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Transport, separation, and merging of trapped ion crystals are essential operations for most large-scale
quantum computing architectures. In this Letter, we develop a theoretical framework that describes the
dynamics of ions in time-varying potentials with a motional squeeze operator, followed by a motional
displacement operator. Using this framework, we develop a new, general protocol for trapped ion transport,
separation, and merging. We show that motional squeezing can prepare an ion wave packet to enable
transfer from the ground state of one trapping potential to another. The framework and protocol are
applicable if the potential is harmonic over the extent of the ion wave packets at all times. As illustrations,
we discuss two specific operations: changing the strength of the confining potential for a single ion and
separating same-species ions with their mutual Coulomb force. Both of these operations are, ideally, free of
residual motional excitation.
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A suitable platform for quantum information processing
must enable the precise control of many-body quantum
states [1,2]. Trapped ions are promising in this regard due
to their long coherence times, high-fidelity gate operations,
and potential for all-to-all connectivity between qubits
[3–11]. One way to address the challenge of scaling to
larger trapped-ion systems is the so-called quantum charge-
coupled device (QCCD). In the QCCD architecture, ions
are shuttled between different trap “zones” that can have
designated functions, such as gate operations, memory, or
readout [5,12,13]. To be as efficient as possible, separation
and transport of same- and mixed-ion species should be fast
and minimize residual motional excitation. While theoreti-
cal work has explored various shuttling protocols [14–20],
only single-ion and same-species ion transport have been
demonstrated on timescales comparable to the ion’s
motional period; experimentalists have performed other
operations, but only adiabatically with respect to the
motional period [19,21,22].
In this Letter, we develop a new theoretical framework to

analyze the motional states of ions in a linear trap with
time-varying potentials. Specifically, we consider the case
of ions starting and ending in the ground states of a set of
harmonic wells with frequencies and equilibrium positions
fωjð0Þ; cjð0Þg to fωjðtfÞ; cjðtfÞg over duration tf, where j
indicates the motional mode (see Fig. 1). This framework
can be applied if, at all times, the effective potential can be
approximated as quadratic over the spatial extent of the ion
motional wave packets. Under this condition, the wave
packets remain Gaussian and follow classical trajectories
[23–26]. This fact allows us to define a transformation into

a frame of reference that follows the “classical” position
and momentum of the ions. In this “classical frame of
reference,” the Hamiltonian can be cast in a basis that
is represented by generators of the SU(1,1) Lie algebra
[27–31], allowing us to reduce the remaining dynamics to
Euler rotations [28,32,33]. Once the angles of these
rotations are determined, the effect of the entire operation
is equivalent to a squeezing operation, followed by a
coherent displacement; this operator parametrization of
Gaussian trajectories has been used in other contexts
[26,34], but its use in QCCD operations has not been
explored. Further, we can add an additional squeezing
operation per mode, before or after the main dynamical

(a) (b)

(c) (d)

FIG. 1. We illustrate a change of the potential of a harmonic
trap, showing the motion’s Wigner distribution WðαÞ [35] for
each step (not to scale). We (a) initialize the motion to the ground
state of a potential well, (b) squeeze the motion (shown as
parametric modulation of the potential), and (c) increase the
confinement strength. Finally, (d) the motion finishes in the
ground state of the final potential.
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operation, so that the system finishes in the ground states of
a set of final trapping potentials with arbitrary frequencies
ωjðtfÞ. Taken together, one can transport ions from the
ground states of one set of wells to the ground states of
another, with no motional excitation. We present two
applications of this technique: changing the frequency of
an ion’s motion and separating two same-species ions.
Using experimentally realistic parameters, we show that the
latter could potentially be conducted more than an order of
magnitude faster than in previous demonstrations.
We consider N ions in a linear trap, described by “lab-

