models: systematic 
and heuristic. A systematic approach avoids the use of heuristics in deciding how to 
combine the models. Instead, one states assumptions on the properties of an individual 
model and then builds a general rule to combine the models. Following this principle, 
we introduce a neural network combiner in Section 2.1 and analyze its properties. This 
approach delivers state-of-the-art accuracy results on the benchmark corpus of interest, 
which we provide in Section 3. For a baseline comparison we consider the systematic 
Bayesian combination rules in [22] (Sum, Majority Vote, Average, Max). A brief 
discription of this is given in Section 2.2. 

We also propose a hybrid heuristic-systematic technique for combining models in 
Section 2.3, which makes use of the combination rules in [22] but with our systematic 
way of combining. This hybrid technique shows performance characteristics that are 
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pretty close to the leading neural network combiner and outperforms the classic 
Bayesian rule combiners - see Section 3. 

2.1 A neural network combiner 

Here we seek to define a predictor F inspired by human biology and in terms of a neural 
network consisting of a single dense layer and a sigmoid. The neural network computes 
the weights {wi}K

i=1 for combining the participating models M1, ..., MK . Let yi(˝ j ) be 
the probability estimate computed by the i-th model on the j-th text, denoted as 
P (yMi |˝ j , wMi ) in Figure 2. 

We define the combined predictor as a combination of K > 1 individual predictors: 

KX 
y(˝) = wiyi(˝), 8˝ 2 D, (1) 

i=1 

wi � 0, 8i. (2) 

In the case of a corpus labeled for binary classification, a binary function u(˝) is defined 
by the label assigned to each text ˝ in D. Given the two classes, I(0) and I(1), yi(˝) is 
the predicted probability for the text ˝ to belong to I(1). The real-valued functions yi 

with range the interval [0, 1] have values that correspond to the probability of being 
assigned to I(1). Because of 1 and 2, the range of y(˝) may exceed the unit interval, so 
typically one assigns the class by subjecting ˙(y(˝)) to a threshold test with some value 
t 2 (0, 1) so that (

I(1) , if ˙(y(˝)) � t,
˝ 2 (3)

I(0) , otherwise. 

Here ˙(x) is the sigmoid function given by 

1 
˙(x) = .−x1 + e 

Because yi(˝) are with ranges shifted with respect to the domain of the sigmoid, to get 
accurate classification one needs to shift the range of y to the left so it is centered with 
respect to zero, i.e., 

˙b(y(˝)) = ˙(y(˝) − b), (4) 

for some b > 0. Here, we assume that each predictor yi is decent, i.e., it produces labels 
that are reasonably close to those produced by u over the entire D. Mathematically, 
this means we assume ||u − yi|| is small, compared to ||u||. Here, X 

||f ||2 = f2(˝), (5) 
˝2D 

where f is a binary function defined over D. 
For the case of a real-valued function yi(˝) we define X 

||y(˝)||2 = It(y(˝))2 , (6)t 

˝2D 

where It is the assigned class for y(˝) with respect to the threshold t according to 3. 
Similarly, we define X 

||y(˝) − z(˝)||2 = (It(y(˝)) − It(z(˝)))2 . (7)t 

˝2D 
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Note that for a binary function f over D, ||f || = ||f ||t. Note also that the definitions 
5 and 6 imply that ||u|| is large. If N is the cardinality of D, then in fact ||u|| is close to 
N/2. Otherwise, u would be statistically biased to one of the classes. Also, N is large 
for problems of interest, otherwise the data can be processed by humans. Related to N , 
the number K of individual predictors is small, typically up to a half a dozen. 

2.1.1 Analysis of the neural network combiner 

In this section we consider the question if the constraint 2 is sufficient for computing 
reasonable weights to use in combining the models. In the literature, people often 
impose the additional constraint 

KX 
wi = 1. (8) 

i=1 

However, after performing extensive computations in the laboratory, we observed that 
imposing 8 makes computing the optimal weights much more intense and difficult 
without any gains in the accuracy of the combined predictor. This led us to examine the 
need for 8. We argue that the additional constraint 8 is not necessary. To see this, let 
us consider the approximation error of the predictor y defined as ||u − y||t. Let usPKdenote W = Leti=1 wi. 

