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Abstract 

 

Trypan blue dye exclusion-based cell viability 

measurements are highly dependent on image quality and 

consistency. In order to enable reproducible 

measurements, reliable image capture with a consistent 

focal plane with respect to cell features and appropriate 

signal-to-noise ratio is required to support proper 

execution of image analysis routines. Current software uses 

human-selected features to characterize cells as dead or 

alive. Using neural networks to determine whether cells in 

a bright field image are dead or alive does not limit the 

range of features used to characterize these images and has 

removed the need to locate the sharpest image in each new 

sample to take a high-quality measurement. Our viability 

measurements can be made over a wide range of focal 

planes (up to 150 µm), and viability levels (0 to 100 % 

viability in test sets), while keeping the viability estimates 

within the range of manual identification of cells by several 

experts. 

 

1. Introduction 

Cell viability is a fundamental measurement in 

biological science and is used to monitor the health and 

quality of cells.  In new medical therapies where living cells 

are administered to patients as the therapeutic agent, it is 

especially critical to carefully characterize the number of 

live and dead cells in the final product [1,2]. Trypan blue 

dye exclusion viability measurements represent a common 

type of imaging-based viability measurement often made 

using instrumentation that includes an automated 

microscope, proprietary imaging chambers, and proprietary 

algorithms designed to capture particular image features, 

e.g., the bright centers of live cells and dark centers of dead 

(i.e. membrane permeable) cells following trypan blue 

treatment [3,4,5]. This type of measurement has been used 

for many decades [6]. Live cells possess intact membranes 

that do not allow many substances in their environment, 

such as dyes like trypan blue, to pass into the cell. Dead 

cells do not maintain impermeable membranes and will 

take up the trypan blue stain, giving the cells a dark blue 

appearance when they are imaged [7,8]. 

The viability software is designed to detect the presence 

or absence of the blue trypan dye within the cell. Input 

images must be used on high contrast, sharply focused 

images. Under these imaging conditions live cells exhibit 

bright center regions and dead cells appear dark. Figure 1 

demonstrates the narrow range of focal planes that can 

sometimes be required with commercial cell viability 

software to accurately represent the viability of a cell 

sample. The software is specific to the instrument being 

used; each type of instrument will have its own proprietary 

set of algorithms. 

Using a neural network approach to measuring viability 

opens the door to more generalized software. If live cells 

have image features that differ from dead cells in the 

presence of trypan blue, we assumed that some of these 

features are robust to significant variation in focal plane. By 

training a network using images from a wide range of focal 

planes, it is possible to train a network that would discover 

such robust features, eliminating the need for 

time-consuming and variable focal plane selection. The key 

to finding such features is to provide the network sufficient 

training data to allow it to find them. 

All of our image sets contain microsphere beads to 

indicate unambiguous high quality reference focal planes 

[9]. In bright field images, objects appear darker or brighter 

with changing focus, interfering with the ability to 

consistently identify live/dead cells by their brightness/ 

darkness. A reference focal plane defined by a consistent 

material such as a bead circumvents this problem. Finding 

the highest quality in-focus microscopic image for each cell 

sample is tedious and can lead to analysis errors. We use 

the beads here to define a high quality focal plane and 

assure that our neural networks find accurate viabilities 

both above and below this high quality plane. With 

appropriately trained and tested neural network models, the 

beads are less critical to the workflow since the models can 

accurately predict cell viability over a wide focal range. 
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Figure 1: Percent viability analyzed by the Cellometer A2K across 

a range of focal planes for two samples analyzed on different days.  

Vertical dotted lines indicate the reference focal plane for each 

sample based on previously validated bead image features.  

Horizontal dotted lines indicate the expert evaluated % viability 

for each sample, where the expert manually counted cells in the 

images acquired by the A2K at the reference focal plane.   

 

In this paper we outline an example of how neural 

network modeling can be used to accurately capture the 

image features of live and dead cells over a wide focal 

range. We show how training data was created to mimic 

expert manual annotation of images and compare our 

resulting training data with the manual annotations. We 

also compare the accuracy of U-Net detection and 

classification models [10] with these manual annotations. 