frame” motional wave function jψðtÞi and Hamiltonian

ĤlðtÞ ¼
X

j

p̂2
j

2mj
þ Vjðx̂j; tÞ; ð1Þ

where p̂j is momentum, x̂j is position, mj is mass, and t is
time. The index j can here indicate the coordinates of an
individual ion or a collective mode, depending on the
problem. We assume negligible coupling between different
degrees of freedom; this approximation means that for
systems with more than one ion we can factor jψðtÞi.
Therefore, each degree of freedom j can be considered
separately, and we drop this subscript unless stated other-
wise. We can now transform ĤlðtÞ into a frame of reference
that is centered around the expectation values of the
position cðtÞ and momentum m_cðtÞ. This unitary trans-
formation is represented by the displacement operator
D̂ðtÞ≡ expf½i=ℏ�½m_cðtÞx̂ − cðtÞp̂�g. This gives [36]
D̂†ðtÞx̂ D̂ðtÞ ¼ x̂þ cðtÞ and D̂†ðtÞp̂ D̂ðtÞ ¼ p̂þm_cðtÞ.
We consider the transformed wave function jϕðtÞi ¼
D̂†ðtÞjψðtÞi and Hamiltonian ĤtðtÞ ¼ D̂†ðtÞĤlðtÞD̂ðtÞþ
iℏ _̂D

†ðtÞD̂ðtÞ, which gives [36–38]

ĤtðtÞ ¼
p̂2

2m
þ Vðx̂; tÞ − x̂

∂V
∂x̂

����
x̂¼0

: ð2Þ

If we assume the potential Vðx̂; tÞ is quadratic around cðtÞ,
we can write the above equation as

ĤtðtÞ ¼
p̂2

2m
þ 1

2
mω2ðtÞx̂2: ð3Þ

Here, we have set mω2ðtÞ≡ ∂2V=∂x̂2jx̂¼0. Notice that
Eq. (3) does not have a ∝ x̂ force term, as its effect is
now encompassed by D̂ðtÞ. This gives a free harmonic
oscillator with a time-dependent potential centered
at hx̂i ¼ 0.
We are interested in modes that begin in a ωð0Þ≡ ω0

potential well. We set ωðtÞ≡ ½1þ γðtÞ�ω0, where γðtÞ is a
dimensionless time-dependent function. We rewrite Eq. (3)
in terms of ladder operators âðâ†Þ acting on the mode
defined by ωð0Þ. Doing this, and ignoring global phases,
gives [37]

ĤtðtÞ ¼ ℏω0

�
â†âþ γðtÞ

2

�
1þ γðtÞ

2

�
½â† þ â�2

�

¼ 2ℏω0f½1þ αðtÞ�K̂3 þ αðtÞK̂1g; ð4Þ

where we have substituted x̂≡ ðℏ=2mω0Þ1=2ðâ† þ âÞ,
p̂≡ iðℏmω0=2Þ1=2ðâ† − âÞ, and αðtÞ≡ γðtÞ½1þ 1

2
γðtÞ�.

Importantly, Eq. (4) introduces the generators of the SU
(1,1) Lie algebra [27,28,39]

K̂1 ≡ 1

4
ðâ†2 þ â2Þ; K̂2 ≡ 1

4i
ðâ†2 − â2Þ;

K̂3 ≡ 1

2

�
â†âþ 1

2

�
: ð5Þ

Because Eq. (4) depends only on these generators, we may
represent the propagator associated with ĤtðtÞ as Ûs with
three Euler rotations in SU(1,1) space [28,32],