KX1 wiŷ(˝) = y(˝) = yi(˝) (9)
W W 

i=1 

be the interpolation predictor constructed as a liner combination of yi with coefficients 
that sum up to one. If the individual predictors are good then the interpolation 
predictor ŷ is also good, i.e. ||u − ˙b(ŷ)||t is small. 

Let Lt(x) be a linear approximation of ˙(x) for some constant t > 0 such that Lt(x) 
minimizes ||Lt(x) − ˙(x)||t. Note that any straight line passing through the points 

t t(ln( ), t) and having the same slop as ˙0(ln( )) satisfies ||Lt(x) − ˙(x)||t = 0. For 1−t 1−t 

example, for t = 2
1 the straight line 

(x) = 4
1 

x + 1
L 1

2 2 
1 
2 is the natural choice for an(x) − ˙(x)|| = 0.also satisfies ||L 

unbiased binary distribution u and an unbiased predictor y. 
In practice t =1

2 
1
2 

the entire straight line, one may consider a piece-wise linear function but this is not 
necessary because the definitions 6 and 7 can handle unbounded functions. 

Then, 
||u − ˙b(y)||t = ||u − W u + Wu − ˙b(y)||t 

1 ||(1 − W )u − W (u − ˙b(y))||t. 
W 

= 

Applying the triangle inequality, we get 

||u − ˙b(y)||t � |1 − W | ||u||t − W ||u − 1 
W 

˙b(y))||t. (10) 

First, consider the case W � 1. Then from inequality 10 

||u − ˙b(y)||t � (1 − W )||u||t − W ||u − 1 
W 

˙b(y))||t. 

Let Lt be as defined above and 

Lt,b(x) = Lt(x − b). (11) 

Note that instead of taking 
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Then, 
1 1 1 1 ||u − ˙b(y))||t = ||u − Lt,b(y) + Lt,b(y) − ˙b(y))||t

W W W W 

Thus, 

1 1 ||u − ˙b(y))||t � ||u − Lt,b(ŷ)||t + ||Lt,b(y) − ˙b(y))||t. 
W W 

Note that 
1 ||Lt,b(y) − ˙b(y))||t = 0. 

W 

From here we get, 

||u − ˙b(y)||t � (1 − W )||u||t − W (||u − Lt,b(ŷ)||t) 

This implies that 
||u||t − ||u − ˙b(y)||t

W � . 
||u||t + ||u − Lt,b(ŷ)||t 

Note that ||u − Lt,b(ŷ)||t = ||u − ˙b(ŷ)||t, because by construction 
It(Lt,b(ŷ)) = It(˙b(ŷ)). Hence, 

||u||t − ||u − ˙b(y)||t
W � . (12)

||u||t + ||u − ˙b(ŷ)||t 

Note also that ||u − ˙b(y)||t is small, especially with respect to the size of ||u||t. 
Similarly, by the definition of ŷ in 9, ||u − ˙b(ŷ)||t is small. 

Next, consider the case W > 1. Then, inequality 10 implies 

1 ||u − ˙b(y)||t � (W − 1)||u||t − W ||u − ˙b(y))||t. (13)
W 

Introducing Lt,b(x) as in the previous case, we get 

1 1 1 1 ||u − ˙b(y))||t = ||u − Lt,b(y) + Lt,b(y) − ˙b(y))||t
W W W W 

Thus, 

1 1 ||u − ˙b(y))||t � ||u − Lt,b(ŷ)||t + ||Lt,b(y) − ˙b(y))||t. 
W W 

As we observed above, W −1||Lt,b(y) − ˙b(y))||t = 0 and ||u − Lt,b(ŷ)||t = ||u − ˙b(ŷ)||t. 
Hence, 