We apply the trained models on additional datasets to 

demonstrate model generalizability on new unseen data 

sets across wide focal ranges. Using these models, we 

eliminate the need for both tedious training data generation 

and the need for an operator to manually find the highest 

quality image plane in order to make a trypan blue based 

viability measurement. 

 

2 Methods 

 

2.1 Image creation 

2.1.1 Sample preparation and image acquisition 

 

We use three different datasets in this study, each with 

images that span a wide range of focal planes and cell 

viabilities (Table 1). We used five images from the first 

dataset for manual labeling of live and dead cells, and the 

rest for testing our models. We used the second data set to 

create training data for our neural networks. The third set 

was used for estimating the generalizability of the model on 

held out data. All our image sets contain beads to guide us 

to high quality reference focal planes [9]. The Bangs 100 % 

ViaCheck viability control beads (Bangs Labs, VC50B, 

stored at 4 °C) were used to benchmark image focus.1.   

 

Jurkat cells (Jurkat, Clone E6-1, ATCC TIB-152) were 

cultured in HyClone RPMI 1640 media (HyClone # 

SH30096.01) supplemented with 10 % Fetal Bovine Serum 

(ATCC # 30-2020) and Glutamax (Thermo Fisher # 

35050061 )  Cells were maintained in suspension culture in 

T-75 flasks (Corning # 1012611) at 37 °C and 5 % CO2 and 

used between passage 16 and 30.  Cells were prepared at 

concentrations of approximately 2 x 106 cells/mL for stock 

cell solutions. 

 

Non-viable cells were generated via heat shock treatment.  

Jurkat cells were heated in 1.5 mL Eppendorf tubes 

(Thermo Fisher Catalog No. 3451) on a heat block (Fisher 

Scientific Isotemp with four blocks, Cat. No. 88-860-022) 

at 70 °C for a period of 30 min, followed by a 30 min 

recovery period in a water bath held at ambient room 

temperature (approximately 23 °C). The 60 % viable Jurkat 

cell samples, for example, are then prepared by mixing 40 

µL of non-viable cells with 60 µL of healthy cells. 

 

An aliquot of beads (between 200 and 500 L) is 

centrifuged for 2 min at 6000 rcf (relative centrifugal force) 

and washed a total of three times with a buffer solution of 

phosphate-buffered saline (PBS) (Gibco Cat. No. 

14040-133). Beads are then re-suspended in PBS at the 

original volume (200 to 500 L).  Eight (8) L of the final 

bead solution is spiked into a total of 100 L cell media for 

each sample.   As a result, the final bead concentration used 

for analysis is approximately 80 000 per mL.  

 

2.2.2  Sample preparation for Cell Count and Cell Viability 

Analysis 

 

Samples were diluted 1:2 in a preparation of trypan blue 

(Gibco Cat. No. 15-250-061), PBS, and pre-washed Bangs 

100 % viability beads to achieve a final trypan blue 

concentration of 0.1 %.  In an optimized formulation, for 

every 100 L of final suspension, 50 L of cell suspension, 

8 L of beads, 17 L of phosphate-buffered saline (PBS) 

and 25 L of trypan blue dye are combined resulting in a 

1:4 dilution of final cell suspension with trypan blue. 

 

2.2.3  Loading samples 

Bead and cell imaging studies were conducted using the 

Cellometer Auto 2000 (A2K) with the SD100 slides from 

Nexcelom Bioscience.  Twenty (20) µL of the sample 

solution is pipetted gently into the inlet port on each 

chamber of the SD100 slide. The SD100 slide was then 

 
1 The mention of commercial products does not imply 

endorsement by the authors’ institutions, nor does it imply 

that they are the best available for the purpose. 
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inserted into the imaging chamber of the A2K.  The sample 

was allowed to settle for at least 30 sec prior to the start of 

each imaging set. 
 
Table 1: Datasets used in this study: for each set we give the focal 

range of the images used in µm, the reference (highest quality) 

focal plane in the set determined using beads, the range of 

viabilities in the set, and how we used each set. For set 2, each 

viability level had a different reference focal plane, because each 

new sample required refocusing. 

