

Disclaimer

 Certain commercial equipment, instruments, websites, or materials are identified in this paper. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Educational Tools

Ownership

- Action
 - Source removal
 - Ventilation
 - Filtration

What does it all mean?

- Health values
 - Time Weighted/Instantaneous
- Accuracy/Precision
- Ventilation

Building and Environment

Volume 171, 15 March 2020, 106654

Performance of low-cost indoor air quality monitors for $PM_{2.5}$ and PM_{10} from residential sources

Zhiqiang Wang ^a, William W. Delp ^b, Brett C. Singer ^b [∞] ⊠

Test Method for Evaluating PM_{2.5} Monitors

- Class III FEM Reference Monitor
 - 20 nm to 20 μm
 - Gravimetrically calibrated
- Challenge PM_{2.5}
 - Sodium chloride (1.5 μ m to 1.8 μ m)
 - Polystyrene latex spheres (1 μm)
- Chamber system
 - Steady state values

Process

- Five step concentration ramp
 - 10 μg m⁻³ to 300 μg m⁻³
 - Inorganic then organic
- RH and Temp variation
 - 40 % to 80 %
 - 20 °C and 30 °C
- Interferent testing
 - Arizona Test Dust (PM₁₀)
 - $10 \mu g \, m^{-3} \, to \, 150 \, \mu g \, m^{-3}$
- Temperature cycling
 - 10 °C to 50 °C 143 times
- Repeating concentration ramp

Test Method for Evaluating CO₂ Monitors

- Reference Monitor
 - 0 ppm_v to 10,000 ppm_v
 - Calibrated to certified cylinder
 - Drying system
- Chamber system
 - Steady state values

Process

- Five step concentration ramp
 - 450 ppm_v to 5,000 ppm_v
- RH and Temp variation
 - 40 % to 80 %
 - 20 °C and 50 °C
- Interferent testing
 - Relative humidity 20 % to 90 %
- Temperature cycling
 - 10 °C to 50 °C 143 times
- Repeating concentration ramp

So that will be it then, right?

• Just data. Need accreditation organizations.

• Re-zeroing algorithms for CO₂

- Long term drift?
 - 1 year plus?

The story of 10 Complications

TARGET IS AT LEAST 5 TOTAL AIR CHANGES PER HOUR

Ideal (6 ACH)

Excellent (5-6 ACH)

Good (4-5 ACH)

Bare minimum (3-4)

Low (<3 ACH)

https://drive.google.com/file/d/1jFavucO9 8vMz5_LpKtnDXBfDZvWlMLcL/view https://schools.forhealth.org/wp-content/uploads/sites/19/2020/08/Harvard-Healthy-Buildings-program-How-to-assess-classroom-ventilation-08-28-2020.pdf

Full Access

Risk of indoor airborne infection transmission estimated from carbon dioxide concentration

S. N. Rudnick, D. K. Milton

First published: 24 October 2003 | https://doi.org/10.1034/j.1600-0668.2003.00189.x | Citations: 143

Rebreathed Fraction =
$$\frac{\left(C_{average} - C_{outside}\right)}{C_{breath}}$$

$$Rebreathed\ Fraction = \frac{(800\ ppm_v - 420\ ppm_v)}{38,000\ ppm_v}$$

Rebreathed Fraction = 1.0 %

$$C_{average} = 2,000 \ ppm_v => 4.2\%$$

Consumer-grade sensors report concentrations in ppm_v. SI units are $\mu g \ m^{-3}$. 1000 ppm_v CO₂ = 929 $\mu g \ CO_2 \ m^{-3}$ at 25 °C and 1 atm.