Ûs ¼ eiθaK̂3e2irsK̂2eiθbK̂3 ; ð6Þ

where we have defined the angle rs such that its value
corresponds to the squeeze parameter [35]. We designate
the position and velocity coordinates of the final potential
minimum (in the lab frame) as cf and _cf, respectively,
distinct from the ion coordinates cðtfÞ and _cðtfÞ, to
encompass residual displacements in our framework; when
cðtfÞ ¼ cf, the packet is centered at the final potential
minimum, and, when _cðtfÞ ¼ _cf, the ion is stationary
with respect to it. Transforming into the reference frame
centered at, and stationary with respect to, the minimum of
the final potential after duration tf gives jϕfðtfÞi ¼
D̂0

fÛsjϕð0Þi, where the final frame change is represented

by the displacement operator D̂0
f ≡ exp (fi=ℏgfm½_cðtfÞ −

_cf�x̂ − ½cðtfÞ − cf�p̂g) (see Supplemental Material [37]).
Under the approximation that Vðx̂; tÞ is quadratic over the
spatial the extent of jϕðtÞi ∀ t, we can thus represent ion
motional dynamics with a squeeze, followed by a displace-
ment, operator. While there is a broad set of transport,
separation, and mode frequency change operations this
framework could analyze, for this Letter we consider only
the subset of operations where cðtfÞ ¼ cf and
_cðtfÞ ¼ _cf ¼ 0, from which it follows that D̂0

f ¼ Î; this
framework could, however, straightforwardly describe
protocols where ions are caught by moving potentials
(_cf ≠ 0) or are displaced at tf (D̂0

f ≠ Î).
As an example, we can study the case of taking the

system from an initial Fock state of a well with frequency
and coordinate fωð0Þ; cð0Þg to the same Fock state of
fωðtfÞ; cfg. Finding experimentally realistic functions that
efficiently take the system from cð0Þ to cf while simulta-
neously taking the system from the ground state of ωð0Þ to
the ground state of ωðtfÞ is a difficult task in general; we

PHYSICAL REVIEW LETTERS 127, 083201 (2021)

083201-2



can, however, guarantee the latter requirement by intro-
ducing an additional step, either before or after the trans-
port, separation, or frequency change operation, that
squeezes the motion so it ends in the ground state of the
ωðtfÞ potential well. This works so long as cðtfÞ ¼ cf and
_cðtfÞ ¼ _cf. The operator that describes changing the mode
from the ground state of ωð0Þ ¼ ω0 to that of ωðtfÞ ¼
½1þ γðtfÞ�ω0 is [37]

Ûc ¼ e2ircK̂2 ; rc ≡ −
1

2
ln½1þ γðtfÞ�: ð7Þ

We want to find a squeezing operation Ûp that, when
applied before or after the main dynamical operation, gives
the desired mode frequency change Ûc. We can express this
as ÛsÛp ¼ Ûc or ÛpÛs ¼ Ûc, depending on whether
squeezing is applied before or after the main dynamical
operation, respectively. We can decompose Ûp into Euler
rotations as

Ûp ¼ eiθkK̂3e2irpK̂2eiθk0 K̂3 : ð8Þ

Assuming we can generate a squeezing operator of the form
Ŝk;k0 ¼ exp½ðrp=2Þðâ†2eiθk;k0 − â2e−iθk;k0 Þ�, where the index
kðk0Þ indicates whether the squeeze operation is rendered
before (after) Ûs, we find that

ÛsŜk ¼ Ûce−iðθkþθk0 ÞK̂3 ;

Ŝk0Ûs ¼ e−iðθkþθk0 ÞK̂3Ûc: ð9Þ

In the Fock basis fjnig, the operator e−iðθkþθk0 ÞK̂3 just gives
an n-dependent global phase, as K̂3jni ¼ 1

2
ðnþ 1

2
Þjni.