 

 

 

Set 

 

Focal 

range, 

µm 

 

Reference 

focal 

plane, µm 

 

 

Viability 

range % 

 

 

 

Use 

1 1470 to 

1597.5, 

by 7.5 

V0:1522 

V20: 1522 

V40:1552 

V60:1537 

V80:1515 

0,20,40, 

60,80 

Manual 

labeling, 

model testing 

2 1380 to 

1612.5, 

by 7.5 

1485 60 Training data 

creation 

3 1477.5 

to 1635, 

by 7.5 

1053 0,20,40, 

60,70, 

80,100 

Model testing 

 

2.2 Manual reference viability labels 

Three independent sets of measurements were 

made by manually labeling cells as dead or alive in images 

taken at the appropriate focal plane and exposure level used 

for the automated viability measurement, which is 

determined using bead features. A sample image is shown 

in Figure 2. The five samples of Jurkat cells were prepared 

at 0 %, 20 %, 40 %, 60 % and 80 % viability levels. These 

five images acquired on the A2K were then used as the test 

images for both our training data and the output of each 

neural network model. The manual viability measurement 

is determined as follows: 

 
 

 

 
 
Figure 2: Example of manually labeled image: Left: section of an 

image; Right: section of the corresponding labeled image: 2=live 

cell, 3=dead cell. 

2.3 Creating training data for neural networks 

Additional data was needed to train the neural networks 

other than the manually labeled images, and so we acquired 

an additional set of training data using a semi-automated 

method. By visualizing the live and dead cells in images 

both in and out of focus, we saw that although the level of 

brightness in the center of the live cells drops with image 

focus, the center of the live cells look different from their 

cell edges at all focus levels. Figure 3 shows example live 

and dead cell images across the focal range of this 

experiment. The centers of the dead cells do not exhibit as 

large a pixel intensity range as the centers of the live cells at 

all focal levels. We use this difference between the live and 

dead cells to label them automatically. We collected cell 

centers at a wide range of focal levels and separated the live 

from the dead cells based on cell center pixel uniformity. In 

order to do this, we first segmented and separated all cells 

in each image as explained in the next section. 

 

We used a set of 39 bright field images from Dataset 2, 

covering a range of focal values of 135 µm, from 60 µm 

below the reference plane to 75 µm above the reference 

plane. These samples were all prepared at approximately 60 

% viability. The 135 µm range covers most of the images 

for which the live and dead trypan blue stained cells have 

morphological differences. The brightest live cell centers 

appear at the reference focal plane, although planes above 

and below the reference focal plane also have bright 

centers. This is reflected in the viability measurements in 

Figure 1, which remain stable over a small focal range for 

both samples in that experiment (approximately 22.5 µm 

for sample 1 and 30 µm for sample 2). 
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Figure 3: Live and dead cell images across the focal range of this 

experiment. Top: closeup of a region of each image showing live 

and dead cells; Middle: closeup of the same live cell from each 

image; Bottom: closeup of the same dead cell from each image. 

For each set of pictures: Top row of each: image sample at 

1425,1440,1455,1470,1485 µm; Bottom row: image sample at 

1500,1515,1530,1545,1560 µm. The sample at 1485 µm has the 

highest quality focus. 

 

2.3.1  Cell separation 

 

In order to collect image pixels from the centers of each 

cell, it was necessary to first separate the cells in the image 

from one another. We do this using a software pipeline that 

includes finding cell edges using the Empirical Gradient 

Threshold (EGT) method [11], followed by cell separation 

using the Fogbank segmentation method [12]. The 

parameters for each of these methods are outlined in Table 

2. Parameters for the Fogbank segmentation often need to 

be tuned with each image, thus limiting the number of 

images in our training set by this labor intensive process. 

An example image is shown in Figure 4, along with its 

resulting cell-separated mask. We use the outcome of our 

neural network to generalize the painstaking task of cell 

separation. 

 

 
Figure 4: Example of cell separation by EGT and Fogbank: on the 

left is a section of an image taken at the reference focal plane, 990. 