ORIGINAL ARTICLE 🙃 Open Access 🙃 📵

Carbon dioxide generation rates for building occupants

A. Persily X, L. de Jonge

First published: 20 March 2017 | https://doi.org/10.1111/ina.12383 | Citations: 90

Complication #2

Atmos. Meas. Tech., 13, 3815–3834, 2020 https://doi.org/10.5194/amt-13-3815-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Integration and calibration of non-dispersive infrared (NDIR) CO₂ low-cost sensors and their operation in a sensor network covering Switzerland

Michael Müller¹, Peter Graf¹, Jonas Meyer², Anastasia Pentina³, Dominik Brunner¹, Fernando Perez-Cruz³, Christoph Hüglin¹, and Lukas Emmenegger¹

HARVARD T.H. CHAN SCHOOL OF PUBLIC HEALTH TARGET IS AT LEAST 5 TOTAL AIR CHANGES PER HOUR Ideal (6 ACH) Excellent (5-6 ACH) Good (4-5 ACH) Bare minimum (3-4) Low (<3 ACH)

BUILDING # FOR HEALTH

https://drive.google.com/file/d/1jFavucO9 8vMz5 LpKtnDXBfDZvWlMLcL/view

https://schools.forhealth.org/wpcontent/uploads/sites/19/2020/08/Harvard-Healthy-Buildingsprogram-How-to-assess-classroom-ventilation-08-28-2020.pdf

Space	Occupancy	Ventilation Rate ASHRAE 62.1 (L/s/person)	Outdoor Air Change rate (h ⁻¹)	Steady State or Mean Peak CO ₂ Concentration ppm _v	Reference
Ideal Classroom Meeting Standards (5- to 8-year-olds)	24 students 1 instructor	7.4	~2.6 ^a	828 ^b	ORIGINAL RATCLE © Open Access © ① Carbon dioxide generation rates for building occupants A Persily © L de Jonge First published: 20 March 2017 https://doi.org/10.1111/ina.12383 Citations: 90
10 Actual California Classrooms	N/A	2.6 – 7.1	N/A	1,140 - 2,380	Original Article & Free Access Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools M. J. Mendell & E. A. Eliseeva, M. M. Davies, M. Spears, A. Lobscheid, W. J. Fisk, M. G. Agite First published: 19 March 2013 https://doi.org/10.1111/ina.12042 Citations: 99

Association between substandard classroom ventilation rates and students' academic achievement

U. Haverinen-Shaughnessy, D. J. Moschandreas, R. J. Shaughnessy

First published: 24 August 2010 | https://doi.org/10.1111/j.1600-0668.2010.00686.x | Citations: 133

Fig. 1 Ventilation rate distribution (vertical line corresponds to ASHRAE recommended minimum)

Mass Balance

 CO_2 in room = $(CO_2 In) - (CO_2 Out)$

Assumes well-mixed room

These Photos by Unknown Author is licensed under CC BY-SA-NC

 CO_2

https://schools.forhealth.org/wp-content/uploads/sites/19/2020/08/Harvard-Healthy-Buildings-program-How-to-assess-classroom-ventilation-08-28-2020.pdf

BUILDING # FOR HEALTH

$$Ln\left[\frac{(C_t-C_{outside})}{(C_{t=0}-C_{outside})}\right]$$
 vs. t

Energy and Buildings

Volume 43, Issue 11, November 2011, Pages 3059-3067

Impacts of airtightening retrofits on ventilation rates and energy consumption in a manufactured home

Steven Nabinger ™, Andrew Persily A ™

Simulation of Controls for Reducing Aerosol Exposure in Educational Spaces using FaTIMA

https://tsapps.nist.gov/publication/get_pdf. cfm?pub id=930986

Cooling/Heating coils OA filter

MERV 6 to 13 filter

Complication #9 → Infiltration

⇒Air leaving zone through leakage

Effective Air Change Rate Estimation for Particle Removal

CO₂ Measurement

Portable HEPA Filter

HVAC MERV 13 Filter

https://www.tsi.com/products/ventilation-testinstruments/alnor/alnor-capture-hoods/alnorbalometer-capture-hood-ebt731/

Conclusion

Ventilation and Consumer Grade Cost Sensors:

It's complicated