Thus Ŝk;k0 effectively realizes Ûp, provided that the initial
motional state can be described by a diagonal density
matrix in the Fock basis, a requirement that is fulfilled by
both pure Fock states and thermal states.
Squeezing can be induced with parametric modulation or

a diabatic change of the trapping potential using applied
voltages [40–42] or with lasers [43–46]. The focus of this
Letter is not how squeezing is generated, and, importantly,
the validity of the above scheme does not depend on the
timescales of the squeezing generation. We, therefore,
assume a general squeezing Hamiltonian ĤI considered
in the interaction picture of ℏω0â†â,

ĤI ¼ iℏ
g
2
ðâ†2eiθI − â2e−iθIÞ; ð10Þ

which describes the squeezing induced by frequency
modulation of the trap frequency at 2ω0 (see Fig. 1).
After a duration tp, the propagator representing the lab-
frame action of ĤI is, up to a phase,

ÛIjni ¼ exp

�
gtp
2

ðâ†2eiðθI−2ωtpÞ − â2e−iðθI−2ωtpÞÞ
�
jni;

ð11Þ

which is equivalent to Ûp when gtp ¼ rp and
θI ¼ 2ω0tp þ θk; this means that squeezing the ground
state of fωð0Þ; cð0Þg can prepare it to end in that of
fωðtfÞ; cfg after a change of the external potential. We
provide two examples of how this technique may be
used below.
We first discuss how to use squeezing to change the

motional frequency of an ion in a harmonic potential
without residual motional excitation. We choose this as
an initial example because it is a simple illustration of how
squeezing can not only transform a wave packet from the
ground state of one well to another, but also account for the
change of the external potential, where Ĥlð0Þ → ĤlðtfÞ
over a finite duration. Figure 1 pictorially illustrates this
scheme. In this example, we increase the frequency of a
mode, squeezed beforehand according to Ûp, following the
function γðtÞ ¼ sin2ðπt=2tfÞ, in which the trap frequency is
doubled from ω0 to 2ω0 over a time period tf. The
functional form of γðtÞ can be chosen arbitrarily; different
functional choices would not qualitatively affect the results,
so long as boundary conditions remain satisfied. Here, the
classical position of the particle remains at rest, trivially
meeting the requirement that cðtfÞ ¼ cf and _cðtfÞ ¼ _cf.
Figure 2 shows the phonons hn̂ωi (as defined by the ladder
operators of the initial ω0=2π ¼ 1 MHz and final
ωðtfÞ=2π ¼ 2 MHz trapping frequencies [37]) versus time
for a ramp time of tf ¼ 0.5 μs. Here we see that the motion
is not in the ground state of either basis after the initial
squeezing operation; after doubling the frequency, how-
ever, the final well is.
The inset of Fig. 2 shows the residual phonons in the 2ω0

mode versus tf without a squeezing step Ûp. It is interesting

FIG. 2. Changing the frequency from ω0 to 2ω0

(ω0=2π ¼ 1 MHz) of a harmonic trap after a squeezing oper-
ation. We show the phonon number hn̂ωi in the eigenbases of the
original mode at ω0 (solid blue) and the final mode at 2ω0

(dashed orange). The inset shows hn̂ωi versus tf in the eigenbasis
of the final well when no squeezing is performed; if squeezing
were performed, hn̂ωi would remain zero for all tf .
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to note that, when tf → 0, the number of residual phonons
approaches that of the ω0 mode in the main figure. This is
because, in this regime, Ûs → Î; this means the Ûp

operation, that would transform the wave function from
the ground state ofω0 to that of 2ω0, converges to Ûc. Since
experimental techniques for squeezing typically do not
operate in time frames shorter than 2π=ω0, the inset
indicates that our squeezing scheme is unlikely to be more
time efficient than just adiabatically changing the potential,
so this offers only a simple example of the protocol. Ion
separation, on the other hand, could potentially be
expedited with squeezing.
We now discuss a protocol that uses motional squeezing

to diabatically separate two same-species ions. We begin
with two ions, here taken to be 9Beþ, in an initial potential
well with frequency ω0 at the equilibrium positions of ions
1 and 2 at

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke2=ð4mω2

0Þ3
p

and −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ke2=ð4mω2

0Þ3
p

, respec-
tively, where k is the electrostatic constant and e is charge.
We can then take the usual coordinate system x̂c ¼ 1