On the right is the corresponding mask of separated cells. 

 
 

Table 2: Parameter for cell separation 

EGT parameters FogBank parameters 

Min_cell_size:[50 to 80] Min_peak_size: [10 to 

30] 

Min/max hole_size: Inf Min_object_size:[50 

to70] 

Hole_min_percent_intensity: 

[70 to 95] 

Fogbank_direction: 2 

Hole_max_percent_intensity: 

100 

Percent_binning: [5 to 

20] 

Fill_holes_bool_oper: 2  

Manual_finetune: [-15 to 2]  

 

 

2.3.2  Automated cell labeling by cell center pixel 

intensities 

 

Once the cells are cleanly separated, the center set of pixels 

are collected and averaged. We use the centroid of each 

pixel cluster as our center location. Two different sets of 

center cell pixels are collected, a 3x3 pixel set, and an 8x8 

pixel set, because at different focus levels, the center cell 

pixel diversity covers a different size range. The mean and 

standard deviation of each of these sets is found and the 

standard deviations are sorted smallest to largest for each 

image. The ratio of the mean pixel intensity at a 3x3 center 

to the mean intensity of the whole cell indicates whether to 

use a 3x3 or an 8x8 center. The most in-focus live cells 

have very bright centers that fill the 3x3 center. Out of 

focus cells centers cover a wider portion of the cell, and for 

those we sort and use 8x8 pixel centers. We used a ratio of 

2:1 (center 3x3 pixels to whole cell) to determine which 

size to use. For cell centers with a ratio greater than 2, we 

use the 3x3 center pixels. The cutoff between live and dead 

cells is determined by the largest change of slope of the 

sorted list of standard deviations and we tested this cutoff 

by a comparison with the manually labeled cells. 

2.4 Semantic segmentation networks 

Six different models were trained using images with 

different sets of focal ranges from Dataset 2. Table 3 lists 

those ranges. In order to compare viability results across 

different data sets, each with its own reference focal plane, 

we describe each model in terms of its Z range above and 

below the reference focal plane corresponding with each 

image. We ran a U-Net [10] network using images from the 

prescribed set of focal planes, and labeled masks prepared 

as described above with four class labels: background (0), 

beads (1), live cells (2), and dead cells (3). Batch sizes of 12 

were fed into the network, with initial learning rate = 

3.0e-4, adjusted by an Adam optimizer. All images were 

zscore normalized as whole images, then tiled into 256x256 

tiles to go into the network. We found that a tile-by-tile 

normalization led to less accurate network outcomes. 

 
Table 3: Focal ranges used for training the segmentation 

models 

model Z Range , µm Range µm (0 µm 

is at reference 

focal plane, 1485) 

1 1425 to 1560 

 

-60 to 75 

2 1470 to 1560 -15 to 75 

3 1470 to 1545 -15 to 60 

4 1470 to 1530 -15 to 45 

5 1455 to 1530 -30 to 45 

6 1440 to 1530 -45 to 45 
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2.5 Semantic segmentation network output viability 

calculation 

Six different models were trained using images with 

different sets of focal ranges from Dataset 2. A viability 

was determined from the output of each of the six network 

models. Since the classification from the network is done 

pixel by pixel, the type of cell represented by each pixel 

cluster is determined by the class with greatest presence. 

The viability was then determined by the number (live 

cells)/(live + dead cells). Cells that are touching, resulting 

in larger pixel clusters, are treated as multiple cells 

depending upon the size of the pixel cluster.  After 

inferencing each of the six models on the five images used 

for manual labeling, each cell was then compared with one 

of the cells that had been manually labeled for a cell to cell 

comparison. 

3 Results 

 

3.1 Manual label results 

 

The three sets of labeled live and dead cells were compared 

with one another to determine the level of accuracy 

expected from model outcomes. Overall viability 

measurements from each expert are shown in Table 4. We 

include average measurements across the three experts to 

show the variability from expert to expert. 

 
Table 4: Manually labeled viability counts from three experts and 

the variability among them as shown by the standard deviation 

(stddev) of measurements at each viability level. All numbers 

given in percent viability. 