1 ||u − ˙b(y))||t � ||u − ˙b(ŷ)||t. 
W 

Substituting this into inequality 13 gives 

||u − ˙b(y)||t � (W − 1)||u||t − W ||u − ˙b(ŷ)||t. 
From here we get 

||u − ˙b(y)||t + ||u||t � W (||u||t − ||u − ˙b(ŷ)||t). 
Note that ||u − ˙b(y)||t and ||u − ˙b(ŷ)||t are small relative to ||u||t, which in turn 

means that ||u||t − ||u − ˙b(ŷ)||t > 0 and not too far from ||u||t. This implies that 

||u||t + ||u − ˙b(y)||t
W � . (14)

||u||t − ||u − ˙b(ŷ)||t 

Thus, we have proved the following theorem. 
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Theorem. Let u be a binary function over D and y be the combined predictor 1 that 
approximates it. Let ŷ be the interpolation predictor 9. Let t 2 (0, 1) be the threshold 3. PKThen, W = i=1 wi satisfies: 

||u||t − ||u − ˙b(y)||t ||u||t + ||u − ˙b(y)||t� W � . (15)
||u||t + ||u − ˙b(ŷ)||t ||u||t − ||u − ˙b(ŷ)||t 

Proof. Combine 12 and 14 to obtain 15. 

2.2 Bayesian decision rule combiners 

Here we consider some of the Bayesian rule combiners in [22], in particular the Sum, 
Average, Majority Vote, and Max rules. Kittler at. al. [22] present a systematic 
approach to deriving the rules but acknowledge that some of the assumptions used to 
develop their combination rules are too restrictive for many practical applications. We 
present computational results from applying these rules in Section 3 

2.3 A heuristic hybrid combiner 

The idea here is to select the best model, e.g., the one with highest accuracy on the 
train dataset, and use it as a base model. Then use the prediction of the base model as 
the prediction of the combiner unless its confidence level drops below a predefined 
threshold value �. In that case, use instead the predictions from the other auxiliary 
models, and combine them using a Bayesian decision rule from [22], e.g., Sum, 
Majority Vote, Average, and Max. 

Generally speaking, in cases where the comparison between the candidate models is 
inconclusive, the choice of the base and auxiliary models may be approached 
analogously to how humans interpret ambiguous voice: do they trust more the 
deciphering of the words or the evaluation of the facial expression of the speaker to 
decide what they mean? Some people may choose to weigh the words heavier than the 
voice in a given circumstance, others may opt the other way around. However, it is 
always important to be aware of the limitations the models may have in the context of 
the potential application. 

3 Computational results 

In this section, we begin with an overview and performance of the individual 
components of the architecture. The individual components are neural network models 
that are built with the same corpus. Then we present the computational results 
obtained with our proposed architecture that combines the results from the above 
components. All experiments reported here were performed with our research code 
(available at https://github.com/usnistgov/STVM_NLP_Research) developed in 
Python 3.0 with the TensorFlow 2.1.0 [15] library. The models were trained on a 
professional Graphics Processing Unit (GPU) cluster having 8 NVIDIA Tesla V100 (32 
GB each). The inference was carried on a 2015 MacBook Pro with 2.5 GHz Intel Core 
i7 and 16 GB RAM without Graphics Processing Unit (GPU) acceleration. 

3.1 Datasets 

Our experiments can be divided into two parts. The first part is the training of the 
individual participating models. The second part combines the participating models 
using our proposed sagittal stratum inspired neural network (SSNet) classifier. This 
allows for a clear and objective assessment of the advantages the proposed architecture 
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offers compared to individual models. We used the labeled Stanford Large Movie 
Review dataset (SLMRD) [1] in our experiments. The SLMRD dataset contains 25 000 
labeled train reviews and 25 000 labeled test reviews. 

We split the train reviews into two parts and for the first part, use 20 000 train 
reviews for training individual models and for the second part use 5 000 train reviews 
for training SSNet classifier. Please note this split size is based on conventional best 
practices and is heuristic in nature. When designing the models and selecting the train 
dataset one needs to balance the number of trainable parameters in each model and the 
size of the training dataset to avoid under- and over-fitting. We experimented with 
other split ratios, e.g. 24K/1K, 23K/2K, 22K/3K, 21K/4K, 17.5K/7.5K, and the results 
were very similar to those presented below, hence we omitted these details. In all 
experiments presented in this section, we ensured that the models are trained properly. 
Finally, we apply the SSNet classifier that combines the trained participating models on 
the entire test dataset with 25 000 reviews to measure its performance based on 
accuracy of prediction. 