2
ðx̂1 þ

x̂2Þ and p̂c ¼ p̂1 þ p̂2 for the in-phase mode, labeled
“c.m.,” mode, x̂s ¼ 1

2
ðx̂1 − x̂2Þ and p̂s ¼ p̂1 − p̂2 for the

out-of-phase mode, labeled “STR,” mode, each with
effective mass M ¼ 2m. This allows us to analyze the
system in an uncoupled basis, ĤtðtÞ ¼ Ĥt;cðtÞ þ Ĥt;sðtÞ.
Dropping terms ∝ Î, we get

Ĥt;cðtÞ ¼
p̂2
c

2M
þ 1

2
Mω2

0½1þ γðtÞ�2x̂2c; ð12Þ

Ĥt;sðtÞ ¼
p̂2
s

2M
þ 1

2
Mω2

0½1þ γsðtÞ�2x̂2s : ð13Þ

We have Taylor expanded the Coulomb potential up to x̂2s ,
encompassing this term’s dynamics in [37],

γsðtÞ≡
�
½1þ γðtÞ�2 þ 2c3sð0Þ

c3sðtÞ
�

1=2

− 1; ð14Þ

in order to cast Ĥt;cðtÞ and Ĥt;sðtÞ in the same form.
Initially, the STR mode frequency is ωsð0Þ ¼

ffiffiffi
3

p
ω0, so we

measure the phonon number hn̂ωi as defined by these
ladder operators, while measuring the c.m. modes in terms
of ωcð0Þ ¼ ω0 operators. When separating into different
trap zones, however, the ∝ c−3s ðtÞ Coulomb term in γsðtÞ
becomes negligibly small, giving ωsðtfÞ ≃ ω0; this makes
hn̂ωi ¼ 0, defined by ωsðtfÞ ≃ ωcðtfÞ ¼ ω0 ladder oper-
ators, the target for both modes.
The separation of the classical trajectory from SU(1,1)

dynamics allows us to isolate each when designing a
protocol. Therefore, we discuss individual positions for
the former and modes for the latter. We first choose a
protocol that separates the particles from fc1ð0Þ; c2ð0Þg to
a desired fcf;1ðtfÞ; cf;2ðtfÞg, such that the particles
finish in equilibrium. After the parametric modulation

sequence lasting tp, we release the ions from confinement,
ramping the potential to zero over a duration ts;1
according to γðtÞ ¼ −sin2½πðt − tpÞ=2ts;1�. Subsequently,
for a duration ts;2 we leave the particles unconfined
[γðtÞ ¼ −1], after which we apply separate catching
potentials over duration ts;3 according to γðtÞ ¼
−cos2fπ½t − ðtp þ ts;1 þ ts;2Þ�=2ts;3g; γðtÞ ¼ 0 everywhere
else. We set the centers of the catching potentials to be
cf;jðtÞ ¼ cjðtÞ − η_cjðtÞ, where η is a constant with dimen-
sions of time. This ensures that cjðtfÞ ≃ cf;jðtfÞ and
_cjðtfÞ≃ _cf;jðtfÞ≃ c̈jðtfÞ≃ c̈f;jðtfÞ≃0, whereby D̂0

f;j → Î.
Figure 3(a) shows the classical trajectories of two ions
being separated by c1ðtfÞ − c2ðtfÞ ≃ 100 μm in
ts;1 þ ts;2 þ ts;3 ≃ 2.17 μs, not including the squeezing
period. Here we have set ω0=2π ¼ 1 MHz, tp ¼ 3 μs,
ts;1 ¼ 0.5 μs, ts;2 ≃ 0.67 μs, ts;3 ¼ 1 μs, and η ¼ 0.5 μs—
the values of g for both modes are determined after the
values of rp are calculated (discussed below). The ions
remain at cjð0Þ during the squeezing stage, then quickly
separate when their initial confinement is dropped,

(a)

(b)