Viability 

level 

Expert 

1 

Expert 

2 

Expert 

3 

Mean Stddev 

0 % 2.59 3.08 3.04  2.90 0.22 

20 % 17.90 18.36 18.75  18.34 0.35 

40 % 30.00 32.58 31.97  31.52 1.10 

60 % 53.91 56.22 54.43  54.85 0.99 

80 % 74.13 79.50 76.92  76.85 2.19 

 

We used the manually labeled images also to assess the 

quality of our training data generation, and the quality of 

the output of our neural networks. To do this, we used our 

method to create training data on the same five images that 

were manually labeled. We also ran our six neural network 

models outlined in Table 3 above with the same five 

images.  A comparison of how close the training data and 

network output data is to the manual labels is shown 

pictorially in Figure 5 below. The dendrogram was made 

using the R [13] hclust function for hierarchical clustering 

with default settings. One set of the expert labels is closer to 

the training data than to any other set of measurements, 

including the other two expert labels. The same set of 

expert labels is closer to three of the model outputs than to 

the other two expert labels. The viabilities from the six 

network models on the test five images are shown in Table 

5. Models 4,5, and 6 (Table 3) were closer to the manual 

labels than those using higher focal planes. 

 

 
Figure 5: Cluster dendrogram with branches demonstrating which 

viability measurements were closest to one another. The expert 

measurements are labeled as F,S,L, training data is labeled as Seg, 

and the model outcomes are labeled by their focal ranges. One of 

the expert labels (L) is closer to the training data than any other set 

of measurements. Three of the model outcomes are closer to L 

than to the other expert labels. 

 
Table 5: Network output % viability: viabilities measured on 

masks output from the neural net models showing focal ranges of 

models. 

V 

% 

-60 to 

75 

-15 to 

75 

-15 to 

60 

-15 to 

45 

-30 to 

45 

-45 to 

45 

0 10.04 0.83 1.21 0.40 13.76 10.44 

20 17.13 17.26 18.11 16.73 18.22 20.32 

40 31.54 31.56 31.68 31.32 32.22 33.72 

60 52.52 54.31 54.94 54.24 54.72 56.02 

80 73.75 73.54 73.36 71.54 74.27 76.81 

 

Disagreement between the live/dead cell individual labels 

is shown in Figure 5 for each of the 5 test conditions. The 

manual labels disagree with each other by 3 to 8 %. The 

training data labels are similar to one another but disagree 

with the manual labels by 8 to 10 %. The model output 

labels disagree by 10 to 15% except for the image with 0 % 

viability, where the disagreement was much higher. Even 

though individual cells were labeled differently, the overall 

viability numbers are very close to one another for all sets, 

seen in Figure 6. 
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Figure 5: Plot showing how the manual labels (red) disagree 

with each other and with the training data labels (green) and the 

labels output from the models (blue). 

 

 
Figure 6: Chart showing overall viability measurements for the 

five test images, comparing manual labels (red), training data 

labels (green) and model output labels (blue). The six models are 

labeled on the x axis by their focal ranges. 

 

3.3 Additional network viability tests 

 

Each network model was used to inference images in two 

additional sets of data, each of which covered a range of 

viabilities and a range of focal plane values. For each set, 

we were interested in consistent viability measurements 

from a model across a wide focal range. We do not have 

manual labels for cells in all of these sets, but we do have an 

approximate viability number based on how the images 

were acquired. For example, a 70 % viability estimate is 

made for images from solutions of 70 % live, 30 % dead 

cells. We assume the resultant viabilities measured from 

these images will be close to 70 %, although each image 

will vary from the others. Table 6 shows resulting viability 

data from masks output from each of our six network 

models on images from Dataset 1. Table 6 shows mean 

viabilities across full focal sweeps and the corresponding 

standard deviations to show their consistency. 