3.2 Experimental architecture 

The main idea behind the architecture in Section 2 is to incorporate separate views on 
the same corpus. In our experiments we used four models enumerated as Mi 

8i 2 {1, ..., 4}. In this section, we present an overview of the four models and their 
individual performance. 

3.2.1 BowTie 

We use as M1 the model described in [39]. It is based on the well-known bag-of-words 
model combined with word polarity. This model produces good results on the 
corpora [1, 21]. Here we introduced some minor tweaks to this model by incorporating 
few LSTM layers. This resulted in a small increase in the accuracy of the model. 

For the 5K-split train dataset, i.e., using 20 000 reviews in training this model, we 
obtained 87.84 % accuracy on the 25 000 reviews in test dataset. 

3.2.2 BLSTM with Attention and Glove Embeddings 

In this model (M2), we use the glove embedding [32] on the dataset. While many other 
researchers in this area have obtained results by simply using LSTM or BLSTM 
with [32]; we found that the corpora [1, 21] contain reviews with nuances that are 
difficult to learn by simply passing the embeddings through LSTM or BLSTM. The 
models tend to learn the pattern of the inputs rather than the underlying meaning or 
semantics. This is often the cause of overfitting in a wide range of NLP problems. 
Further, in the case of sentiment analysis, certain words and their position in the 
sentence play extremely important role in determining the overall meaning. It is 
difficult to incorporate the positional semantics of these words using normal LSTM or 
BLSTM. The family of attention mechanisms [2,16,25] provides a direction to formulate 
such difficult semantics into the model. We revised the aforementioned attention 
mechanism to incorporate positional and sentimental semantics for sentences having 
large number of words. 

− −!
Let b and b be the forward and the backward components of BLSTM and k be 

!! − − − 
the sequence length, then h = [

− 
b , b ] where dim(h) 2 Rk×(| b |+| b |). We define the 

following equations to describe the attention mechanism used in this paper: 
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h0 = tanh(h) 

h0 = softmax(h0) 

Cv = h h0 (16)X 
M = Cv 

k 

The third expression in the equation 16 represents the context vector Cv , which we 
sum up in the fourth expression over the sequence to remove stochastic behavior, hence 

− −! 
b |+| b |)dim(M) 2 R(| . To correctly calculate the Hadamard product, it is required to 

expand the vector space of h0 after performing the softmax operation. This strategy 
inside the attention mechanism establishes a probabilistic vector space incorporating the 
positional and the sentimental semantics into M2. 

Our investigation showed that understanding nuances is not very computationally 
intensive but rather a logically inferential task, hence we used a low vector space, .i.e., 
100 of the glove embeddings with sentence length equal to 800. This resulted in a small 
and robust model. We would also like to emphasize that the semantic structure of the 
language as understood by human brain is closely related to word embeddings (rather 
than language modeling). Hence, we did not incorporate any language modeling 
techniques in this architecture. 

For the 5K-split train dataset, i.e., using 20 000 reviews in training this model, we 
obtained 88.98 % accuracy on the 25 000 reviews in test dataset. 

3.2.3 BERT 

BERT (Bidirectional Encoder Representations from Transformers) is the well-known 
large pre-trained model [14]. The BERT model is pre-trained on the minimally-filtered 
real-world text from Wikipedia (en.wikipedia.org) and BooksCorpus [41]. In this model 
(M3), we fine-tuned BERT using SLMRD. The instance of BERT we used in our 
experiments has a maximum sequence length of 512. Please note that the average 
length of SLMRD is less than 300 words, but several go over 3000 words. This means 
that any text longer than 510 tokens (two required special tokens are added by BERT) 
gets truncated. 

For the 5K-split train dataset, i.e., using 20 000 reviews in training this model, we 
obtained 93.46 % accuracy on the 25 000 reviews in test dataset. 

3.2.4 Universal Sentence Encoder (USE) 

In this model (M4), we experimented with the Universal Sentence Encoder [7]in 
embedding text. USE takes variable length text as input and encodes text into 
high-dimensional vectors that can be used for NLP tasks such as text classification, 
semantic similarity, and etc. We use the highest allowed dimension of 512 in embedding 
text in our training using SLMRD. 