FIG. 3. Illustration of same-species separation using squeezing.
Both figures are for the same run, using parametric modulation
with amplitudes of gc=2π ≃ 92.6 and gs=2π ≃ 69.2 kHz acting
simultaneously on the c.m. and STR modes, respectively. Here
ω0=2π ¼ 1 MHz. This example protocol is composed of a tp ¼
3 μs parametric modulation step, followed by ts;1 ¼ 0.5 μs of
ramping down the original confining potential toωðtp þ ts;1Þ ¼ 0,
ts;2 ≃ 0.67 μs of only Coulomb repulsion, followed by ts;3 ¼ 1 μs
of ramping up the “catching” potential. This gives a total
separation of c1ðtfÞ − c2ðtfÞ ≃ 100 μm over tf ≃ 5.17 μs.
(a) Shows the respective position of ions 1 and 2 versus time t
in microseconds. The green and blue dotted lines mark the
beginnings of the release and catch steps, respectively. The black
lines show the position of the catching potential well versus t and
the lines’ shade is proportional to the fraction of its final strength,
1þ γðtÞ. (b) Shows the phonons in the c.m. mode and both of the
relevant STR modes versus time. At the end of the trajectory, both
ions are in the ground state of their spatial separated ωðtfÞ ¼ ω0

potential wells, while the
ffiffiffi
3

p
ω0 mode is not.
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coming to rest after their catching potentials reach their
full value at tf.
The design of a scheme where both ions come to rest at

their respective potential minimums requires many adjust-
able parameters. The squeezing needed to prepare each
mode for separation, however, is virtually identical to that
in our discussion of changing the mode frequency, only
with different γðtÞ. Here, we squeeze both modes simulta-
neously for a fixed tp, making the required values of gc
and gs different. For the values of rp;c and rp;s in the
example shown in Fig. 3, we find that gc=2π ≃ 93 and
gs=2π ≃ 69 kHz. These values of gs;c were chosen to
correspond to current state-of-the-art experiments
[41,47], but are not necessary for this scheme to work;
the use of stronger or weaker squeezing gs;c would
simply cause tp to scale as 1=gs;c. For this calculation,
ωcð0Þ ¼ ωcðtfÞ, but ωsð0Þ ≠ ωsðtfÞ. To finish in the
ground state of ωsðtfÞ ¼ ω0, we incorporate this change
of frequency into Ûp;s, such that the wave packet changes
from the ground state of

ffiffiffi
3

p
ω0 to that of ω0. In Fig. 3(b),

we show hn̂ωi for the modes defined by ωcð0Þ ¼ ωcðtfÞ,
ωsð0Þ, and ωsðtfÞ versus time for the same separation
shown in Fig. 3(a). This shows that both modes end in the
ground state of their final potentials. For this protocol, we
see the largest squeezing parameter is rp;c ≃ 1.8, which is
experimentally feasible [41].
In conclusion, this Letter presents a new, general method

for analyzing the behavior of ions in time-varying poten-
tials and for designing improved ion transport, separation,
and merging protocols by using motional squeezing. First,
we show that, when the Hamiltonian of an ion or ions in a
time-varying potential takes the form of Eq. (4), after a
frame transformation that accounts for the classical trajec-
tory of each ion, the remaining dynamics of the system can
be described by three Euler rotations in SU(1,1) space.
When acting on the ground state of a motional mode, we
show that one can use a single squeezing operation per
mode such that the wave packet finishes its trajectory in the
ground state of the final potential. It is important to note
that the frequency change and separation protocols shown
above represent specific examples of a wide range of
feasible transport, separation, or merging schemes
described by Eq. (4). It is reasonable to expect that variants
of these two examples would perhaps better suit a particular
experimental setup, or that other types of transport,
separation, or mode frequency change operations may be
catalyzed by this concept. This work could, therefore, open
many new options for designing schemes that use motional
squeezing in QCCD operations.
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