 
Table 6: Means and standard deviations (stddev) of the output 

on the Dataset 1 images from the three models closest to manual 

labeling. Images covered a span of 127.5 µm 

 

Model 

focal 

range 

 

 

Viability 

estimate (%) 

 

Model 

Viability 

mean (%) 

Model 

Viability 

stddev 

(%) 

-15 to 

45 

0 3.3 1.3 

 20 18.9 1.2 

 40 37.1 2.1 

 60 58.8 2.4 

 80 76.0 1.0 

-30 to 

45 

0 6.9 2.5 

 20 20.5 1.9 

 40 38.0 2.5 

 60 62.0 3.0 

 80 76.7 1.0 

-45 to 

45 

0 0.4 0.1 

 20 14.5 0.8 

 40 28.5 1.5 

 60 47.5 1.8 

 80 68.2 1.8 

 

Each of the six neural network models was used to predict 

viability levels for all of the images in Datasets 1 and 3. 

Figure 7 shows the predicted viabilities on the y axis 

plotted against the associated Z level for each test image. In 

order to compare outcomes, the x axis shows Z levels in 

terms of a distance from each reference focal plane; i.e., the 

Z distance to the highest quality image, in which bead edge 

gradients were highest. 

 

Our best results are seen in the output of Dataset 3, where 

three of the models (-15 to 45, -15 to 75, -60 to 75) predict 

consistent viabilities over the Z range of approximately 100 

µm for each of the seven viability levels. Viabilities 

predicted for Dataset 1 show consistency over a 75 µm 

range around the reference focal plane for each experiment. 

However, for the higher z levels, the viabilities vary more 

than 5 %. At these values, it is not clear whether our models 

are not as accurate, or whether the cells that are being 

imaged are starting to die, since these images were the last 

ones acquired in the image sweeps. More tests are needed 

to distinguish between these two possibilities. 

 

 Several anomalies are also seen in the 40 % viability data. 

Of the four views that are imaged, the D view consistently 

has varied outcome because there was a large piece of 
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debris on this image that our model was not able to handle. 

In addition, there is a consistent error in the first Z views at 

Z=1500, where we suspect the dead cells did not have 

sufficient time to take in the trypan blue and still appeared 

to have bright centers. Future work with a larger training set 

that covers a wider Z range will help to answer these 

questions. It is possible that with model improvements, that 

we will be able to find images in which cells start to die 

over time by using a viability neural net model. 

 

 

 
 

 
Figure 7: Outcomes from the six neural network models at all 

viability levels (labeled at right in gray) and across all Z levels 

available in the data, labeled along the x axis by the distance from 

the reference focal plane (highest quality image plane) of each 

individual sample for comparison. Top: Dataset 1, Bottom: 

Dataset 2. For each Z and viability combinations, the microscope 

takes four fields of view (FOV), and for most combinations there 

are replicate sets (Rep. labeled in the figure). 

 

4 Conclusions 

Conventional microscopy software algorithms for viability 

measurements depend upon specific cell image features to 

correctly label cells as alive or dead. In our examples, we 

showed viability data in which the built-in instrument 

trypan blue viability analyzer software gave consistent 

viability measurements over approximately 25 µm ranges. 

Image features (in particular the brightness of cell centers) 

change at different focal planes, making the usefulness of 

the viability algorithms dependent on returning to specific 

high-quality focal planes. These high-quality planes can in 

turn be difficult to identify consistently. We have used a 

neural network approach to make these measurements less 

dependent upon focusing the microscope correctly, 

resulting in viability measurements that are reasonable 

across a wider focal range (75 to 100 µm over all viability 

levels), with an accuracy that mimics that of manual 

labeling. 

 

In a series of different steps, we have shown that we can 

generate a limited amount of training data for a U-Net cell 

classifier that is as close to manual labeling as several 

experts are to one another. From this training data, made at 

a single viability level with images spanning 75 to 100 µm 

focal ranges, we have generated classification models 

whose output viability measurements are also similar to 

those from the manually labeled images. In the process, we 

eliminate future need for manual cell labeling and 

generating semi-automated cell and dead cell training data. 

We can use our neural network models on a wide range of 

focal planes, eliminating the need to get an accurate 

auto-focus of the cells in an image in order to acquire an 

accurate viability measurement. 
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