For the 5K-split train dataset, i.e., using 20 000 reviews in training this model, we 
obtained 88.33 % accuracy on the 25 000 reviews in test dataset. 

3.2.5 Performance Summary of Individual Models 

Table 1 summarizes individual model performance based on the training on the split 
dataset with 20 000 train reviews and the rest 5 000 train reviews as validation. The 
reported performance is the test accuracy over entire 25 000 reviews in test dataset. 
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Table 1. Performance of Individual Models: 
Individual Models, Train on 
(20K/5K) 

Accuracy (%) on Test (25K) 

M1 (BowTie) 87.84 
M2 (BLSTM) 88.98 
M3 (BERT) 93.46 
M4 (USE) 88.33 

Table 2 shows the results of the 
neural network combiner. A linear 
layer (without bias) and a sigmoid 
layer was used for this experiment. 
The maximum accuracy achieved 
is 94.11 % 

3.3 Performance of Model Combiners 

In this section we describe our experiments and present the computational results. As 
discussed in previous sections, we have four models and three approaches to combine 
them. We evaluate each of the combiners on the basis of the accuracy achieved on the 
test dataset, consistent with the measurement criteria adopted for the performance of 
the individual models in Table 1. The combiner models train optimal weights {wi}4 

i=1 
for combining individual models using 20K/5K split in train dataset. First, get 
prediction probabilities of 5 000 train reviews from individual models as described in 
Section 3.2.1 through Section 3.2.4. Please note these individual models are trained 
using 20 000 train reviews. Each prediction probability value ranges from 0 to 1. Then 
feed the 5 000 probability values to the combiner architecture as input and produce 
trained combining weights as the output. Finally, use the trained weights to combine 
the prediction probabilities of 25 000 test reviews produced from the same individual 
models. The combined probability value is mapped to positive sentiment if it is above 
0.5 and negative otherwise. The results of the respective combiners are shown in 
Tables 2, 4 and 5. 

3.3.1 Neural Network Combiner 

Table 2 shows the result obtained using the neural network combiner 2.1. Table 3 
shows the trained combining weights. The neural network model is made up of a linear 
layer (without bias) followed by the sigmoid layer. Our combiner attained a maximum 
accuracy of 94.11 %. The accuracy attained from the various individual model 
combinations varies but in all cases the combined model delivered higher prediction 
accuracy than any of the underlying individual models. 

Table 2. Neural Network Combiner Accuracy: 
Combined Models Accuracy (%) on Test 

(25K) 
M1,2 90.58 
M1,3 93.88 
M1,4 89.97 
M2,3 93.94 
M2,4 90.91 
M3,4 93.77 
M1,2,3 94.02 
M1,2,4 91.25 
M1,3,4 93.94 
M2,3,4 94.11 
M1,2,3,4 94.03 

Figure 3 shows a graph of the train and test accuracy in addition to the test 
accuracy reported in Table 2 to illustrate that our models were trained appropriately. 

One important element of our experiments is to confirm that the computed weights 
of the combined predictor in Section 2.1 conform to the estimate in 15. The coefficients 
computed for the combinations in Table 2 are shown in Table 3 and they are in 
agreement with the estimate 15. Depending on the optimizer configured in the 
computational environment [15] we used for these experiments, some coefficients subject 
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Figure 3. Train accuracy vs. Test accuracy in Neural Network Combiner 

Table 3. Neural Network Combiner Weights: 
Combined Models wM1 wM2 wM3 wM4 

M1,2 0.818 304 9 0.802 690 57 - -
M1,3 0.866 261 36 - 1.307 048 1 -
M1,4 1.031 652 5 - - 0.936 311 2 
M2,3 - 0.827 237 4 1.318 226 7 -
M2,4 - 0.870 368 8 - 0.823 446 5 
M3,4 - - 1.019 902 3 0.600 592 85 
M1,2,3 0.661 206 6 0.594 167 4 1.243 962 5 -
M1,2,4 0.809 815 47 0.983 355 76 - 0.787 218 9 
M1,3,4 0.664 903 4 - 1.298 683 6 0.503 121 26 
M2,3,4 - 0.571 534 1 1.105 189 1 0.513 287 07 
M1,2,3,4 0.472 195 33 0.486 312 24 1.123 171 6 0.363 400 4 

to the constraint 2 may get set to zero if they go negative in any step of the training 
process. This is undesirable because the training process may not be able to recover 
well from such an event and this would effectively disable the contribution of the 
corresponding contributing model in the combination. To improve the stability of the 
training process one may use different optimizers from the set of available options in 
their computational environment. For example, the environment [15] offers several good 
optimizers that can greatly reduce the occurrence of such events, e.g., the adaptive 
momentum (ADAM) optimizer, the Nesterov adaptive momentum (NADAM) optimizer, 
and the Root Mean Square Propagation (RMSPRop) optimizer. In addition, one may 
incorporate L2-regularization in the dense layer predictor weighed carefully to both 
improve stability and increase the accuracy of the resulting combiner. We used ADAM 
with a L2-weight of 0.039 for the computations in Tables 2 and 3. 

3.3.2 Bayesian Decision Rule Combiner 

Here we present computational results from applying the Bayesian rules from [22]. The 
results in Table 4 are for the Max, Avg, Sum, and Majority Vote rules denoted as 
max, avg, sum and maj correspondingly. We did not use the Majority Vote rule 
in the case of using two or four models, as visible in Table 4 because of the potential tie 
in the vote. The different rules produced identical results when combining only two 
models but started to differentiate when the number of combined models increased. 
This is likely due to the low variance in the prediction probabilities with only a few 
models. Interestingly, in our case the Max rule tended to produce the highest accuracy 
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Table 4 shows the results of the 
Bayesian Decision Rule combiner: 
max, avg, sum and maj. The 
indication all for the rule used 
means that all rules except maj 
produced the same result. The 
maj rule was not used in the case 
of combining an even number of 
models to avoid a tie in the vote. 
The maximum accuracy achieved 
is 93.77 %. 

Table 4. Accuracy of the Bayesian Decision Rule Combiner: 
Combined 
Models 

Rule Accuracy (%) on 
Test (25K) 

M1,2 all 90.32 
M1,3 all 93.73 
M1,4 all 89.79 
M2,3 all 93.77 
M2,4 all 90.94 
M3,4 all 93.77 

M1,2,3 
max 93.64 
avg 92.84 
sum 92.84 
maj 92.32 

M1,2,4 
max 90.90 
avg 90.86 
sum 90.86 
maj 90.40 

M1,3,4 
max 93.67 
avg 92.54 
sum 92.54 
maj 91.84 

M2,3,4 
max 93.76 
avg 93.17 
sum 93.17 
maj 92.69 

M1,2,3,4 
max 93.59 
avg 92.90 
sum 92.90 

unlike the results in [22] where the Sum rule was the best performer. This combined 
model performed well for the various combinations of individual models and rules. 

3.3.3 Heuristic-Hybrid Combiner 

Table 5 shows the results obtained using the heuristic-hybrid combiner. Each of the 
individual models is used as base and when its prediction probability falls below �, 
where 0.5 < � < 1, then combinations of the auxiliary models are used for the 
prediction. We use the Bayesian decision rules from [22] to compute a prediction with 
the auxiliary models. The maximum accuracy achieved on the test dataset is 94 % with 
model M3 as base and models M1, M2 and M4 as auxiliary. The experimental data in 
Table 5 bear out the recommendation from Section 2.3 to use the best model as base. 
The results for M3 as base show a good balance of collaboration with the auxiliary 
models with � = 0.79 to deliver the best accuracy result. Again, the accuracy obtained 
by the max rule tended to perform best. It was only marginally lower than the 
accuracy produced by the avg and sum rules for the case of using M3 as base model 
and models M1,2,4 as auxiliary but even in that case the accuracy produced with the 
max rule was higher than that of the best individual model M3. The maximum 
accuracy attained by this combiner was higher than that of the Bayesian Decision Rule 
combiners from [22], cf. Table 4, and in this sense our heuristic-hybrid combiner 
performed better. 
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Table 5. Heuristic Hybrid Combiner: 

Table 5 shows the results of the 
heuristic-hybrid combiner. Each 
model was used as a base model 
while max, avg, sum, and maj 
rules were used for predicting with 
the auxiliary models when the con-
fidence of the base model fell be-
low the threshold �. The max-
imum accuracy of 94 % was at-
tained with M3 as the base model 
for two of rules: avg and sum. 

Combined Models Accuracy (%) 
on Test (25K)Base Auxiliary Rule Threshold 

� 

M1 

M2 − 0.92 90.06 
M3 − 0.98 93.50 
M4 − 0.85 89.44 

M2,3 

max 0.98 93.62 
avg 0.98 93.62 
sum 0.98 93.62 

M2,4 

max 0.95 90.96 
avg 0.95 90.96 
sum 0.95 90.96 

M3,4 

max 0.98 93.65 
avg 0.98 93.65 
sum 0.98 93.65 

M2,3,4 

max 0.98 93.62 
avg 0.98 93.07 
sum 0.98 93.07 
maj 0.97 92.52 

M2 

M1 − 0.82 90.08 
M3 − 0.98 93.31 
M4 − 0.82 90.46 

M1,3 

max 0.98 93.41 
avg 0.98 93.41 
sum 0.98 93.41 

M1,4 

max 0.97 90.64 
avg 0.97 90.64 
sum 0.97 90.64 

M3,4 

max 0.99 93.62 
avg 0.99 93.62 
sum 0.99 93.62 

M1,3,4 

max 0.99 93.52 
avg 0.97 92.55 
sum 0.97 92.55 
maj 0.97 92.06 

M3 

M1 − 0.74 93.86 
M2 − 0.83 93.80 
M4 − 0.73 93.84 

M1,2 

max 0.83 93.90 
avg 0.83 93.90 
sum 0.83 93.90 

M1,4 

max 0.81 93.88 
avg 0.81 93.88 
sum 0.81 93.88 

M2,4 

max 0.81 93.94 
avg 0.81 93.94 
sum 0.81 93.94 

M1,2,4 

max 0.83 93.94 
avg 0.79 94.00 
sum 0.79 94.00 
maj 0.82 93.95 

M4 

M1 − 0.82 89.36 
M2 − 0.91 90.36 
M3 − 0.98 93.52 

M1,2 

max 0.91 90.55 
avg 0.91 90.55 
sum 0.91 90.55 

M1,3 

max 0.98 93.68 
avg 0.98 93.68 
sum 0.98 93.68 

M2,3 

max 0.99 93.77 
avg 0.99 93.77 
sum 0.99 93.77 

M1,2,3 

max 0.99 93.64 
avg 0.99 92.84 
sum 0.99 92.84 
maj 0.99 92.32 
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4 Conclusions and next steps 

Figure 4 shows the best attained 
accuracy of individual participat-
ing models and their combinations 
for the proposed approach. 

Figure 4. Accuracy on test dataset for proposed methods 

We successfully followed our intuition inspired by the biological underpinning of the 
human brain for understanding sarcasm to construct a neural network architecture for 
sentiment analysis. We considered novel systematic and heuristic-hybrid 
implementations of the framework and were able to provide theoretical justification for 
the state-of-the-art computational performance of the best systematic solution based on 
the neural network dense layer. Our heuristic-hybrid solution closely followed the 
intuition inspired by the biological underpinnings of our brain while at the same time 
relied on a systematic technique for combining the predictions of the auxiliary models 
using well-known Bayesian rules. This approach delivered performance results very close 
to those of the best combined predictor. Thus, our two novel combined models 
outperformed not only each individual auxiliary model in terms of accuracy and 
robustness but also the legacy combiner models from the literature. A graphical 
comparison of the three approaches is shown in Figure 4. 

Next, we plan to explore possibilities for enhancing the security of the computation 
of this network through secure multiparty computation protocols to facilitate adoption 
in sensitive application domains where high security and privacy is required. In 
addition, we are going to look for effective parallelization techniques to accelerate the 
computation of the training and prediction phases on multi-GPU platforms. 
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